
Reinforcement Learning II

Aarti Singh

Machine Learning 10-701
Apr 5, 2023

Slides courtesy: Henry Chai, Eric Xing

RL setup

25

AI agentEnvironment

Reward, rt

Action, at

State, st

Wikimedia

1. Start in some initial state 𝑠!

2. For time step 𝑡:
a. Agent observes state 𝑠"
b. Agent takes action 𝑎" = 𝜋 𝑠"
c. Agent receives reward 𝑟" ∼ 𝑝 𝑟 𝑠", 𝑎")

d. Agent transitions to state 𝑠"#$ ∼ 𝑝 𝑠% 𝑠", 𝑎")

RL setup

26

� Policy, 𝜋 ∶ 𝒮 → 𝒜

� Specifies an action to take in every state

� Value function, 𝑉!: 𝒮 → ℝ

� 𝑉! 𝑠 = 𝔼[discounted total reward of starting in state 𝑠 and
executing policy 𝜋 forever]

= ∑,-". 𝛾,𝔼 𝑅 𝑠, , 𝜋 𝑠,

� Goal: Find policy that maximizes expected discounted total

reward

𝜋∗ = argmax
!

𝑉! 𝑠 ∀ 𝑠 ∈ 𝒮

R – deterministic reward

Bellman Equation

27

𝑉& s = 𝑅 𝑠, 𝜋 𝑠 + 𝛾 2
'!∈ 𝒮

𝑝 𝑠$ | 𝑠, 𝜋 𝑠 𝑉& 𝑠$

Value function satisfies the set of recursive equations:

� Optimal value function:

𝑉∗ 𝑠 = max
+ ∈𝒜

[𝑅 𝑠, 𝑎 + 𝛾 2
'"∈ 𝒮

𝑝 𝑠% | 𝑠, 𝑎 𝑉∗ 𝑠%]

� System of 𝒮 equations and 𝒮 variables – nonlinear!

� Optimal policy:

𝜋∗ 𝑠 = argmax
+ ∈𝒜

𝑅 𝑠, 𝑎 + 𝛾 2
'"∈ 𝒮

𝑝 𝑠% | 𝑠, 𝑎 𝑉∗ 𝑠%

Value iteration

28

� Inputs: 𝑅 𝑠, 𝑎 , 𝑝(𝑠’ | 𝑠, 𝑎), 0 < 𝛾 < 1

� Initialize 𝑉 " 𝑠 = 0 ∀ 𝑠 ∈ 𝒮 (or randomly) and set 𝑡 = 0
� While not converged, do:

� For 𝑠 ∈ 𝒮

𝑉 ,/# 𝑠 ← max
) ∈𝒜

[𝑅 𝑠, 𝑎 + 𝛾 5
%"∈ 𝒮

𝑝 𝑠+ | 𝑠, 𝑎 𝑉 , 𝑠+]

� 𝑡 = 𝑡 + 1

� For 𝑠 ∈ 𝒮

𝜋∗ 𝑠 ← argmax
) ∈𝒜

[𝑅 𝑠, 𝑎 + 𝛾 ∑%"∈ 𝒮 𝑝 𝑠+ | 𝑠, 𝑎 𝑉 , 𝑠+]

� Return 𝜋∗

𝑄 𝑠, 𝑎

Value iteration

29

� Inputs: 𝑅 𝑠, 𝑎 , 𝑝(𝑠’ | 𝑠, 𝑎), 0 < 𝛾 < 1

� Initialize 𝑉 " 𝑠 = 0 ∀ 𝑠 ∈ 𝒮 (or randomly) and set 𝑡 = 0
� While not converged, do:

� For 𝑠 ∈ 𝒮
� For 𝑎 ∈ 𝒜

𝑄 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 5
%"∈ 𝒮

𝑝 𝑠+ | 𝑠, 𝑎 𝑉 , 𝑠+

� 𝑉 ,/# 𝑠 ← max
) ∈𝒜

𝑄 𝑠, 𝑎
� 𝑡 = 𝑡 + 1

� For 𝑠 ∈ 𝒮
𝜋∗ 𝑠 ← argmax

) ∈𝒜
𝑄(𝑠, 𝑎)

� Return 𝜋∗

Value iteration: convergence
Theorem 1: Value function convergence

𝑉 will converge to 𝑉∗ if each state is “visited”
infinitely often (Bertsekas, 1989)

Theorem 2: Convergence criterion
if max
% ∈ 𝒮

𝑉 ,/# 𝑠 − 𝑉 , 𝑠 < 𝜖,

then max
% ∈ 𝒮

𝑉 ,/# 𝑠 − 𝑉∗ 𝑠 < $01
#21

(Williams & Baird, 1993)

Theorem 3: Policy convergence
The “greedy” policy, 𝜋 𝑠 = argmax

) ∈𝒜
𝑄 𝑠, 𝑎 , converges to the

optimal 𝜋∗ in a finite number of iterations, often before
the value function has converged! (Bertsekas, 1987)

30

Policy iteration

31

� Inputs: 𝑅 𝑠, 𝑎 , 𝑝(𝑠’ | 𝑠, 𝑎), 0 < 𝛾 < 1

� Initialize 𝜋 randomly

� While not converged, do:
� Solve the Bellman equations defined by policy 𝜋

𝑉! s = 𝑅 𝑠, 𝜋 𝑠 + 𝛾 5
%"∈ 𝒮

𝑝 𝑠+ | 𝑠, 𝜋 𝑠 𝑉! 𝑠+

� Update 𝜋

− 𝜋 𝑠 ← argmax
) ∈𝒜

𝑅 𝑠, 𝑎 + 𝛾 5
%"∈ 𝒮

𝑝 𝑠+ | 𝑠, 𝑎 𝑉! 𝑠+

� Return 𝜋

Ø Can we learn the policy directly, instead of first learning the value function?

Now linear!

Policy iteration: convergence

32

• Number of policies: |A||S|

• Policy improves each iteration
• Thus, the number of iterations needed to converge is

bounded!

• Empirically, policy iteration requires fewer iterations than
value iteration.

Next Questions

ØHow to handle unknown state transition and reward
functions?

ØHow to handle continuous states and actions?

33

Optimal Q function and policy

34

� Deterministic	rewards

� 𝑄∗ 𝑠, 𝑎 = 𝔼[total discounted reward of taking action 𝑎 in
state 𝑠, assuming all future actions are optimal]

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 5
%"∈ 𝒮

𝑝 𝑠+ | 𝑠, 𝑎 𝑉∗ 𝑠+

𝑉∗ 𝑠+ = max
)" ∈𝒜

𝑄∗ 𝑠+, 𝑎+

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 5
%"∈ 𝒮

𝑝 𝑠+ | 𝑠, 𝑎 max
)" ∈𝒜

𝑄∗ 𝑠+, 𝑎+

𝜋∗ 𝑠 = argmax
) ∈𝒜

𝑄∗ 𝑠, 𝑎

� Insight: if we know 𝑄∗, we can compute an optimal policy 𝜋∗!

Optimal Q function and policy

35

� Deterministic	rewards	and	state	transitions

� 𝑄∗ 𝑠, 𝑎 = 𝔼[total discounted reward of taking action 𝑎 in
state 𝑠, assuming all future actions are optimal]

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾𝑉∗ 𝛿 𝑠, 𝑎

� 𝑉∗ 𝛿 𝑠, 𝑎 = max
)" ∈𝒜

𝑄∗ 𝛿 𝑠, 𝑎 , 𝑎+

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 max
)" ∈𝒜

𝑄∗ 𝛿 𝑠, 𝑎 , 𝑎+

𝜋∗ 𝑠 = argmax
) ∈𝒜

𝑄∗ 𝑠, 𝑎

� Insight: if we know 𝑄∗, we can compute an optimal policy 𝜋∗!

Online Q-learning

36

� Inputs: discount factor 𝛾, an initial state 𝑠

� Initialize 𝑄 𝑠, 𝑎 = 0 ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 (𝑄 is a 𝒮 × 𝒜 array)

� While TRUE, do
� Take a random action 𝑎

� Receive reward 𝑟 = 𝑅 𝑠, 𝑎
� Update the state: 𝑠 ← 𝑠+ where 𝑠+ = 𝛿 𝑠, 𝑎
� Update 𝑄 𝑠, 𝑎 :

𝑄 𝑠, 𝑎 ← 𝑟 + 𝛾max
)"

𝑄 𝑠+, 𝑎+

Q-learning example

37

5

62 3 40

0

0

0

0

0 7

3

-2

0

0 0

𝑅 𝑠, 𝑎 represented by
𝛾 = 0.9

38

5

1 2 3 40

0

0

0

0

0 7

3

-2

0

0 0

5

2 3 4

5.10

5.67

5.67

6.3

6.3 7

3

-2

0

0 0

5

2 3 44.59

5.10 5.67

5.67

6.3 7

3

-2

0

0 0

1

1

5.10

5.10

𝛾 = 0.9

Which set of blue arrows
(roughly) corresponds to 𝑄∗(𝑠, 𝑎)?

39

Which set of blue arrows
(roughly) corresponds to 𝑄∗(𝑠, 𝑎)?

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾𝑉∗ 𝛿 𝑠, 𝑎

5.10 5.67 6.3 7

5

2 3 4

5.10

5.67

5.67

6.3

6.3 7

3

-2

0

0 0

5.10 5.67 6.3 7

5

2 3 44.59

5.10 5.67

5.67

6.3 7

3

-2

0

0 0

1

1

5.10

5.10

𝑉∗ 𝑠 shown in green

40

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

5

2 3 40

0

0

0

0

0 7

3

-2

0

0 0

𝑅 𝑠, 𝑎 represented by
𝛾 = 0.9

41

6

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

5

62 3 40

0

0

0

0

0 7

3

-2

0

0 0

𝑄 3,→ ← 0 + 0.9 max
@!∈ →,←,↑,↻

𝑄 4, 𝑎' = 0

𝑅 𝑠, 𝑎 represented by
𝛾 = 0.9

42

6

5

62 3 40

0

0

0

0

0 7

3

-2

0

0 0

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

𝑅 𝑠, 𝑎 represented by
𝛾 = 0.9

43

6

5

62 3 40

0

0

0

0

0 7

3

-2

0

0 0

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

𝑄 4, ↑ ← 3 + 0.9 max
@!∈ →,←,↑,↻

𝑄 5, 𝑎' = 3

𝑅 𝑠, 𝑎 represented by
𝛾 = 0.9

44

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 3 0

5 0 0 0 0

6 0 0 0 0

5

2 3 40

0

0

0

0

0 7

3

-2

0

0 0

𝑄 3,→ ← 0 + 0.9 max
@!∈ →,←,↑,↻

𝑄 4, 𝑎' = 2.7

𝑅 𝑠, 𝑎 represented by
𝛾 = 0.9

45

6

5

62 3 40

0

0

0

0

0 7

3

-2

0

0 0

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 2.7 0 0 0

4 0 0 3 0

5 0 0 0 0

6 0 0 0 0

𝑄 3,→ ← 0 + 0.9 max
@!∈ →,←,↑,↻

𝑄 4, 𝑎' = 2.7

𝑅 𝑠, 𝑎 represented by
𝛾 = 0.9

Online Q-learning

46

� Inputs: discount factor 𝛾, an initial state 𝑠

� Initialize 𝑄 𝑠, 𝑎 = 0 ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 (𝑄 is a 𝒮 × 𝒜 array)

� While TRUE, do
� Take a random action 𝑎

� Receive reward 𝑟 = 𝑅 𝑠, 𝑎
� Update the state: 𝑠 ← 𝑠+ where 𝑠+ = 𝛿 𝑠, 𝑎
� Update 𝑄 𝑠, 𝑎 :

𝑄 𝑠, 𝑎 ← 𝑟 + 𝛾max
)"

𝑄 𝑠+, 𝑎+

e-greedy Online Q-learning

47

� Inputs: discount factor 𝛾, an initial state 𝑠,
greediness parameter 𝜖 ∈ 0, 1

� Initialize 𝑄 𝑠, 𝑎 = 0 ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 (𝑄 is a 𝒮 × 𝒜 array)

� While TRUE, do
� With probability 𝜖, take the greedy action

𝑎 = argmax
)" ∈𝒜

𝑄 𝑠, 𝑎+

Otherwise, with probability 1 − 𝜖, take a random action 𝑎
� Receive reward 𝑟 = 𝑅 𝑠, 𝑎
� Update the state: 𝑠 ← 𝑠+ where 𝑠+ = 𝛿 𝑠, 𝑎
� Update 𝑄 𝑠, 𝑎 :

𝑄 𝑠, 𝑎 ← 𝑟 + 𝛾max
)"

𝑄 𝑠+, 𝑎+

Stochastic Transitions

48

� Inputs: discount factor 𝛾, an initial state 𝑠,
greediness parameter 𝜖 ∈ 0, 1 ,
learning rate 𝛼 ∈ 0, 1 (“trust parameter”)

� Initialize 𝑄 𝑠, 𝑎 = 0 ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 (𝑄 is a 𝒮 × 𝒜 array)

� While TRUE, do
� With probability 𝜖, take the greedy action

𝑎 = argmax
)" ∈𝒜

𝑄 𝑠, 𝑎+

Otherwise, with probability 1 − 𝜖, take a random action 𝑎
� Receive reward 𝑟 = 𝑅 𝑠, 𝑎
� Update the state: 𝑠 ← 𝑠+ where 𝑠+ ∼ 𝑝 𝑠+ 𝑠, 𝑎
� Update 𝑄 𝑠, 𝑎 :

𝑄 𝑠, 𝑎 ← 1 − 𝛼 𝑄 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾max
)"

𝑄 𝑠+, 𝑎+

Current value Update w/
deterministic transitions

Temporal Difference Learning

49

� Inputs: discount factor 𝛾, an initial state 𝑠,
greediness parameter 𝜖 ∈ 0, 1 ,
learning rate 𝛼 ∈ 0, 1 (“trust parameter”)

� Initialize 𝑄 𝑠, 𝑎 = 0 ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 (𝑄 is a 𝒮 × 𝒜 array)

� While TRUE, do
� With probability 𝜖, take the greedy action

𝑎 = argmax
)" ∈𝒜

𝑄 𝑠, 𝑎+

Otherwise, with probability 1 − 𝜖, take a random action 𝑎
� Receive reward 𝑟 = 𝑅 𝑠, 𝑎
� Update the state: 𝑠 ← 𝑠+ where 𝑠+ ∼ 𝑝 𝑠+ 𝑠, 𝑎
� Update 𝑄 𝑠, 𝑎 :

𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾max
)"

𝑄 𝑠+, 𝑎+ − 𝑄 𝑠, 𝑎

Current value Temporal difference target

Temporal
difference

Q – learning: convergence

50

� For Algorithms 1 & 2 (deterministic transitions), 𝑄 converges to
𝑄∗ if

1. Every valid state-action pair is visited infinitely often

� Q-learning is exploration-insensitive: any visitation
strategy that satisfies this property will work!

2. 0 ≤ 𝛾 < 1

3. ∃ 𝛽 s.t. 𝑅 𝑠, 𝑎 < 𝛽 ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜

4. Initial 𝑄 values are finite

Q – learning: convergence

51

� For Algorithm 3 (temporal difference learning), 𝑄 converges to
𝑄∗ if

1. Every valid state-action pair is visited infinitely often

� Q-learning is exploration-insensitive: any visitation
strategy that satisfies this property will work!

2. 0 ≤ 𝛾 < 1

3. ∃ 𝛽 s.t. 𝑅 𝑠, 𝑎 < 𝛽 ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜

4. Initial 𝑄 values are finite

5. Learning rate 𝛼, follows some “schedule” s.t.
∑,-". 𝛼, = ∞ and ∑,-". 𝛼,$ < ∞ e.g., 𝛼, = ⁄# ,/#

Deep Q-learning

52

� What if state-action spaces are continuous?

� Use a parametric function, 𝑄 𝑠, 𝑎; Θ , to approximate
𝑄∗ 𝑠, 𝑎

� Learn the parameters using SGD

� Training data 𝒔%, 𝑎%, 𝑟%, 𝒔%*# gathered online by
the agent/learning algorithm

� If the approximator is a deep neural network =>
deep Q-learning

53

Playing Go
AlphaGo (Black) vs. Lee Sedol (White)
Game 2 final position (AlphaGo wins)

Source: https://en.wikipedia.org/wiki/AlphaGo_versus_Lee_Sedol

� 19-by-19 board

� Players alternate
placing black and
white stones

� The goal is claim
more territory
than the opponent

� There are ~10170

legal Go board
states!

Source: https://en.wikipedia.org/wiki/Go_and_mathematics

Deep Q-learning: Model

54

� Represent states using some feature vector 𝒔% ∈ ℝE
e.g. for Go, 𝒔% = 1, 0, −1,… , 1 &

� Define a neural network architecture

𝒔%

𝑎%
Θ 𝑄 𝒔%, 𝑎%; Θ

𝒔% Θ

𝑄 𝒔%, 𝑎#; Θ
𝑄 𝒔%, 𝑎,; Θ

𝑄 𝒔%, 𝑎 𝒜 ; Θ
⋮

Model 1:

Model 2:

Deep Q-learning: Loss function

55

� “True” loss

ℓ Θ = 5
% ∈ 𝒮

5
) ∈𝒜

𝑄∗ 𝑠, 𝑎 − 𝑄 𝑠, 𝑎; Θ $

1. Use stochastic gradient descent: just consider one state-
action pair in each iteration

2. Use temporal difference learning:
� Given current parameters Θ 3 the temporal difference

target is
𝑄∗ 𝑠, 𝑎 ≈ 𝑟 + 𝛾max

)"
𝑄 𝑠+, 𝑎+; Θ , ≔ 𝑦

� Set the parameters in the next iteration Θ 3/# such that
𝑄 𝑠, 𝑎; Θ 3/# ≈ 𝑦

ℓ Θ 3 , Θ ,/# = 𝑦 − 𝑄 𝑠, 𝑎; Θ 3/#
$

1. 𝒮 too big to compute this sum

2. Don’t know 𝑄∗

Deep Q-learning: parametric online
learning

56

� Inputs: discount factor 𝛾, an initial state 𝑠",

learning rate 𝛼

� Initialize parameters Θ "

� For 𝑡 = 0, 1, 2, …
� Gather training sample 𝒔, , 𝒂, , 𝑟, , 𝒔,/# , compute 𝑦
� Update Θ , by taking a step opposite the gradient

Θ ,/# ← Θ , − 𝛼∇4 #$! ℓ Θ , , Θ ,/#

where
∇4 #$! ℓ Θ , , Θ ,/#

= 2 𝑦 − 𝑄 𝑠, 𝑎; Θ ,/# ∇4 #$! 𝑄 𝑠, 𝑎; Θ ,/#

Deep Q-learning: Experience replay

57

� Issue: SGD assumes i.i.d. training samples but in RL, samples are
highly correlated

� Idea: keep a “replay memory” 𝒟 = {𝑒1, 𝑒2, … , 𝑒𝑁} of the 𝑁 most
recent experiences 𝑒𝑡 = 𝒔𝑡, 𝒂, , 𝑟, , 𝒔,/# (Lin, 1992)

� Also keeps the agent from “forgetting” about recent
experiences

� Alternate between:
1. Sampling some 𝑒𝑖 uniformly at random from 𝒟 and

applying a Q-learning update (repeat 𝛵 times)

2. Adding a new experience to 𝒟

� Can also sample experiences from 𝒟 according to some
distribution that prioritizes experiences with high error (Schaul
et al., 2016)

RL summary
• States, actions, rewards
• Policy
• Value function, Q function
• Finding optimal policy:

- value iteration
- policy iteration

• Unknown reward and transition function:
- Q learning (including temporal difference)

• Continuous states and actions:
- parametric models, deep Q learning
- Experience replay

58

