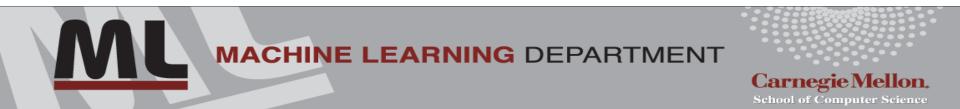
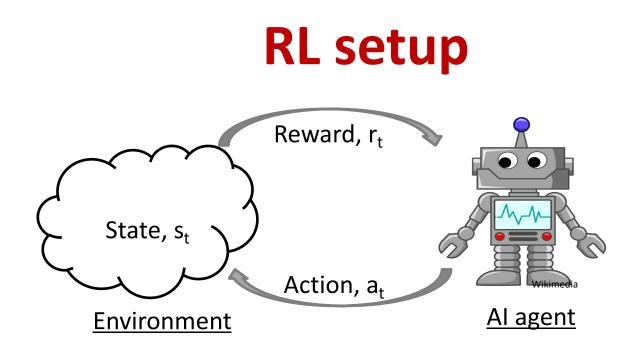
Reinforcement Learning II

Aarti Singh

Machine Learning 10-701 Apr 5, 2023

Slides courtesy: Henry Chai, Eric Xing





- 1. Start in some initial state *s*₀
- 2. For time step *t*:
 - a. Agent observes state s_t
 - b. Agent takes action $a_t = \pi(s_t)$
 - c. Agent receives reward $r_t \sim p(r \mid s_t, a_t)$
 - d. Agent transitions to state $s_{t+1} \sim p(s' | s_t, a_t)$

RL setup

- Policy, $\pi: \mathcal{S} \to \mathcal{A}$
 - Specifies an action to take in *every* state
- Value function, $V^{\pi}: S \to \mathbb{R}$
 - $V^{\pi}(s) = \mathbb{E}[discounted \text{ total reward of starting in state } s \text{ and}$ executing policy π forever]

 $= \sum_{t=0}^{\infty} \gamma^{t} \mathbb{E} \Big[R \big(s_{t}, \pi(s_{t}) \big) \Big] \qquad \qquad \mathsf{R} - \mathsf{deterministic reward}$

Goal: Find policy that maximizes expected discounted total reward

$$\pi^* = \underset{\pi}{\operatorname{argmax}} V^{\pi}(s) \ \forall \ s \in \mathcal{S}$$

Bellman Equation

Value function satisfies the set of recursive equations:

$$V^{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s_1 \in \mathcal{S}} p(s_1 \mid s, \pi(s)) V^{\pi}(s_1)$$

• Optimal value function:

$$V^*(s) = \max_{a \in \mathcal{A}} \left[R(s,a) + \gamma \sum_{s' \in \mathcal{S}} p(s' \mid s,a) V^*(s') \right]$$

- System of |S| equations and |S| variables nonlinear!
- Optimal policy:

$$\pi^*(s) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} R(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s' \mid s, a) V^*(s')$$

Value iteration

- Inputs: R(s, a), p(s' | s, a), $0 < \gamma < 1$
- Initialize $V^{(0)}(s) = 0 \forall s \in S$ (or randomly) and set t = 0
- While not converged, do:

• For $s \in S$

$$V^{(t+1)}(s) \leftarrow \max_{a \in \mathcal{A}} \left[R(s,a) + \gamma \sum_{s' \in \mathcal{S}} p(s' \mid s, a) V^{(t)}(s') \right]$$

• $t = t + 1$

• For $s \in \mathcal{S}$

 $\pi^*(s) \leftarrow \underset{a \in \mathcal{A}}{\operatorname{argmax}} \left[R(s,a) + \gamma \sum_{s' \in \mathcal{S}} p(s' \mid s,a) V^{(t)}(s') \right]$

• Return π^*

Value iteration

- Inputs: R(s, a), p(s' | s, a), $0 < \gamma < 1$
- Initialize $V^{(0)}(s) = 0 \forall s \in S$ (or randomly) and set t = 0
- While not converged, do:
 - For $s \in S$
 - For $a \in \mathcal{A}$

$$Q(s,a) = R(s,a) + \gamma \sum_{s' \in S} p(s' \mid s,a) V^{(t)}(s')$$

• $V^{(t+1)}(s) \leftarrow \max_{a \in \mathcal{A}} Q(s,a)$
• $t = t + 1$
• For $s \in S$
 $\pi^*(s) \leftarrow \operatorname{argmax} Q(s,a)$

$$\pi (s) \leftarrow \underset{a \in \mathcal{A}}{\operatorname{argmax}} Q(a \in \mathcal{A})$$

• Return π^*

Value iteration: convergence

Theorem 1: Value function convergence *V* will converge to *V*^{*} if each state is "visited" infinitely often (Bertsekas, 1989)

Theorem 2: Convergence criterion $\inf_{\substack{s \in S}} |V^{(t+1)}(s) - V^{(t)}(s)| < \epsilon,$ then $\max_{s \in S} |V^{(t+1)}(s) - V^*(s)| < \frac{2\epsilon\gamma}{1-\gamma}$ (Williams & Baird, 1993)

Theorem 3: Policy convergence The "greedy" policy, $\pi(s) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} Q(s, a)$, converges to the optimal π^* in a finite number of iterations, often before the value function has converged! (Bertsekas, 1987)

Policy iteration

> Can we learn the policy directly, instead of first learning the value function?

- Inputs: R(s, a), p(s' | s, a), $0 < \gamma < 1$
- Initialize π randomly
- While not converged, do:
 - Solve the Bellman equations defined by policy π

$$V^{\pi}(s) = R(s,\pi(s)) + \gamma \sum_{s' \in \mathcal{S}} p(s' \mid s,\pi(s)) V^{\pi}(s')$$

Now linear!

• Update π

$$\pi(s) \leftarrow \underset{a \in \mathcal{A}}{\operatorname{argmax}} R(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s' \mid s, a) V^{\pi}(s')$$

• Return π

Policy iteration: convergence

- Number of policies: |A|^{|S|}
- Policy improves each iteration
- Thus, the number of iterations needed to converge is bounded!
- Empirically, policy iteration requires fewer iterations than value iteration.

Next Questions

- How to handle unknown state transition and reward functions?
- How to handle continuous states and actions?

Optimal Q function and policy

- Deterministic rewards
- $Q^*(s, a) = \mathbb{E}[\text{total discounted reward of taking action } a$ in state s, assuming all future actions are optimal]

$$= R(s,a) + \gamma \sum_{s' \in S} p(s' \mid s,a) V^*(s')$$
$$V^*(s') = \max_{a' \in \mathcal{A}} Q^*(s',a')$$
$$Q^*(s,a) = R(s,a) + \gamma \sum_{s' \in S} p(s' \mid s,a) \left[\max_{a' \in \mathcal{A}} Q^*(s',a')\right]$$
$$\pi^*(s) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} Q^*(s,a)$$

• Insight: if we know Q^* , we can compute an optimal policy π^* !

Optimal Q function and policy

- Deterministic rewards and state transitions
- $Q^*(s, a) = \mathbb{E}[\text{total discounted reward of taking action } a \text{ in state } s, \text{ assuming all future actions are optimal]}$

 $= R(s,a) + \gamma V^* \big(\delta(s,a) \big)$

•
$$V^*(\delta(s,a)) = \max_{a' \in \mathcal{A}} Q^*(\delta(s,a),a')$$

 $Q^*(s,a) = R(s,a) + \gamma \max_{a' \in \mathcal{A}} Q^*(\delta(s,a),a')$

 $\pi^*(s) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} Q^*(s, a)$

• Insight: if we know Q^* , we can compute an optimal policy π^* !

Online Q-learning

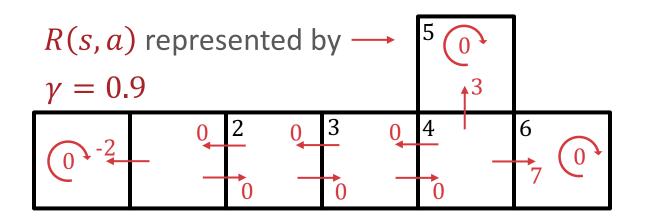
• Inputs: discount factor γ , an initial state s

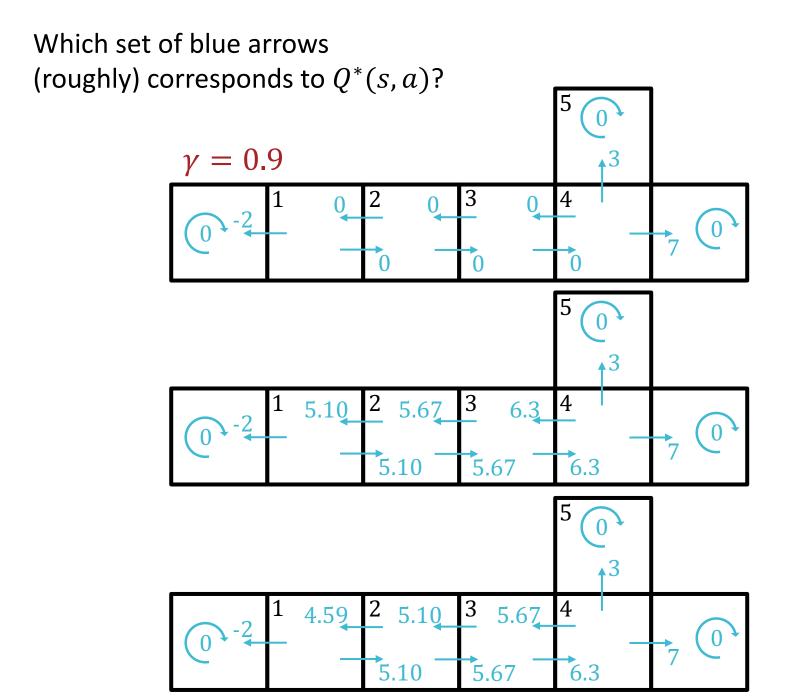
- Initialize $Q(s, a) = 0 \forall s \in S, a \in A (Q \text{ is a } |S| \times |A| \text{ array})$
- While TRUE, do
 - Take a random action *a*

- Receive reward r = R(s, a)
- Update the state: $s \leftarrow s'$ where $s' = \delta(s, a)$
- Update Q(s, a):

$$Q(s,a) \leftarrow r + \gamma \max_{a'} Q(s',a')$$

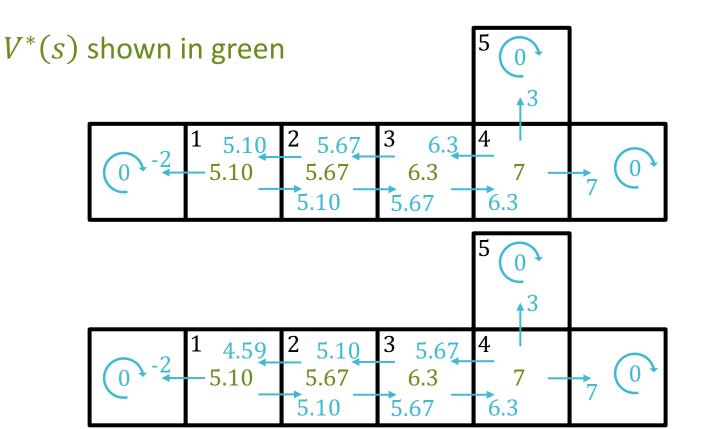
Q-learning example



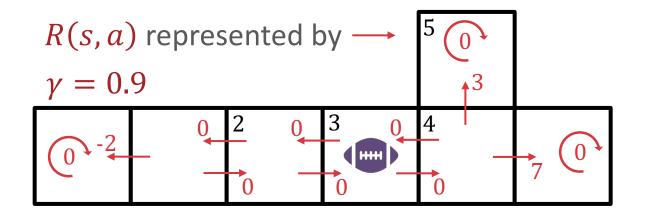


Which set of blue arrows (roughly) corresponds to $Q^*(s, a)$?

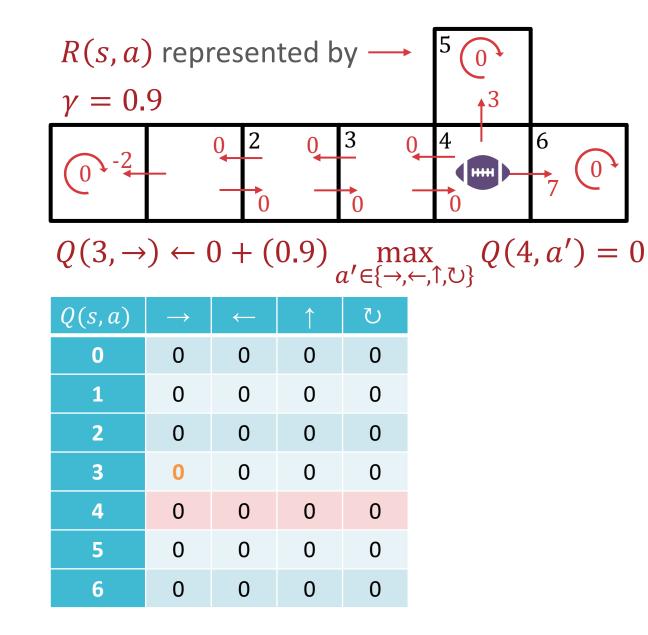
$$Q^*(s,a) = R(s,a) + \gamma V^*(\delta(s,a))$$

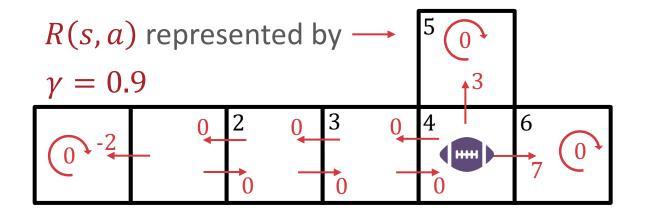


39

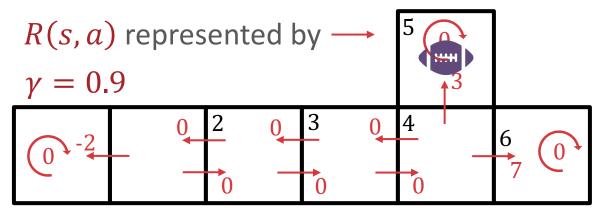


Q(s,a)	\rightarrow	←	1	U
0	0	0	0	0
1	0	0	0	0
2	0	0	0	0
3	0	0	0	0
4	0	0	0	0
5	0	0	0	0
6	0	0	0	0



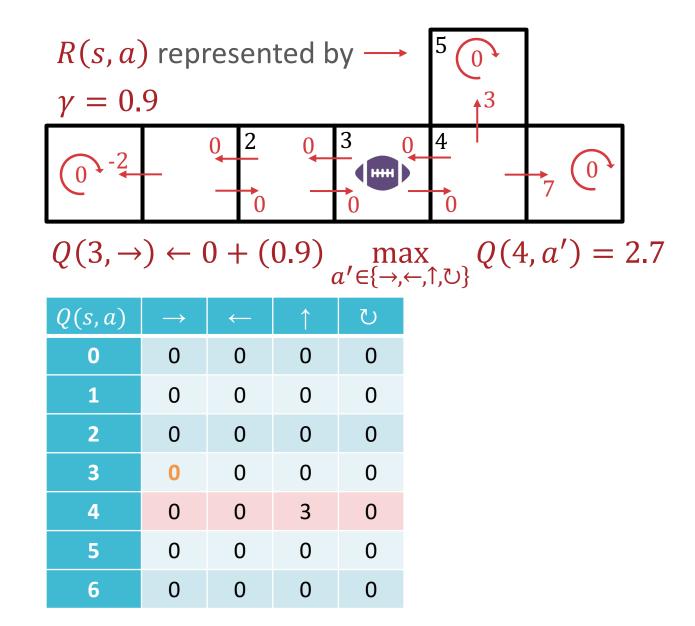


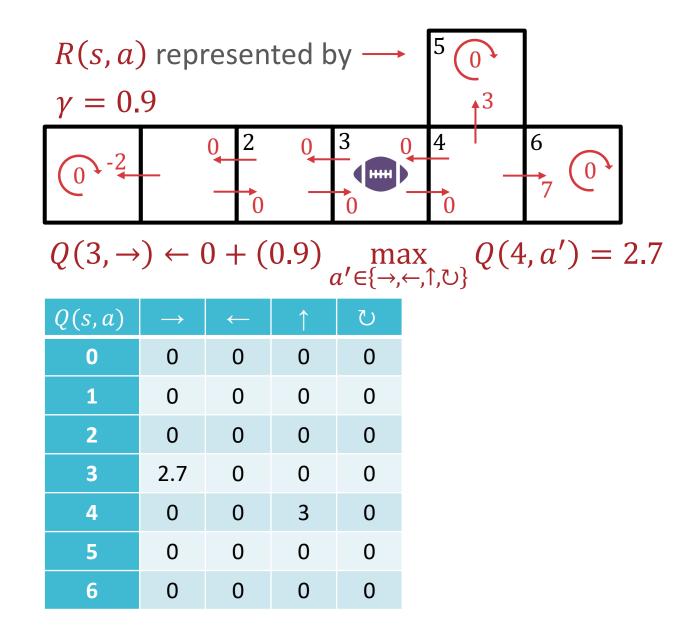
Q(s,a)	\rightarrow	←	1	U
0	0	0	0	0
1	0	0	0	0
2	0	0	0	0
3	0	0	0	0
4	0	0	0	0
5	0	0	0	0
6	0	0	0	0



 $Q(4,\uparrow) \leftarrow 3 + (0.9) \max_{a' \in \{\rightarrow,\leftarrow,\uparrow,\circlearrowright\}} Q(5,a') = 3$

Q(s,a)	\rightarrow	\leftarrow	1	び
0	0	0	0	0
1	0	0	0	0
2	0	0	0	0
3	0	0	0	0
4	0	0	0	0
5	0	0	0	0
6	0	0	0	0





Online Q-learning

• Inputs: discount factor γ , an initial state s

- Initialize $Q(s, a) = 0 \forall s \in S, a \in A (Q \text{ is a } |S| \times |A| \text{ array})$
- While TRUE, do
 - Take a random action *a*

- Receive reward r = R(s, a)
- Update the state: $s \leftarrow s'$ where $s' = \delta(s, a)$
- Update Q(s, a):

$$Q(s,a) \leftarrow r + \gamma \max_{a'} Q(s',a')$$

ε-greedy Online Q-learning

- Inputs: discount factor γ , an initial state s, greediness parameter $\epsilon \in [0, 1]$
- Initialize $Q(s, a) = 0 \forall s \in S, a \in \mathcal{A} (Q \text{ is a } |S| \times |\mathcal{A}| \text{ array})$
- While TRUE, do
 - With probability ϵ , take the greedy action

 $a = \underset{a' \in \mathcal{A}}{\operatorname{argmax}} Q(s, a')$

Otherwise, with probability $1-\epsilon$, take a random action a

- Receive reward r = R(s, a)
- Update the state: $s \leftarrow s'$ where $s' = \delta(s, a)$
- Update Q(s, a):

$$Q(s,a) \leftarrow r + \gamma \max_{a'} Q(s',a')$$

Stochastic Transitions

- Inputs: discount factor γ , an initial state s, greediness parameter $\epsilon \in [0, 1]$, learning rate $\alpha \in [0, 1]$ ("trust parameter")
- Initialize $Q(s, a) = 0 \forall s \in S, a \in \mathcal{A} (Q \text{ is a } |S| \times |\mathcal{A}| \text{ array})$
- While TRUE, do
 - With probability *e*, take the greedy action

 $a = \underset{a' \in \mathcal{A}}{\operatorname{argmax}} Q(s, a')$

Otherwise, with probability $1 - \epsilon$, take a random action a

- Receive reward r = R(s, a)
- Update the state: $s \leftarrow s'$ where $s' \sim p(s' \mid s, a)$
- Update *Q*(*s*, *a*):

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha \left(r + \gamma \max_{a'} Q(s',a')\right)$$

Current value
Update w/
deterministic transitions

Temporal Difference Learning

- Inputs: discount factor γ, an initial state s, greediness parameter ε ∈ [0, 1], learning rate α ∈ [0, 1] ("trust parameter")
- Initialize $Q(s, a) = 0 \forall s \in S, a \in \mathcal{A} (Q \text{ is a } |S| \times |\mathcal{A}| \text{ array})$
- While TRUE, do
 - With probability ϵ , take the greedy action

$$a = \underset{a' \in \mathcal{A}}{\operatorname{argmax}} Q(s, a')$$

Otherwise, with probability $1 - \epsilon$, take a random action a

- Receive reward r = R(s, a)
- Update the state: $s \leftarrow s'$ where $s' \sim p(s' \mid s, a)$
- Update Q(s, a):

$$Q(s,a) \leftarrow Q(s,a) + \alpha \left(r + \gamma \max_{a'} Q(s',a') - Q(s,a) \right)$$

Current value Temporal difference target

Temporal

difference

Q – learning: convergence

- For Algorithms 1 & 2 (deterministic transitions), Q converges to Q^* if
 - 1. Every valid state-action pair is visited infinitely often
 - Q-learning is exploration-insensitive: any visitation strategy that satisfies this property will work!
 - $2. \quad 0 \le \gamma < 1$
 - **3**. $\exists \beta$ s.t. $|R(s, a)| < \beta \forall s \in S, a \in A$
 - 4. Initial *Q* values are finite

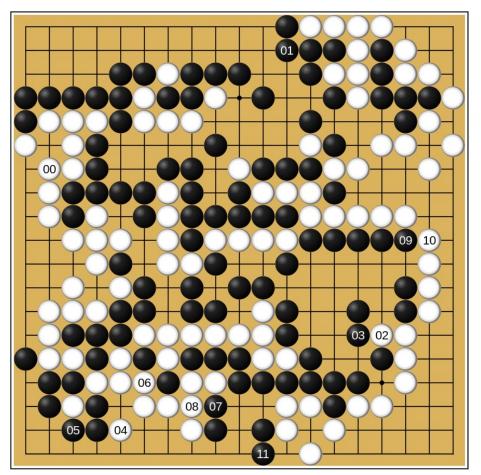
Q – learning: convergence

- For Algorithm 3 (temporal difference learning), Q converges to Q^* if
 - 1. Every valid state-action pair is visited infinitely often
 - Q-learning is exploration-insensitive: any visitation strategy that satisfies this property will work!
 - $2. \quad 0 \le \gamma < 1$
 - **3.** $\exists \beta$ s.t. $|R(s, a)| < \beta \forall s \in S, a \in A$
 - 4. Initial *Q* values are finite
 - 5. Learning rate α_t follows some "schedule" s.t. $\sum_{t=0}^{\infty} \alpha_t = \infty$ and $\sum_{t=0}^{\infty} \alpha_t^2 < \infty$ e.g., $\alpha_t = \frac{1}{t+1}$

Deep Q-learning

- What if state-action spaces are continuous?
- Use a parametric function, $Q(s, a; \Theta)$, to approximate $Q^*(s, a)$
 - Learn the parameters using SGD
 - Training data (s_t, a_t, r_t, s_{t+1}) gathered online by the agent/learning algorithm
- If the approximator is a deep neural network => deep Q-learning

AlphaGo (Black) vs. Lee Sedol (White) Game 2 final position (AlphaGo wins)



Playing Go 19-by-19 board **Players** alternate placing black and white stones The goal is claim more territory than the opponent

There are ~10¹⁷⁰ legal Go board states!

Deep Q-learning: Model

- Represent states using some feature vector $s_t \in \mathbb{R}^M$ e.g. for Go, $s_t = [1, 0, -1, ..., 1]^T$
- Define a neural network architecture



Deep Q-learning: Loss function

"True" loss

2. Don't know Q^*

$$\ell(\Theta) = \sum_{s \in S} \sum_{a \in A} \left(Q^*(s, a) - Q(s, a; \Theta) \right)^2$$

1. *S* too big to compute this sum

- 1. Use stochastic gradient descent: just consider one stateaction pair in each iteration
- 2. Use temporal difference learning:
 - Given current parameters Θ^(t) the temporal difference target is

 $Q^*(s,a) \approx r + \gamma \max_{a'} Q(s',a';\Theta^{(t)}) \coloneqq y$

• Set the parameters in the next iteration $\Theta^{(t+1)}$ such that $Q(s, a; \Theta^{(t+1)}) \approx y$

$$\ell(\Theta^{(t)},\Theta^{(t+1)}) = \left(y - Q(s,a;\Theta^{(t+1)})\right)^2$$

Deep Q-learning: parametric online learning

• Inputs: discount factor γ , an initial state s_0 ,

learning rate α

- Initialize parameters $\Theta^{(0)}$
- For t = 0, 1, 2, ...
 - Gather training sample (s_t, a_t, r_t, s_{t+1}) , compute y
 - Update $\Theta^{(t)}$ by taking a step opposite the gradient $\Theta^{(t+1)} \leftarrow \Theta^{(t)} - \alpha \nabla_{\Theta^{(t+1)}} \ell(\Theta^{(t)}, \Theta^{(t+1)})$

where

$$\nabla_{\Theta^{(t+1)}} \ell(\Theta^{(t)}, \Theta^{(t+1)})$$

= $2\left(y - Q(s, a; \Theta^{(t+1)})\right) \nabla_{\Theta^{(t+1)}} Q(s, a; \Theta^{(t+1)})$

Deep Q-learning: Experience replay

- Issue: SGD assumes i.i.d. training samples but in RL, samples are highly correlated
- Idea: keep a "replay memory" $\mathcal{D} = \{e_1, e_2, \dots, e_N\}$ of the N most recent experiences $e_t = (s_t, a_t, r_t, s_{t+1})$ (Lin, 1992)
 - Also keeps the agent from "forgetting" about recent experiences
- Alternate between:
 - 1. Sampling some e_i uniformly at random from \mathcal{D} and applying a Q-learning update (repeat T times)
 - 2. Adding a new experience to \mathcal{D}
- Can also sample experiences from D according to some distribution that prioritizes experiences with high error (Schaul et al., 2016)

RL summary

- States, actions, rewards
- Policy
- Value function, Q function
- Finding optimal policy:
 - value iteration
 - policy iteration
- Unknown reward and transition function:
 - Q learning (including temporal difference)
- Continuous states and actions:
 - parametric models, deep Q learning
 - Experience replay