Neural Networks

Aarti Singh

Machine Learning 10-701 Feb 13, 2023

Logistic function as a Graph

Output,
$$o(\mathbf{x}) = \sigma(w_0 + \sum_i w_i X_i) = \frac{1}{1 + \exp(-(w_0 + \sum_i w_i X_i))}$$

Neural Networks to learn f: X -> Y

- f can be a non-linear function
- X (vector of) continuous and/or discrete variables
- Y (vector of) continuous and/or discrete variables
- Neural networks Represent f by <u>network</u> of sigmoid (more recently ReLU – next lecture) units:

Multilayer Networks of Sigmoid Units

Neural Network trained to distinguish vowel sounds using 2 formants (features)

Two layers of logistic units

Highly non-linear decision surface

Neural Network trained to drive a car!

Weights to output units from one hidden unit

Weights of each pixel for one hidden unit

Connectionist Models

Consider humans:

- Neuron switching time ~ .001 second
- Number of neurons ~ 10¹⁰
- \bullet Connections per neuron ~ 10^{4-5}
- Scene recognition time ~ .1 second
- 100 inference steps doesn't seem like enough
- \rightarrow much parallel computation

Properties of artificial neural nets (ANN's):

- Many neuron-like threshold switching units
- Many weighted interconnections among units
- Highly parallel, distributed process

Expressive Capabilities of ANNs

Boolean functions:

- Every boolean function can be represented by network with single hidden layer
- but might require exponential (in number of inputs) hidden units

Continuous functions:

- Every bounded continuous function can be approximated with arbitrarily small error, by network with one hidden layer [Cybenko 1989; Hornik et al. 1989]
- Any function can be approximated to arbitrary accuracy by a network with two hidden layers [Cybenko 1988].

Expressive Capabilities of NNs

1 hidden layer NN demo

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Prediction using Neural Networks

Prediction – Given neural network (hidden units and weights), use it to predict the label of a test point

Forward Propagation -

Start from input layer

For each subsequent layer, compute output of sigmoid unit

Sigmoid unit:

$$o(\mathbf{x}) = \sigma(w_0 + \sum_i w_i x_i)$$

$$o(\mathbf{x}) = \sigma \left(w_0 + \sum_h w_h \sigma(w_0^h + \sum_i w_i^h x_i) \right)$$

Training Neural Networks – 12 loss

Train weights of all units to minimize sum of squared errors of predicted network outputs

$$W \leftarrow \arg\min_{W} \ \sum_{l} (y^l - \widehat{f}(x^l))^2$$
 Output of learned neural network
$$\boxed{\mathbb{E}[W]}$$

- Objective E[W] is no longer convex in W.
- > Still use Gradient descent to minimize E[W].
- Training is slow with lot of data and lot of weights!

Stochastic gradient descent

Stochastic gradient descent (SGD): Simplify computation by using a single data point at each iteration (instead of sum over all data points)

$$W \leftarrow \arg\min_{W} \sum_{l} (y^{l} - \hat{f}(x^{l}))^{2}$$
$$\text{E[W]}$$

At each iteration of gradient descent

- Approximate $E[W] \approx (y^l \hat{f}(x^l))^2$
- Stochastic Gradient =

Cycle through all points, then restart OR choose random data point at each iteration

Gradient descent for training NNs

Gradient descent via **Chain rule** for computing gradients

Gradient of loss with respect to one weight wi

$$\frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{\mathbf{l} \in D} (\mathbf{y}^{\mathbf{l}} - o^{\mathbf{l}})^2 = \sum_{\mathbf{l}} (\mathbf{y}^{\mathbf{l}} - o^{\mathbf{l}}) \left(-\frac{\partial o^{\mathbf{l}}}{\partial w_i} \right)^2$$

Stochastic gradient:

Derivative of sigmoid

 $\sigma(x)$ is the sigmoid function

$$\frac{1}{1 + e^{-x}}$$

Nice property: $\frac{d\sigma(x)}{dx} =$

Differentiable

A.
$$\sigma(x)(1-\sigma(x))$$

C.
$$-\sigma(x)$$

B.
$$\sigma(x) \sigma(-x)$$

D.
$$\sigma(x)^2$$

Gradient Descent for 1 node

$$\frac{\partial o}{\partial w_i} = \frac{\partial o}{\partial net} \cdot \frac{\partial net}{\partial w_i} = o(1 - o)x_i$$

Gradient descent step:

Backpropagation

<u>Backpropagation</u>: Efficient implementation of (Stochastic) Gradient descent for Neural networks with multiple layers

chain rule for gradients

+

layer-wise computation (going backward from output to input)

$$\frac{\partial o}{\partial w_h} = o(1 - o)o_h$$

Backpropagation Algorithm

using Stochastic gradient descent

1 final output unit

Initialize all weights to small random numbers. Until satisfied, Do

2.

$$\delta \leftarrow o(1-o)(y-o)$$

3.

4. Update each network weight w_h

$$W_h \leftarrow W_h + \Delta W_h$$

where

$$\Delta w_h = \eta \delta o_h$$

Using Forward propagation

$$\omega_{k} = \sigma(\omega_{0} + \sum_{i} \omega_{k} o_{k}) = \sigma(\sum_{i} \omega_{k} o_{k})$$

$$\omega_{k} = \sigma(\omega_{0}^{k} + \sum_{i} \omega_{i}^{k} x_{i}) = \sigma(\sum_{i} \omega_{i}^{k} x_{i})$$

$$\frac{\partial o}{\partial w_i^h} = \frac{\partial o}{\partial o_h} \cdot \frac{\partial o_h}{\partial w_i^h}$$

$$\frac{\partial o_h}{\partial w_i^h} =$$

A.
$$o_h(1-o_h)$$

B.
$$o_h(1-o_h)x_i$$
 D. $o(1-o)$

$$\begin{array}{cccc}
\omega_{k} & \omega_{0} & \omega_{0} & = \sigma(\omega_{0} + Z \omega_{k} O_{k}) & = \sigma(Z \omega_{k} O_{k}) \\
\omega_{k} & = \sigma(\omega_{0} + Z \omega_{i}^{k} X_{i}) & = \sigma(Z \omega_{i}^{k} X_{i})
\end{array}$$

$$\frac{\partial o}{\partial w_i^h} = \frac{\partial o}{\partial o_h} \cdot \frac{\partial o_h}{\partial w_i^h}$$

$$\frac{\partial o}{\partial o_h} =$$

A.
$$o(1-o)x_i$$

C.
$$o(1-o) w_h$$

$$\frac{\partial o}{\partial w_i^h} = \frac{\partial o}{\partial o_h} \cdot \frac{\partial o_h}{\partial w_i^h} = o(1 - o)w_h \cdot o_h(1 - o_h)x_i$$

$$\frac{\partial o_h}{\partial w_{i'}^h} = \frac{\partial o}{\partial o_h} \cdot \frac{\partial o_h}{\partial w_{i'}^h} = o(1 - o)w_h \cdot o_h(1 - o_h)x_{i'}$$

Gradient of the output with respect to one final layer weight wh

$$\frac{\partial o}{\partial w_h} = o(1 - o)o_h$$

$$\frac{\partial o}{\partial w_i^h} = \frac{\partial o}{\partial o_h} \cdot \frac{\partial o_h}{\partial w_i^h} = o(1 - o)w_h \cdot o_h(1 - o_h)x_i$$

Backpropagation Algorithm

using Stochastic gradient descent

1 final output unit

Initialize all weights to small random numbers. Until satisfied, Do

1. Input the training example to the network and compute the network outputs

Using Forward propagation

2.

$$\delta \leftarrow o(1-o)(y-o)$$

3. For each hidden unit h

$$\delta_h \leftarrow o_h (1 - o_h) w_h \delta$$

4. Update each network weight $w_{i,j}$

$$w_{i,j} \leftarrow w_{i,j} + \Delta w_{i,j}$$

where

$$\Delta w_{i,j} = \eta \delta_j o_i$$

 $w_{ij} = wt from i to j$

Note: if i is input variable, $o_i = x_i$

Backpropagation Algorithm using Stochastic gradient descent

Initialize all weights to small random numbers. Until satisfied, Do

- For each training example, Do
 - 1. Input the training example to the network and compute the network outputs
 - 2. For each output unit k

$$\delta_k \leftarrow o_k(1-o_k)(y_k-o_k)$$

3. For each hidden unit h

$$\delta_h \leftarrow o_h(1 - o_h) \sum_{k \in outputs} w_{h,k} \delta_k$$

4. Update each network weight $w_{i,j}$

$$w_{i,j} \leftarrow w_{i,j} + \Delta w_{i,j}$$

where

$$\Delta w_{i,j} = \eta \delta_j \, o_i$$

Using Forward propagation

y_k = label of current training example for output unit k

 o_k or o_h = unit output (obtained by forward propagation)

 w_{ii} = wt from i to j

Note: if i is input variable, $o_i = x_i$

More on Backpropagation

- Gradient descent over entire *network* weight vector
- Easily generalized to arbitrary directed graphs
- Will find a local, not necessarily global error minimum
 - In practice, often works well (can run multiple times)

- Minimizes error over *training* examples
 - Will it generalize well to subsequent examples?
- Training can take thousands of iterations → slow!
- Using network after training is very fast

Objective/Error no longer convex in weights

HW₂

> Cross-entropy error metric for multi-class classification

$$-\sum_{k} y_{k} \log \widehat{y_{k}}$$
 loss for single data point

One-hot encoding – encode label as a vector $[y_1, y_2, ... y_K]$ where $y_k = 1$ if label is k and 0 otherwise

Interpret vector as probability distribution

HW₂

> Cross-entropy error metric for multi-class classification

$$-\sum_{k} y_{k} \log \widehat{y_{k}}$$

Entropy of a random variable X:

$$E_{X^{\sim}p}[-log p(X)]$$
 small $p(X) => more information$

 $-\log_2 p(X) = number of bits needed to encode an outcome X when we know true distribution p$

Cross-entropy = expected number of bits needed to encode a random draw of X when using distribution q

$$E_{X^{\sim}p}[-\log q(X)]$$
 Minimized when $q=p$

HW2

> Cross-entropy error metric for multi-class classification

$$-\sum_{k} y_{k} \log \widehat{y_{k}}$$

Cross-entropy = expected number of bits needed to encode a random draw of X when using distribution q

$$E_{X^{\sim}p}[-\log q(X)]$$

Interpret one-hot-encoding y and \hat{y} as distributions.