Bayes and Naïve Bayes Classifier

Aarti Singh

Machine Learning 10-701 Jan 23, 2023

Classification

Goal:

Construct prediction rule $f : \mathcal{X} \rightarrow \mathcal{Y}$

High Stress Moderate Stress Low Stress

Input feature vector, X Label, Y

In general: label Y can belong to more than two classes X is multi-dimensional (many features represent an input)

But lets start with a simple case:

label Y is binary (either "Stress" or "No Stress") X is average brain activity in the "Amygdala"

Binary Classification

Model X and Y as random variables with joint distribution P_{XY}

Training data {X_i, Y_i}ⁿ_{i=1} ~ iid (independent and identically distributed) samples from P_{XY}

Test data $\{X,Y\} \sim$ iid sample from P_{XY}

Training and test data are independent draws from **same** distribution

Optimal classifier

Minimize loss in expectation (over random test data) $min_{f} E_{XY}[loss(f(X),Y)]$

• Which classifier f is optimal for 0/1 loss, assuming we know data-generating distribution P(X,Y)?

Optimal Classifier

Model X and Y as random variables

For a given X, $f(X)$ = label Y which is more likely

$$
f(X) = \arg \max_{y} P(Y = y | X = x)
$$

Optimal classifier

Minimize loss in expectation (over random test data) $min_{f} E_{XY}[loss(f(X),Y)]$

• Which classifier f is optimal for 0/1 loss, assuming we know data-generating distribution P(X,Y)?

Bayes Rule

Bayes Rule:
$$
P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}
$$

 $P(Y = y|X = x) = \frac{P(X = x|Y = y)P(Y = y)}{P(X = x)}$

To see this, recall:

 $P(X,Y) = P(X|Y) P(Y)$ $P(Y,X) = P(Y|X) P(X)$

Thomas Bayes 7

Bayes Optimal Classifier

Bayes Rule:
$$
P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}
$$

$$
P(Y=y|X=x) = \frac{P(X=x|Y=y)P(Y=y)}{P(X=x)}
$$

Bayes optimal classifier:

$$
f(X) = \arg \max_{Y=y} P(Y = y | X = x)
$$

=
$$
\arg \max_{Y=y} P(X = x | Y = y) P(Y = y)
$$

Class conditional Distribution of class Distribution of class Distribution

Bayes Classifier

We can now consider distribution models to approximate ground truth:

Class distribution P(Y=y)

Class conditional distribution of features $P(X=x|Y=y)$

Modeling class distribution

Modeling Class distribution $P(Y=y) = Bernoulli(\theta)$

 $P(Y = \bullet) = \theta$ $P(Y = \bullet) = 1 - \theta$ Like a coin flip

Ø How do we model multiple (>2) classes?

Modeling class conditional distribution of feature P(X=x|Y=y) \triangleright What distribution would you use?

E.g. $P(X=x | Y=y) =$ Gaussian $N(\mu_y, \sigma_y^2)$ $P(X = x|Y = \bullet)$ σ^2 y $\overline{\mu}_{y}$

Gaussian Bayes classifier

Poll

- Is the Gaussian Bayes Classifier always optimal under 0/1 loss?
	- A. True B. False

1-dim Gaussian Bayes classifier

d-dim Gaussian Bayes classifier

Decision Boundary of Gaussian Bayes

• Decision boundary is set of points x: $P(Y=1|X=x) = P(Y=0|X=x)$

Compute the ratio

$$
1 = \frac{P(Y=1|X=x)}{P(Y=0|X=x)} = \frac{P(X=x|Y=1)P(Y=1)}{P(X=x|Y=0)P(Y=0)}
$$

In general, this implies a quadratic equation in x. But if $\Sigma_1 = \Sigma_0$, then quadratic part cancels out and decision boundary is linear.

Recap

• **Bayes classifier** – assumes P_{XY} known, optimal for $0/1$ loss

$$
f(X) = \arg \max_{Y=y} P(Y = y | X = x)
$$

=
$$
\arg \max_{Y=y} P(X = x | Y = y) P(Y = y)
$$

Class conditional
Discussionditional
Distribution of features

- **Gaussian Bayes classifier** assumes Class distribution is Bernoulli/Multinomial Class conditional distribution of features is Gaussian
- **Decision boundary** (binary classification)

How many parameters do we need to learn (continuous features)?

Class distribution:

 $P(Y = y) = p_y$ for all y in H, M, L **K-1 if K labels**

$$
p_H
$$
, p_M , p_L (sum to 1)

Class conditional distribution of features:

 $Kd + Kd(d+1)/2 = O(Kd^2)$ if d features **Quadratic in dimension d! If d = 256x256 pixels, ~ 13 billion parameters!** $P(X=x|Y=y) \sim N(\mu_v \Sigma_v)$ for each y $\mu_v - d$ -dim vector Σy - dxd matrix

How many parameters do we need to learn (discrete features)?

Class distribution:

 $P(Y = y) = p_y$ for all y in 0, 1, 2, ..., 9

 $p_0, p_1, ..., p_q$ (sum to 1)

K-1 if K labels

0 1 2 3 4 5 6 1 89012345 67890123 4567890 23456989

Class conditional distribution of (binary) features:

 $P(X=x|Y=y)$ ~ For each label y, maintain probability table with 2^d-1 entries

K(2d – 1) if d binary features

Exponential in dimension d!

What's wrong with too many parameters?

• How many training data needed to learn one parameter (bias of a coin)?

- Need lots of training data to learn the parameters!
	- Training data > number of (independent) parameters

Naïve Bayes Classifier

- Bayes Classifier with additional "naïve" assumption:
	- Features are independent given class:

$$
P(X^{(1)}, X^{(2)}|Y) = P(X^{(1)}|X^{(2)}, Y)P(X^{(2)}|Y) \qquad X = \begin{bmatrix} X^{(1)} \\ X^{(2)} \end{bmatrix}
$$

= $P(X^{(1)}|Y)P(X^{(2)}|Y)$

– More generally:

$$
P(X^{(1)},...,X^{(d)}|Y) = \prod_{i=1}^d P(X^{(i)}|Y) \hspace{2cm} X = \begin{bmatrix} \vdots \\ \vdots \\ X^{(d)} \end{bmatrix}
$$

• If conditional independence assumption holds, NB is optimal classifier! But worse otherwise.

 $\Gamma = (1)$

 $\lceil X^{(1)} \rceil$

Conditional Independence

• X is **conditionally independent** of Y given Z:

probability distribution governing X is independent of the value of Y, given the value of Z

$$
(\forall x, y, z)P(X = x | Y = y, Z = z) = P(X = x | Z = z)
$$

- Equivalent to: $P(X, Y | Z) = P(X | Z)P(Y | Z)$
- e.g., $P(Thunder | Rain, Lightning) = P(Thunder | Lightning)$ **Note:** does NOT mean Thunder is independent of Rain

Naïve Bayes Classifier

- Bayes Classifier with additional "naïve" assumption:
	- Features are independent given class:

$$
P(X^{(1)},...,X^{(d)}|Y) = \prod_{i=1}^d P(X^{(i)}|Y)
$$

$$
f_{NB}(\mathbf{x}) = \arg \max_{y} P(x^{(1)}, ..., x^{(d)}|y) P(y)
$$

$$
= \arg \max_{y} \prod_{i=1}^{d} P(x^{(i)}|y) P(y)
$$

• How many parameters now?

How many parameters do we need to learn (continuous features)?

\triangleright Poll

Number of parameters for class distribution P(Y=y) for K classes?

Number of parameters for Class conditional distribution of features $P(X = x | Y = y)$ for d features (using Gaussian Naïve Bayes assumption)?

A. K-1, Kd

B. K-1, $K(d + d(d+1)/2)$

C. K-1, Kd2

D. K-1, 2Kd

How many parameters do we need to learn (discrete features)?

\triangleright Poll

Number of parameters for class distribution P(Y=y) for K classes?

Number of parameters for Class conditional distribution of features $P(X = x | Y = y)$ for d binary features (using Naïve Bayes assumption)?

A. K-1, K2d

B. K-1, K(d-1)

C. K-1, Kd

D. K-1, 2Kd

Naïve Bayes Classifier

- Bayes Classifier with additional "naïve" assumption:
	- Features are independent given class:

$$
P(X^{(1)},...,X^{(d)}|Y) = \prod_{i=1}^d P(X^{(i)}|Y)
$$

$$
f_{NB}(\mathbf{x}) = \arg \max_{y} P(x^{(1)}, ..., x^{(d)}|y) P(y)
$$

= $\arg \max_{y} \prod_{i=1}^{d} P(x^{(i)}|y) P(y)$

• Has fewer parameters, and hence requires fewer training data, even though assumption may be violated in practice

Learned Gaussian Naïve Bayes Model Means for P(BrainActivity | WordCategory)

Pairwise classification accuracy: 85% [Mitchell et al.03]

People words $\frac{1}{5}$ $\frac{1}{10}$ $\frac{1}{10}$ Animal words

Text classification

Input $X \in \mathcal{X}$

remember to wake up when class ends = wake ends to class remember up when

How to represent inputs mathematically?

- Document vector X \triangleright Ideas?
	- list of words (different length for each document)
	- frequency of words (length of each document = size of vocabulary), also known as **Bag-of-words** approach

Misses out context!!

– list of n-grams (n-tuples of words)

 \triangleright Why might this be limited?

Text classification

word1 5 word2 2 word3 10 word4 20 word₅ 12 word6 5 word7 8 word8 4

. . . .

. .

Features \longrightarrow Model for input features

 $P(X=x|Y=y)$ $= P(word1 = 5, word2 = 2,$ $word3 = 10, ... | Y=y)$

Bayes classifier:

Bayes classifier:
arg
$$
\max_{y}
$$
 $P(x^{(1)}, ..., x^{(d)}|y) P(y)$
Naïve Bayes classifier:
arg \max_{y} $\prod_{i=1}^{d} P(x^{(i)}|y) P(y)$

29

Glossary of Machine Learning

- iid random variables
- Class prior
- Class conditional distribution of inputs
- Optimal classifier under 0/1 loss
- Bayes rule
- Gaussian Bayes classifier
- Naïve Bayes classifier
- Decision boundary