
Reinforcement Learning I

Aarti Singh

Machine Learning 10-701
Apr 3, 2023

Slides courtesy: Henry Chai, Eric Xing

Learning Tasks

2

� Supervised learning - 𝒟 = 𝒙 ! , 𝑦 !
!"#
$

� Regression - 𝑦 ! ∈ ℝ
� Classification - 𝑦 ! ∈ 1,… , 𝐶

� Unsupervised learning - 𝒟 = 𝒙 !
!"#
$

� Clustering
� Dimensionality reduction

� Reinforcement learning - 𝒟 = 𝒔 % , 𝒂 % , 𝑟 %
%"#
&

RL setup

3

AI agentEnvironment

Reward, rt

Action, at

State, st

Wikimedia

Agent chooses actions which can depend on past

Environment can change state with each action

Reward (Output) depends on (Inputs) action and state of environment

Goal: Maximize total reward

Differences from supervised learning

4

AI agentEnvironment

Reward, rt

Action, at

State, st

Wikimedia

o Maximize reward (rather than learn reward)

o Inputs are not iid – state & action depends on past

o Can control some inputs - actions

RL examples

5

https://techobserver.net/2019/06/argo-ai-self-driving-car-research-center/

https://www.wired.com/2012/02/high-speed-trading/ https://twitter.com/alphagomovie

https://www.cmu.edu/news/stories/archives/2017/
september/snakebot-mexico.html

https://techobserver.net/2019/06/argo-ai-self-driving-car-research-center/
https://www.wired.com/2012/02/high-speed-trading/
https://twitter.com/alphagomovie
https://www.cmu.edu/news/stories/archives/2017/september/snakebot-mexico.html
https://www.cmu.edu/news/stories/archives/2017/september/snakebot-mexico.html

RL setup

6

� State space, 𝒮

� Action space, 𝒜

� Reward function

� Stochastic, 𝑝 𝑟 𝑠, 𝑎)

� Deterministic, 𝑅: 𝒮 ×𝒜 → ℝ

� Transition function

� Stochastic, 𝑝 𝑠' 𝑠, 𝑎)

� Deterministic, 𝛿: 𝒮 ×𝒜 → 𝒮

� Reward and transition functions can be known or unknown

RL setup

7

� Policy, 𝜋 ∶ 𝒮 → 𝒜

� Specifies an action to take in every state

� Value function, 𝑉(: 𝒮 → ℝ

� Measures the expected total reward of starting in
some state 𝑠 and executing policy 𝜋, i.e., in every
state, taking the action that 𝜋 returns

RL example - gridworld

8

• 𝒮 = all empty squares in the
grid

• 𝒜 = {up, down, left, right}

• Deterministic transitions

• Rewards of +1 and -1 for
entering the labelled squares

• Terminate after receiving either
reward

RL example - gridworld

9

• 𝒮 = all empty squares in the
grid

• 𝒜 = {up, down, left, right}

• Deterministic transitions

• Rewards of +1 and -1 for
entering the labelled squares

• Terminate after receiving either
reward

Poll: Is this policy optimal?

RL example - gridworld

10

• 𝒮 = all empty squares in the
grid

• 𝒜 = {up, down, left, right}

• Deterministic transitions

• Rewards of +1 and -1 for
entering the labelled squares

• Terminate after receiving either
reward

Optimal policy given a reward of
-2 per step

RL example - gridworld

11

• 𝒮 = all empty squares in the
grid

• 𝒜 = {up, down, left, right}

• Deterministic transitions

• Rewards of +1 and -1 for
entering the labelled squares

• Terminate after receiving either
reward

Optimal policy given a reward of
-0.1 per step

Reward hacking

12

[Amodei-Clark’16]

AIhub.org

Markov Decision Process

13

1. Start in some initial state 𝑠)

2. For time step 𝑡:
a. Agent observes state 𝑠%
b. Agent takes action 𝑎% = 𝜋 𝑠%
c. Agent receives reward 𝑟% ∼ 𝑝 𝑟 𝑠%, 𝑎%)

d. Agent transitions to state 𝑠%*# ∼ 𝑝 𝑠' 𝑠%, 𝑎%)

� MDPs make the Markov assumption: the reward and next
state only depend on the current state and action.

Deterministic policy

Discounted Reward

14

Total reward is

where 0 < 𝛾 < 1 is some discount factor for future rewards

Why discount?
� Mathematically tractable – total reward doesn’t explode

1 + 1 + 1 + … = ∞ but 1 + 0.8*1 + (0.8)2*1 + … = 5

� Risk aversion under uncertainty

� Actions don’t have lasting impact

A
%")

+

𝛾%𝑟% = 𝑟) + 𝛾 𝑟# + 𝛾,𝑟, + 𝛾-𝑟- + …

Key challenges

15

• The algorithm has to gather its own training data

• The outcome of taking some action is often stochastic or
unknown until after the fact

• Decisions can have a delayed effect on future outcomes
(exploration-exploitation tradeoff)

explore decisions whose reward is uncertain

exploit decisions which give high reward

MDP example: Multi-armed bandits

16

• Single state: 𝒮 = 1
• Three actions: 𝒜 = 1, 2, 3
• Deterministic transitions
• Rewards are stochastic

MDP example: Multi-armed bandits

17

Bandit arm 1 Bandit arm 2 Bandit arm 3

1 2 1

1 0 0

1 0 3

1 0 2

0 0 4

1 2 2

0 0 1

1 2 4

1 0 0

1 2 3

1 0 3

0 0 1

???

???

???

???

???

???

???

???

???

???

???

???

???

???

???

???

???

???

???

???

???

???

???

???

???

???

???

???

???

???

???

???

???

RL: objective function

18

� Find a policy 𝜋∗ = argmax
(

𝑉(𝑠 ∀ 𝑠 ∈ 𝒮

� 𝑉(𝑠 = 𝔼[discounted total reward of starting in state
𝑠 and executing policy 𝜋 forever]

� 𝑉(𝑠 = 𝔼 [𝑅 𝑠) = 𝑠, 𝜋 𝑠)

� − + 𝛾𝑅 𝑠#, 𝜋 𝑠# + 𝛾,𝑅 𝑠,, 𝜋 𝑠, +⋯]

𝑉(𝑠 =A
%")

+

𝛾%𝔼 𝑅 𝑠%, 𝜋 𝑠%

� where 0 < 𝛾 < 1 is some discount factor for future rewards

Value function: example

19

7

3

−2

𝑅 𝑠, 𝑎 =

−2 if entering state 0 safety
3 if entering state 5 Yield goal
7 if entering state 6 (touch down)
0 otherwise

0

5

61 2 3 4

𝛾 = 0.9

Value function: example

20

7

3

−2

𝑅 𝑠, 𝑎 =

−2 if entering state 0 safety
3 if entering state 5 Yield goal
7 if entering state 6 (touch down)
0 otherwise

𝛾 = 0.9

−2 −1.8 2.7 3 0

0

0

Value function: example

21

7

3

−2

𝑅 𝑠, 𝑎 =

−2 if entering state 0 safety
3 if entering state 5 Yield goal
7 if entering state 6 (touch down)
0 otherwise

𝛾 = 0.9

5.10 5.67 6.3 7 0

0

0

Value function – deterministic reward

22

� 𝑉! 𝑠 = 𝔼[discounted total reward of starting in state 𝑠 and

executing policy 𝜋 forever]

� = 𝔼[𝑅 𝑠", 𝜋 𝑠" + 𝛾𝑅 𝑠#, 𝜋 𝑠# + 𝛾$𝑅 𝑠$, 𝜋 𝑠$ +⋯ 𝑠" = 𝑠

� = 𝑅 𝑠, 𝜋 𝑠 + 𝛾𝔼[𝑅 𝑠#, 𝜋 𝑠# + 𝛾𝑅 𝑠$, 𝜋 𝑠$ + … | 𝑠" = 𝑠]

� = 𝑅 𝑠, 𝜋 𝑠 + 𝛾∑%!∈ 𝒮 𝑝 𝑠# | 𝑠, 𝜋 𝑠 1

2

𝑅 𝑠#, 𝜋 𝑠# +

+𝛾𝔼 𝑅 𝑠$, 𝜋 𝑠$ +⋯ 𝑠#]

V! s = 𝑅 𝑠, 𝜋 𝑠 + 𝛾 5
%!∈ 𝒮

𝑝 𝑠# | 𝑠, 𝜋 𝑠 𝑉! 𝑠#
𝑉! s = 𝑅 𝑠, 𝜋 𝑠 + 𝛾 5

%!∈ 𝒮

𝑝 𝑠# | 𝑠, 𝜋 𝑠 𝑉! 𝑠# Bellman equations

Optimal value function and policy

23

� Optimal value function:

𝑉∗ 𝑠 = max
) ∈𝒜

[𝑅 𝑠, 𝑎 + 𝛾 5
%"∈ 𝒮

𝑝 𝑠+ | 𝑠, 𝑎 𝑉∗ 𝑠+]

� System of 𝒮 equations and 𝒮 variables – nonlinear!

� Optimal policy:

𝜋∗ 𝑠 = argmax
) ∈𝒜

𝑅 𝑠, 𝑎 + 𝛾 5
%"∈ 𝒮

𝑝 𝑠+ | 𝑠, 𝑎 𝑉∗ 𝑠+

� Insight: if you know the optimal value function, you can solve

for the optimal policy!

Immediate
reward

Expected (Discounted)
Future reward

Value iteration

24

� Inputs: 𝑅 𝑠, 𝑎 , 𝑝(𝑠’ | 𝑠, 𝑎), 0 < 𝛾 < 1

� Initialize 𝑉 " 𝑠 = 0 ∀ 𝑠 ∈ 𝒮 (or randomly) and set 𝑡 = 0
� While not converged, do:

� For 𝑠 ∈ 𝒮

𝑉 ,-# 𝑠 ← max
) ∈𝒜

[𝑅 𝑠, 𝑎 + 𝛾 5
%"∈ 𝒮

𝑝 𝑠+ | 𝑠, 𝑎 𝑉 , 𝑠+]

� 𝑡 = 𝑡 + 1

� For 𝑠 ∈ 𝒮

𝜋∗ 𝑠 ← argmax
) ∈𝒜

[𝑅 𝑠, 𝑎 + 𝛾 ∑%"∈ 𝒮 𝑝 𝑠+ | 𝑠, 𝑎 𝑉 , 𝑠+]

� Return 𝜋∗

𝑄 𝑠, 𝑎

Value iteration

25

� Inputs: 𝑅 𝑠, 𝑎 , 𝑝(𝑠’ | 𝑠, 𝑎), 0 < 𝛾 < 1

� Initialize 𝑉 " 𝑠 = 0 ∀ 𝑠 ∈ 𝒮 (or randomly) and set 𝑡 = 0
� While not converged, do:

� For 𝑠 ∈ 𝒮
� For 𝑎 ∈ 𝒜

𝑄 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 5
%"∈ 𝒮

𝑝 𝑠+ | 𝑠, 𝑎 𝑉 , 𝑠+

� 𝑉 ,-# 𝑠 ← max
) ∈𝒜

𝑄 𝑠, 𝑎
� 𝑡 = 𝑡 + 1

� For 𝑠 ∈ 𝒮
𝜋∗ 𝑠 ← argmax

) ∈𝒜
𝑄(𝑠, 𝑎)

� Return 𝜋∗

Poll

• What is the runtime per iteration?
A. O(1)
B. |S||A|
C. |S||A|2

D. |A||S|2

E. |A|2|S|2

26

Value iteration: convergence
• Runtime per iteration: O(|S|2|A|)

Theorem 1: Value function convergence
𝑉 will converge to 𝑉∗ if each state is “visited”

infinitely often (Bertsekas, 1989)

Theorem 2: Convergence criterion
if max
" ∈ 𝒮

𝑉 %&' 𝑠 − 𝑉 % 𝑠 < 𝜖,

then max
" ∈ 𝒮

𝑉 %&' 𝑠 − 𝑉∗ 𝑠 < ()*
'+*

(Williams & Baird, 1993)

Theorem 3: Policy convergence
The “greedy” policy, 𝜋 𝑠 = argmax

, ∈𝒜
𝑄 𝑠, 𝑎 , converges to the

optimal 𝜋∗ in a finite number of iterations, often before
the value function has converged! (Bertsekas, 1987)

27

Policy iteration

28

� Inputs: 𝑅 𝑠, 𝑎 , 𝑝(𝑠’ | 𝑠, 𝑎), 0 < 𝛾 < 1

� Initialize 𝜋 randomly

� While not converged, do:
� Solve the Bellman equations defined by policy 𝜋

𝑉. s = 𝑅 𝑠, 𝜋 𝑠 + 𝛾 5
""∈ 𝒮

𝑝 𝑠/ | 𝑠, 𝜋 𝑠 𝑉. 𝑠/

� Update 𝜋

− 𝜋 𝑠 ← argmax
, ∈𝒜

𝑅 𝑠, 𝑎 + 𝛾 5
""∈ 𝒮

𝑝 𝑠/ | 𝑠, 𝑎 𝑉. 𝑠/

� Return 𝜋

Ø Can we learn the policy directly, instead of first learning the value function?

Now linear!

Policy iteration: convergence

29

• Runtime per iteration: O(|S|2|A| + |S|3)

Poll

• How many policies are there?
A. |S|+|A|
B. |S||A|
C. |S||A|

D. |A||S|

30

Policy iteration: convergence

31

• Runtime per iteration: O(|S|2|A| + |S|3)

• Number of policies: |S||A|
• Policy improves each iteration
• Thus, the number of iterations needed to converge is

bounded!

• Empirically, policy iteration requires fewer iterations than
value iteration.

Next Questions

ØHow to handle unknown state transition and reward
functions?

ØHow to handle continuous states and actions?

32

