Unsupervised Learning

Aka Learning without labels

Learning and inference using probability distributions & densities

MLE/MAP

Graphical models

- Dimensionality Reduction
- Clustering

Dimensionality Reduction PCA

Aarti Singh

Machine Learning 10-701 April 19, 2023

Slides Courtesy: Tom Mitchell, Eric Xing, Lawrence Saul

High-Dimensional data

High-Dimensions = Lot of Features

Document classification

Features per document =

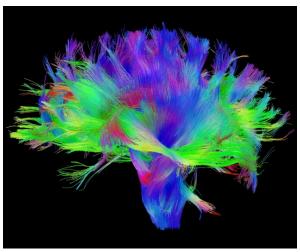
thousands of words/unigrams
millions of bigrams, contextual
information

Surveys - Netflix

480189 users x 17770 movies

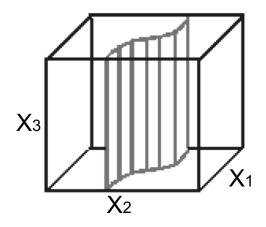
	movie 1	movie 2	movie 3	movie 4	movie 5	movie 6
Tom	5	?	?	1	3	?
George	?	?	3	1	2	5
Susan	4	3	1	?	5	1
Beth	4	3	?	2	4	2


High-Dimensional data


High-Dimensions = Lot of Features

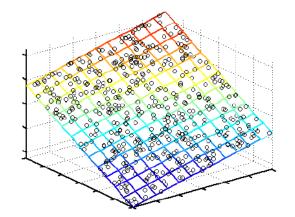
High resolution images millions of pixels

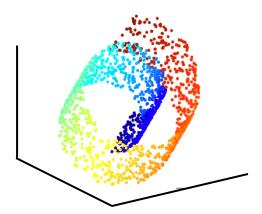
Diffusion scans of Brain 300,000 brain fibers



Curse of Dimensionality

- Why are more features bad?
 - Redundant features (not all words are useful to classify a document)
 more noise added than signal
 - Hard to interpret and visualize
 - Hard to store and process data (computationally challenging)
 - Complexity of decision rule tends to grow with # features. Hard to learn complex rules as it needs more data (statistically challenging)


Dimensionality Reduction


Feature Selection – Only a few features are relevant to the learning task

X₃ - Irrelevant

 Latent features – Some linear/nonlinear combination of features provides a more efficient representation than observed features

Latent Features

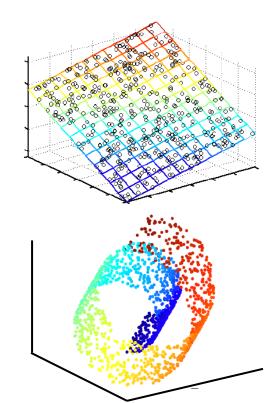
Combinations of observed features provide more efficient representation, and capture underlying relations that govern the data

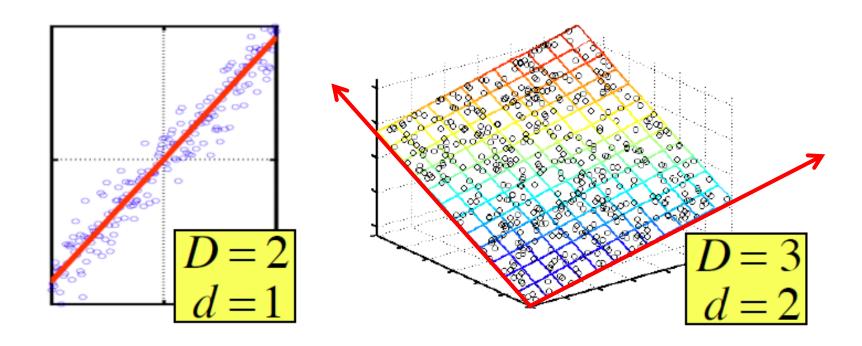
E.g. Ego, personality and intelligence are hidden attributes that characterize human behavior instead of survey questions

Topics (sports, science, news, etc.) instead of documents

Often may not have physical meaning

Linear


Principal Component Analysis (PCA)


Factor Analysis
Independent Component Analysis (ICA)

Nonlinear

Kernel PCA

Laplacian Eigenmaps, ISOMAP, LLE Autoencoders

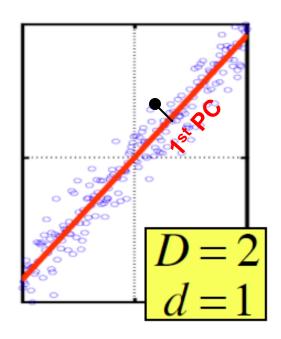
When data lies on or near a low d-dimensional linear subspace, axes of this subspace are an effective representation of the data

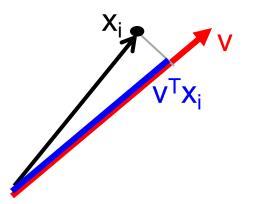
Identifying the axes is known as Principal Components Analysis, and can be obtained by Eigen or Singular value decomposition

Data for PCA

Data $X = [x_1, x_2, ..., x_n]$ where each data point x_i is D-dimensional vector

X is D x n matrix

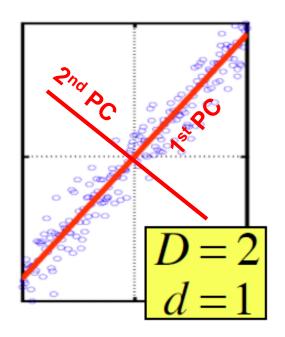

Assume data are centered i.e. sample mean $\frac{1}{n}\sum_{i=1}^{n}\mathbf{x}_{i}=0$

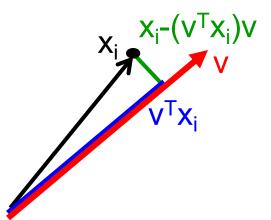

What if data is not centered?

Subtract off sample mean from each data point

Since data matrix is centered, sample covariance matrix can be written as

$$S = \frac{1}{n} X X^{\top}$$


Principal Components (PC) are orthogonal directions that capture most of the variance in the data


1st PC – direction of greatest variability in data

Projection of data points along 1st PC discriminate the data most along any one direction

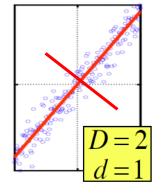
Take a data point x_i (D-dimensional vector)

Projection of x_i onto the 1st PC v is v^Tx_i

Principal Components (PC) are orthogonal unit norm directions that capture most of the variance in the data

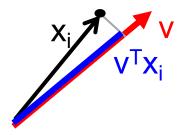
1st PC – direction of greatest variability in data

2nd PC – Next orthogonal (uncorrelated) direction of greatest variability


(remove all variability in first direction, then find next direction of greatest variability)

And so on ...

Let v1, v2, ..., vd denote the principal components


Orthogonal and unit norm
$$v_i^T v_j = 0 \quad i \neq j$$

 $v_i^T v_i = 1$

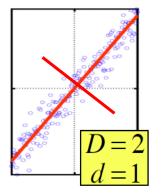
Find vector that maximizes sample variance of projection

$$\frac{1}{n} \sum_{i=1}^{n} (\mathbf{v}^T \mathbf{x}_i)^2 = \underline{\mathbf{v}^T \mathbf{X} \mathbf{X}^T \mathbf{v}}_{\mathsf{n}}$$

$$\max_{\mathbf{v}} \mathbf{v}^T \mathbf{X} \mathbf{X}^T \mathbf{v} \quad \text{s.t.} \quad \mathbf{v}^T \mathbf{v} = 1$$

Poll:

Is this a convex optimization problem?


Let v₁, v₂, ..., v_d denote the principal components

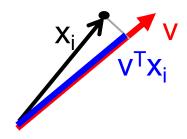
Orthogonal and unit norm
$$v_i^T v_j = 0 \quad i \neq j$$

$$v_i^T v_j = 0 \quad i \neq j$$

$$v_i^T v_i = 1$$

Find vector that maximizes sample variance of projection

$$\frac{1}{n} \sum_{i=1}^{n} (\mathbf{v}^T \mathbf{x}_i)^2 = \underline{\mathbf{v}^T \mathbf{X} \mathbf{X}^T \mathbf{v}}_{\mathsf{n}}$$

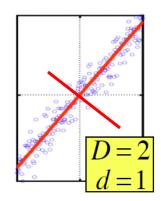

$$\max_{\mathbf{v}} \mathbf{v}^T \mathbf{X} \mathbf{X}^T \mathbf{v} \quad \text{s.t.} \quad \mathbf{v}^T \mathbf{v} = 1$$

$$\mathbf{v}^T\mathbf{v} = \mathbf{1}$$

Lagrangian: $\max_{\mathbf{v}} \mathbf{v}^T \mathbf{X} \mathbf{X}^T \mathbf{v} - \lambda \mathbf{v}^T \mathbf{v}$

$$\partial/\partial \mathbf{v} = 0$$

$$(\mathbf{X}\mathbf{X}^T - \lambda \mathbf{I})\mathbf{v} = 0$$



Wrap constraints into the objective function

$$\Rightarrow (\mathbf{X}\mathbf{X}^T)\mathbf{v} = \lambda\mathbf{v}$$

$$(\mathbf{X}\mathbf{X}^T)\mathbf{v} = \lambda\mathbf{v}$$

Therefore, v is the eigenvector of sample covariance matrix XX^T

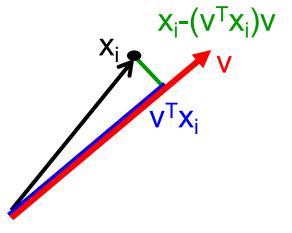
Sample variance of projection = $\mathbf{v}^T \mathbf{X} \mathbf{X}^T \mathbf{v} = \lambda \mathbf{v}^T \mathbf{v} = \lambda$

Thus, the eigenvalue λ denotes the amount of variability captured along that dimension (aka amount of energy along that dimension).

Eigenvalues $\lambda_1 > \lambda_2 > \lambda_3 > \dots$

The 1st Principal component v₁ is the eigenvector of the sample covariance matrix XX^T associated with the largest eigenvalue λ₁

The 2nd Principal component v₂ is the eigenvector of the sample covariance matrix XX^T associated with the second largest eigenvalue λ₂

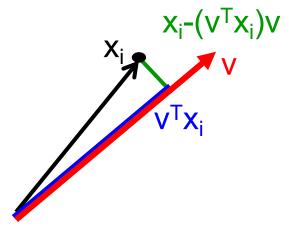

Another interpretation

Maximum Variance Subspace: PCA finds vectors v such that projections on to the vectors capture maximum variance in the data

$$\frac{1}{n} \sum_{i=1}^{n} (\mathbf{v}^T \mathbf{x}_i)^2 = \mathbf{v}^T \mathbf{X} \mathbf{X}^T \mathbf{v}$$

Minimum Reconstruction Error: PCA finds vectors v such that projection on to the vectors yields minimum MSE reconstruction

$$\frac{1}{n} \sum_{i=1}^{n} \|\mathbf{x}_i - (\mathbf{v}^T \mathbf{x}_i) \mathbf{v}\|^2$$



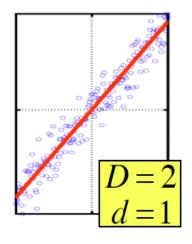
$$\frac{1}{n} \sum_{i=1}^{n} \|\mathbf{x}_i - (\mathbf{v}^T \mathbf{x}_i) \mathbf{v}\|^2$$

Another interpretation

Minimum Reconstruction Error: PCA finds vectors v such that projection on to the vectors yields minimum MSE reconstruction

$$\frac{1}{n} \sum_{i=1}^{n} \|\mathbf{x}_i - (\mathbf{v}^T \mathbf{x}_i) \mathbf{v}\|^2$$

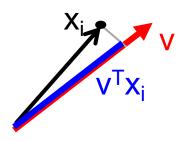
Poll:


➢ Is the 1st PC same as the linear least square fit?

Dimensionality Reduction using PCA

The eigenvalue λ denotes the amount of variability captured along that dimension.

Zero eigenvalues indicate no variability along those directions => data lies exactly on a linear subspace

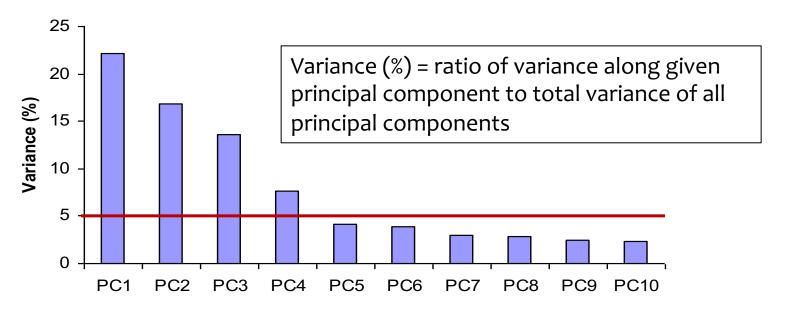

Only keep data projections onto principal components with non-zero eigenvalues, say $v_1, ..., v_d$ where $d = rank(XX^T)$

Original Representation data point

$$x_i = [x_i^1, x_i^2, \dots, x_i^D]^T$$

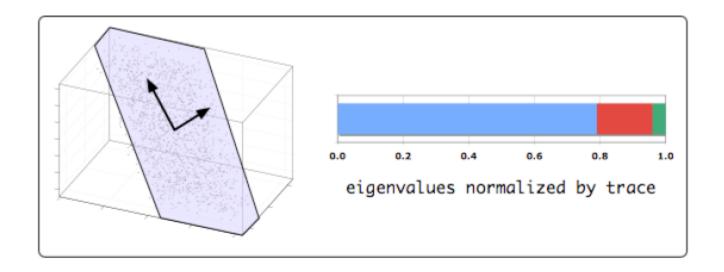
(D-dimensional vector)

Transformed representation projections

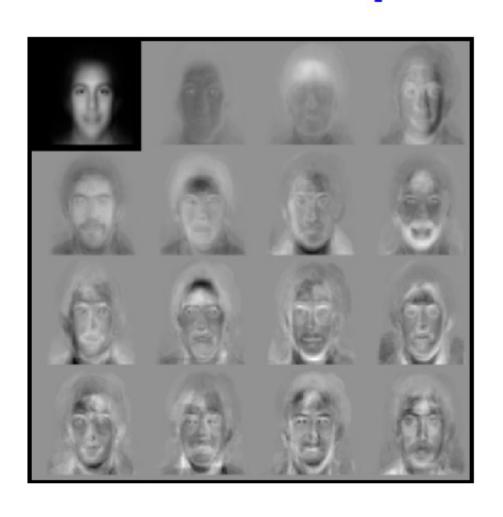


Dimensionality Reduction using PCA

In high-dimensional problem, data usually lies **near** a linear subspace, as noise introduces small variability


Only keep data projections onto principal components with large eigenvalues

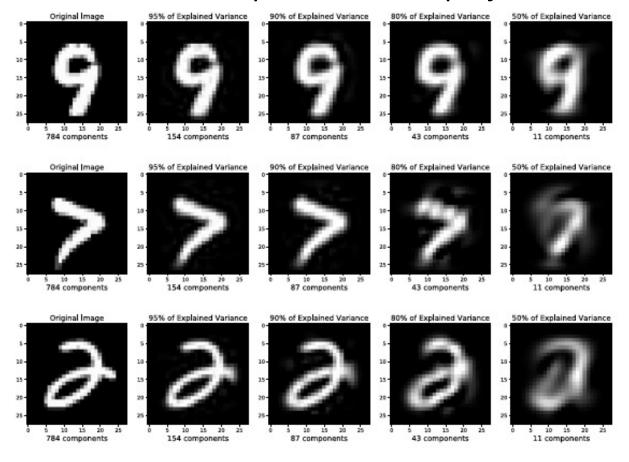
Can *ignore* the components of lesser significance.


You might lose some information, but if the eigenvalues are small, you don't lose much

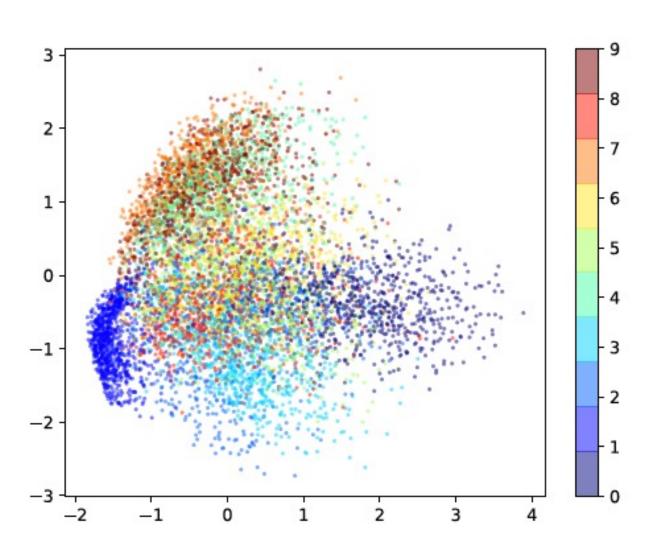
Example of PCA

Eigenvectors and eigenvalues of covariance matrix for n=1600 inputs in d=3 dimensions.

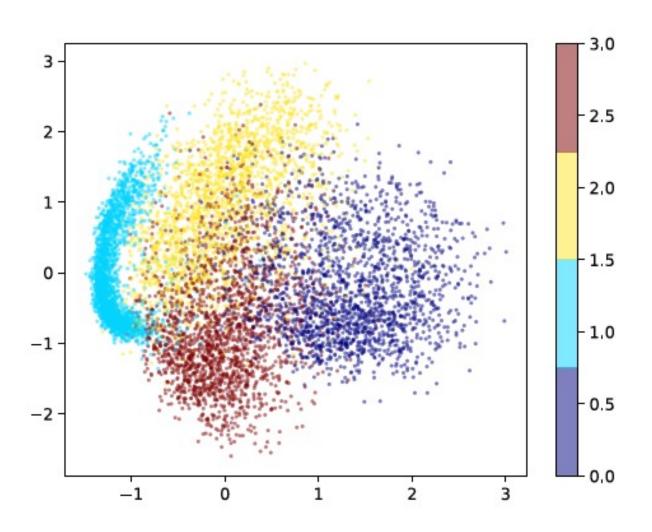
Example: faces


Figenfaces from 7562 images:

top left image is linear combination of rest.


Sirovich & Kirby (1987) Turk & Pentland (1991)

Example: MNIST digits


- 28x28 images = 784 PCA vectors
- Project to K dimensional space and then project back up

Projecting MNIST digits

Projecting MNIST digits

PCA Summary

- PCA finds latent features linear in original features x that capture
 - Maximum variance amongst all linear features
 - Minimum reconstruction error when recovering points from PC projections
- Non-convex problem with simple solution:
 - PCs = eigenvectors of sample covariance matrix Lower (d < D) dimensional embedding of data point = projection of data point onto d PCs