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Learning Tasks
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� Supervised learning - 𝒟 = 𝒙 ! , 𝑦 !
!"#
$

� Regression - 𝑦 ! ∈ ℝ
� Classification - 𝑦 ! ∈ 1,… , 𝐶

� Unsupervised learning - 𝒟 = 𝒙 !
!"#
$

� Clustering 
� Dimensionality reduction

� Reinforcement learning - 𝒟 = 𝒔 % , 𝒂 % , 𝑟 %
%"#
&



RL setup
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AI agentEnvironment

Reward, rt

Action, at

State, st

Wikimedia

Agent chooses actions which can depend on past

Environment can change state with each action

Reward (Output) depends on (Inputs) action and state of environment

Goal: Maximize total reward



Differences from supervised learning
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AI agentEnvironment

Reward, rt

Action, at

State, st

Wikimedia

o Maximize reward (rather than learn reward)

o Inputs are not iid – state & action depends on past

o Can control some inputs - actions



RL examples
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https://techobserver.net/2019/06/argo-ai-self-driving-car-research-center/

https://www.wired.com/2012/02/high-speed-trading/ https://twitter.com/alphagomovie

https://www.cmu.edu/news/stories/archives/2017/
september/snakebot-mexico.html

https://techobserver.net/2019/06/argo-ai-self-driving-car-research-center/
https://www.wired.com/2012/02/high-speed-trading/
https://twitter.com/alphagomovie
https://www.cmu.edu/news/stories/archives/2017/september/snakebot-mexico.html
https://www.cmu.edu/news/stories/archives/2017/september/snakebot-mexico.html


RL setup
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� State space, 𝒮

� Action space, 𝒜

� Reward function 

� Stochastic, 𝑝 𝑟 𝑠, 𝑎)

� Deterministic, 𝑅: 𝒮 ×𝒜 → ℝ

� Transition function

� Stochastic, 𝑝 𝑠' 𝑠, 𝑎)

� Deterministic, 𝛿: 𝒮 ×𝒜 → 𝒮

� Reward and transition functions can be known or unknown



RL setup
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� Policy, 𝜋 ∶ 𝒮 → 𝒜

� Specifies an action to take in every state

� Value function, 𝑉(: 𝒮 → ℝ

� Measures the expected total reward of starting in 
some state 𝑠 and executing policy 𝜋, i.e., in every 
state, taking the action that 𝜋 returns 



RL example - gridworld
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• 𝒮 = all empty squares in the 
grid

• 𝒜 = {up, down, left, right}

• Deterministic transitions

• Rewards of +1 and -1 for 
entering the labelled squares

• Terminate after receiving either 
reward



RL example - gridworld
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• 𝒮 = all empty squares in the 
grid

• 𝒜 = {up, down, left, right}

• Deterministic transitions

• Rewards of +1 and -1 for 
entering the labelled squares

• Terminate after receiving either 
reward

Poll: Is this policy optimal?



RL example - gridworld
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• 𝒮 = all empty squares in the 
grid

• 𝒜 = {up, down, left, right}

• Deterministic transitions

• Rewards of +1 and -1 for 
entering the labelled squares

• Terminate after receiving either 
reward

Optimal policy given a reward of 
-2 per step



RL example - gridworld
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• 𝒮 = all empty squares in the 
grid

• 𝒜 = {up, down, left, right}

• Deterministic transitions

• Rewards of +1 and -1 for 
entering the labelled squares

• Terminate after receiving either 
reward

Optimal policy given a reward of 
-0.1 per step



Reward hacking
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[Amodei-Clark’16]

AIhub.org



Markov Decision Process
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1. Start in some initial state 𝑠)

2. For time step 𝑡:
a. Agent observes state 𝑠%
b. Agent takes action 𝑎% = 𝜋 𝑠%
c. Agent receives reward 𝑟% ∼ 𝑝 𝑟 𝑠%, 𝑎%)

d. Agent transitions to state 𝑠%*# ∼ 𝑝 𝑠' 𝑠%, 𝑎%)

� MDPs make the Markov assumption: the reward and next 
state only depend on the current state and action.

Deterministic policy



Discounted Reward
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Total reward is

where 0 < 𝛾 < 1 is some discount factor for future rewards

Why discount?
� Mathematically tractable – total reward doesn’t explode

1 + 1 + 1 + … = ∞ but 1 + 0.8*1 + (0.8)2*1 + … = 5

� Risk aversion under uncertainty

� Actions don’t have lasting impact

A
%")

+

𝛾%𝑟% = 𝑟) + 𝛾 𝑟# + 𝛾,𝑟, + 𝛾-𝑟- + …



Key challenges
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• The algorithm has to gather its own training data

• The outcome of taking some action is often stochastic or 
unknown until after the fact

• Decisions can have a delayed effect on future outcomes 
(exploration-exploitation tradeoff)

explore decisions whose reward is uncertain

exploit decisions which give high reward



MDP example: Multi-armed bandits
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• Single state: 𝒮 = 1
• Three actions: 𝒜 = 1, 2, 3
• Deterministic transitions
• Rewards are stochastic



MDP example: Multi-armed bandits
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Bandit arm 1 Bandit arm 2 Bandit arm 3

1 2 1

1 0 0

1 0 3

1 0 2
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RL: objective function
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� Find a policy 𝜋∗ = argmax
(

𝑉( 𝑠 ∀ 𝑠 ∈ 𝒮

� 𝑉( 𝑠 = 𝔼[discounted total reward of starting in state 
𝑠 and executing policy 𝜋 forever]

� 𝑉( 𝑠 = 𝔼 [𝑅 𝑠) = 𝑠, 𝜋 𝑠)

� − + 𝛾𝑅 𝑠#, 𝜋 𝑠# + 𝛾,𝑅 𝑠,, 𝜋 𝑠, +⋯]

𝑉( 𝑠 =A
%")

+

𝛾%𝔼 𝑅 𝑠%, 𝜋 𝑠%

� where 0 < 𝛾 < 1 is some discount factor for future rewards



Value function: example
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7

3

−2

𝑅 𝑠, 𝑎 =

−2 if entering state 0 safety
3 if entering state 5 Yield goal
7 if entering state 6 (touch down)
0 otherwise

0

5

61 2 3 4

𝛾 = 0.9



Value function: example
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7

3

−2

𝑅 𝑠, 𝑎 =

−2 if entering state 0 safety
3 if entering state 5 Yield goal
7 if entering state 6 (touch down)
0 otherwise

𝛾 = 0.9

−2 −1.8 2.7 3 0

0

0



Value function: example
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7

3

−2

𝑅 𝑠, 𝑎 =

−2 if entering state 0 safety
3 if entering state 5 Yield goal
7 if entering state 6 (touch down)
0 otherwise

𝛾 = 0.9

5.10 5.67 6.3 7 0

0

0



Value function – deterministic reward
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� 𝑉! 𝑠 = 𝔼[discounted total reward of starting in state 𝑠 and       

executing policy 𝜋 forever]

� = 𝔼[𝑅 𝑠", 𝜋 𝑠" + 𝛾𝑅 𝑠#, 𝜋 𝑠# + 𝛾$𝑅 𝑠$, 𝜋 𝑠$ +⋯ 𝑠" = 𝑠

� = 𝑅 𝑠, 𝜋 𝑠 + 𝛾𝔼[𝑅 𝑠#, 𝜋 𝑠# + 𝛾𝑅 𝑠$, 𝜋 𝑠$ + … | 𝑠" = 𝑠]

� = 𝑅 𝑠, 𝜋 𝑠 + 𝛾∑%!∈ 𝒮 𝑝 𝑠# | 𝑠, 𝜋 𝑠 1

2

𝑅 𝑠#, 𝜋 𝑠# +

+𝛾𝔼 𝑅 𝑠$, 𝜋 𝑠$ +⋯ 𝑠#]

V! s = 𝑅 𝑠, 𝜋 𝑠 + 𝛾 5
%!∈ 𝒮

𝑝 𝑠# | 𝑠, 𝜋 𝑠 𝑉! 𝑠#
𝑉! s = 𝑅 𝑠, 𝜋 𝑠 + 𝛾 5

%!∈ 𝒮

𝑝 𝑠# | 𝑠, 𝜋 𝑠 𝑉! 𝑠# Bellman equations



Optimal value function and policy
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� Optimal value function:

𝑉∗ 𝑠 = max
) ∈𝒜

[𝑅 𝑠, 𝑎 + 𝛾 5
%"∈ 𝒮

𝑝 𝑠+ | 𝑠, 𝑎 𝑉∗ 𝑠+ ]

� System of 𝒮 equations and 𝒮 variables – nonlinear!

� Optimal policy:

𝜋∗ 𝑠 = argmax
) ∈𝒜

𝑅 𝑠, 𝑎 + 𝛾 5
%"∈ 𝒮

𝑝 𝑠+ | 𝑠, 𝑎 𝑉∗ 𝑠+

� Insight: if you know the optimal value function, you can solve 

for the optimal policy!

Immediate 
reward

Expected (Discounted) 
Future reward



Value iteration
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� Inputs: 𝑅 𝑠, 𝑎 , 𝑝(𝑠’ | 𝑠, 𝑎), 0 < 𝛾 < 1

� Initialize 𝑉 " 𝑠 = 0 ∀ 𝑠 ∈ 𝒮 (or randomly) and set 𝑡 = 0
� While not converged, do:

� For 𝑠 ∈ 𝒮

𝑉 ,-# 𝑠 ← max
) ∈𝒜

[𝑅 𝑠, 𝑎 + 𝛾 5
%"∈ 𝒮

𝑝 𝑠+ | 𝑠, 𝑎 𝑉 , 𝑠+ ]

� 𝑡 = 𝑡 + 1

� For 𝑠 ∈ 𝒮

𝜋∗ 𝑠 ← argmax
) ∈𝒜

[𝑅 𝑠, 𝑎 + 𝛾 ∑%"∈ 𝒮 𝑝 𝑠+ | 𝑠, 𝑎 𝑉 , 𝑠+ ]

� Return 𝜋∗

𝑄 𝑠, 𝑎



Value iteration
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� Inputs: 𝑅 𝑠, 𝑎 , 𝑝(𝑠’ | 𝑠, 𝑎), 0 < 𝛾 < 1

� Initialize 𝑉 " 𝑠 = 0 ∀ 𝑠 ∈ 𝒮 (or randomly) and set 𝑡 = 0
� While not converged, do:

� For 𝑠 ∈ 𝒮
� For 𝑎 ∈ 𝒜

𝑄 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 5
%"∈ 𝒮

𝑝 𝑠+ | 𝑠, 𝑎 𝑉 , 𝑠+

� 𝑉 ,-# 𝑠 ← max
) ∈𝒜

𝑄 𝑠, 𝑎
� 𝑡 = 𝑡 + 1

� For 𝑠 ∈ 𝒮
𝜋∗ 𝑠 ← argmax

) ∈𝒜
𝑄(𝑠, 𝑎)

� Return 𝜋∗



Poll

• What is the runtime per iteration?
A. O(1)
B. |S||A|
C. |S||A|2

D. |A||S|2

E. |A|2|S|2
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Value iteration: convergence
• Runtime per iteration: O(|S|2|A|)

Theorem 1: Value function convergence
𝑉 will converge to 𝑉∗ if each state is “visited” 

infinitely often (Bertsekas, 1989)

Theorem 2: Convergence criterion 
if max
" ∈ 𝒮

𝑉 %&' 𝑠 − 𝑉 % 𝑠 < 𝜖, 

then max
" ∈ 𝒮

𝑉 %&' 𝑠 − 𝑉∗ 𝑠 < ()*
'+*

(Williams & Baird, 1993) 

Theorem 3: Policy convergence
The “greedy” policy, 𝜋 𝑠 = argmax

, ∈𝒜
𝑄 𝑠, 𝑎 , converges to the 

optimal 𝜋∗ in a finite number of iterations, often before 
the value function has converged! (Bertsekas, 1987) 

27



Policy iteration
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� Inputs: 𝑅 𝑠, 𝑎 , 𝑝(𝑠’ | 𝑠, 𝑎), 0 < 𝛾 < 1

� Initialize 𝜋 randomly 

� While not converged, do:
� Solve the Bellman equations defined by policy 𝜋

𝑉. s = 𝑅 𝑠, 𝜋 𝑠 + 𝛾 5
""∈ 𝒮

𝑝 𝑠/ | 𝑠, 𝜋 𝑠 𝑉. 𝑠/

� Update 𝜋

− 𝜋 𝑠 ← argmax
, ∈𝒜

𝑅 𝑠, 𝑎 + 𝛾 5
""∈ 𝒮

𝑝 𝑠/ | 𝑠, 𝑎 𝑉. 𝑠/

� Return 𝜋

Ø Can we learn the policy directly, instead of first learning the value function?

Now linear!



Policy iteration: convergence
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• Runtime per iteration: O(|S|2|A| + |S|3)



Poll

• How many policies are there?
A. |S|+|A|
B. |S||A|
C. |S||A|

D. |A||S|

30



Policy iteration: convergence
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• Runtime per iteration: O(|S|2|A| + |S|3)

• Number of policies: |S||A|
• Policy improves each iteration
• Thus, the number of iterations needed to converge is 

bounded!

• Empirically, policy iteration requires fewer iterations than 
value iteration.



Next Questions

ØHow to handle unknown state transition and reward 
functions?

ØHow to handle continuous states and actions?

32




