Neural Networks

Aarti Singh

Machine Learning 10-701
Feb 13, 2023

ACHI

Logistic function as a Graph

1
T 14 exp(—(wo + >, w; X;))

Output, o(x) = o(wp + Z w; X;)

Sigmoid Unit

a O—L >
net =2, w; x; L
=0

[o = G(net) = -

l+e

Neural Networks to learnf: X 2 Y

* fcan be anon-linear function
» X (vector of) continuous and/or discrete variables
* Y (vector of) continuous and/or discrete variables

* Neural networks - Represent f by network of sigmoid (more
recently ReLU — next lecture) units :

 Output layer, Y

w 4
— _
- - o ~
- ’- - -~ —~
b - NN _"
> L e
\ X - , ’

Hidden layer, H

Multilayer Networks of Sigmoid Units

Neural Network trained to distinguish vowel sounds using 2 formants (features)

4000

a head

OUtpUt s nid
+ hod
head hid layer A who'd hood ¢ had
' e ¢ hawed
') dGe0 v heard
o heed
< hud
B2 (52} » who'd
~ hood
1000
S00
Q 500 1000 1400
F1 (Hz)

Two layers of logistic units Highly non-linear decision surface

Neural Network
trained to drive a

car!

Straight
Ahead

Sharp
Right

30 Output
Units

30x32 Sensor
Input Retina

Weights to output units from one hidden unit
FIERY

Weights of each pixel for one hidden unit

Connectionist Models

Consider humans:
e Neuron switching time ~ .001 second
e Number of neurons ~ 10'°
e Connections per neuron ~ 10*73
e Scene recognition time ~ .1 second
e 100 inference steps doesn’t seem like enough

— much parallel computation

Properties of artificial neural nets (ANN'’s):
e Many neuron-like threshold switching units
e Many weighted interconnections among units

e Highly parallel, distributed process

Expressive Capabilities of ANNs

Boolean functions:

e Every boolean function can be represented by
network with single hidden layer

e but might require exponential (in number of
inputs) hidden units

Continuous functions:

e Every bounded continuous function can be
approximated with arbitrarily small error, by
network with one hidden layer [Cybenko 1989;
Hornik et al. 1989]

e Any function can be approximated to arbitrary
accuracy by a network with two hidden layers
[Cybenko 1988].

Expressive Capabilities of NNs

1 hidden layer NN demo

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Prediction using Neural Networks

Prediction — Given neural network (hidden units and weights), use it to predict
the label of a test point

Forward Propagation —

Start from input layer
For each subsequent layer, compute output of sigmoid unit

Sigmoid unit: o(x) = o(wo+ Z W;T;)
)

1-Hidden layer, o(x) = o|lwg+ Y wha(wg +3 w?%)
1 output NN: n ‘ ; |

\ Op,]

Training Neural Networks - 12 loss

Train weights of all units to minimize sum of squared errors of
predicted network outputs

_ I 70\ 2 Output of learned
W « arg mV[I/n Xl:(y];(33) heural network

\ J

ELW]

> Objective E[W] is no head hid A who'd hood
longer convex in W, - 24 Output layer

> Still use Gradient descent
to minimize E[W].

» Training is slow with lot
of data and lot of \
weights! F 4 .

Stochastic gradient descent

Stochastic gradient descent (SGD): Simplify computation by using

a single data point at each iteration (instead of sum over all data
points)

W« argmin > (y' — f(z1))?
W

ELW]

At each iteration of gradient descent
 Approximate E[W]= (yl — f(a:l))Q

e Stochastic Gradient =

Cycle through all points, then restart OR choose random data
point at each iteration

Gradient descent for training NNs

Gradient descent via Chain rule for computing gradients

Gradient of loss with respect to one weight w,

dol)
(‘3’w,7

OF 0 1

— - vi— o2 _ <
ow; 8w.i2J_§D(y o') —le(yl—ol)(—

Stochastic gradient:

Derivative of sigmoid

x@ o(x)

o(x) is the sigmoid function

1
IL+e "

Nice property: %f—) = Differentiable

A. o(x)(1- o(x)) C. - o(x)

B. o(x) o(-x) D. o(x)?

Gradient Descent for 1 node

Sigmoid Unit
»Qi >
net :ig()wi Xj 0 = G(net) = l-net
l+e
oo do Onet
=o(1 — o)x;

ow; ~ Onet’ Ow;

Gradient descent step:

Backpropagation

Backpropagation: Efficient implementation of (Stochastic)
Gradient descent for Neural networks with multiple layers

chain rule for gradients
+

layer-wise computation
(going backward from output to input)

Po “

X%

Gradient Descent for 1 hidden layer
1 output NN

6—(b X (,Of\o{j>

Vh
7*1

o0 = 6T %"03,1050

g s
0, = (W + ZWlx)

L

(A

-
s { ?;L\’NQ

Gradient of the output with respect to one final layer weight wy,

0o

S o(1 — o)oy,

Backpropagation Algorithm
using Stochastic gradient descent

1 final output unit

-
Initialize all weights to small random numbers. Koo W ‘ -
Until satisfied, Do 4 s SR 0
e For each training example, Do g Ny
A T \,}“ S
1. Input the training example to the network o
and compute the network outputs > Using Forward propagation
2.
0 o(l —o)(y—o)
3.

4. Update each network weight wx
Wy <« Wy + AWh
where

Awy, = ndoy,

Gradient Descent for 1 hidden layer

1 output NN

o0 = 6T ‘%‘w?\o@ =
0 3 S

CL\ S '!f(Cdf + Z(":‘f\xt> =

L

Gradient of the output with respect to one hidden layer weight w;"

0o

0o 0dop
821}? dop " dwl
dop, _ A. on(1-0y) C. o(1-0) x;
awih
B. on(1-0p)X; D. o(1-0)

(7 4

-
s(2‘5“'\7‘9

Gradient Descent for 1 hidden layer

1 output NN
0 = &Lt ‘%‘w?\og = s(i}\wwg
’ ‘ v 1.
O = s (“f Ztof“sz> & €L Z_":Lo-\ 7&)

L

Gradient of the output with respect to one hidden layer weight w;"

0o do Jdop

821}? ~ dop " aw!

do A. o(1-0)x; C. o(1-0) wy,

B. o(1-0)oy, D. o(1-0)

Gradient Descent for 1 hidden layer

1 output NN
B = &Lt %“SRORB = 6‘(?’\ (1\31';(')&}
v | v £
C’L\ = "5(Cw‘f + Ztef,’ﬁ) & 5'(__{;LO‘\ 7‘\>

L

Gradient of the output with respect to one hidden layer weight w;"

do do Jdop
Dl on" ! = 0(1 — o)wy, - 05,(1 — op)x;

dop do Qdop
—_— = . =o0o(1l—0)wy -0,(1 — 04)x;

Gradient Descent for 1 hidden layer

1 output NN
B = &Lt ‘%ﬁw}s\ORB = 6‘(7{'\ w;;%}
¢ ' v s
C"(;\ = 5 Cdf + ZCJ}?‘[) = &L _4;(10‘1 7’\>

L

Gradient of the output with respect to one final layer weight wy,

0o

Juwp o(1 — o)oy,

Gradient of the output with respect to one hidden layer weight w;"

do do dop
S = dor ot = o(1—o)wy, - op(1 — op)x;

1 l

Backpropagation Algorithm

1 final output unit

using Stochastic gradient descent

Initialize all weights to small random numbers.
Until satisfied, Do

e For each training example, Do

1. Input the training example to the network

¥o =1
%

and compute the network outputs
2.

0 o(l —o)(y—o)
3. For each hidden unit h
Op < op(1 — op)wpd
4. Update each network weight w; ;
w; ; — Wi + Aw;
where

Aw; j =nd;0;

> Using Forward propagation

w; = wt from i to j

Note: if i is input
variable, o, = x;

Backpropagation Algorithm head wd b whod hood
using Stochastic gradient descent '“

Initialize all weights to small random numbers.
Until satisfied, Do

e For each training example, Do

1. Input the training example to the network
and compute the network outputs > Using Forward propagation

2. For each output unit % y, = label of current

o training example for
O = ox(1 — o) (y, — or) output unit k
3. For each hidden unit h 0y Or 0, = unit output
Snon(l—o0n) ¥ wiib (obtained by forward
k€outputs propagation)

4. Update each network weight w; ; Wi = wt from i to |
ij =

Wi j — wij + Aw;

where Note: if i is input variable,

O; = X;
Aw; j =n0;0;

More on Backpropagation

e Gradient descent over entire network weight
vector

e Easily generalized to arbitrary directed graphs

e Will find a local, not necessarily global error
minimum

— In practice, often works well (can run multiple
times)

e Minimizes error over training examples

— Will it generalize well to subsequent
examples?

e Training can take thousands of iterations —
slow!

e Using network after training is very fast

Objective/Error no
longer convex in
weights

HW2

» Cross-entropy error metric for multi-class classification

— Y Vi log yx loss for single data point

One-hot encoding — encode label as a vector [y, V5, .. Yl

where y, = 1 if label is k and O otherwise

Interpret vector as probability distribution

HW2

» Cross-entropy error metric for multi-class classification

— 2k Yk log Vi

Entropy of a random variable X:
Ey~,[-log p(X)] small p(X) => more information

-log, p(X) = number of bits needed to encode an outcome X
when we know true distribution p

Cross-entropy = expected number of bits needed to encode a
random draw of X when using distribution g

Ex-p[-log q(X)] Minimized when g=p

HW2

» Cross-entropy error metric for multi-class classification

— 2k Yk log Vi

Cross-entropy = expected number of bits needed to encode a
random draw of X when using distribution g

Ex~o[-log a(X)]

Interpret one-hot-encoding y and ¥ as distributions.

