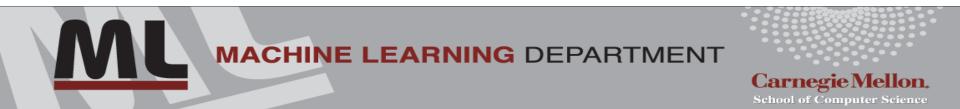
Clustering

Aarti Singh

Machine Learning 10-701 Apr 24, 2023

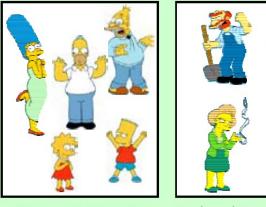
Some slides courtesy of Eric Xing, Carlos Guestrin



What is clustering?

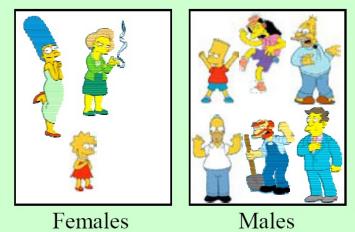
- Clustering: the process of grouping a set of objects into classes of similar ۲ objects
 - high intra-class similarity
 - low inter-class similarity ____
 - It is the most common form of unsupervised learning

Clustering is subjective



Simpson's Family

School Employees



2

What is Similarity?

Hard to define! But we know it when we see it

• The real meaning of similarity is a philosophical question. We will take a more pragmatic approach - think in terms of a distance (rather than similarity) between vectors or correlations between random variables.

Distance metrics

$$x = (x_1, x_2, ..., x_p)$$

$$y = (y_1, y_2, ..., y_p)$$
Euclidean distance
$$d(x, y) = 2\sqrt{\sum_{i=1}^{p} |x_i - y_i|^2}$$
Manhattan distance
$$d(x, y) = \sum_{i=1}^{p} |x_i - y_i|$$
Sup-distance
$$d(x, y) = \max_{1 \le i \le p} |x_i - y_i|$$
4

Correlation coefficient

$$x = (x_1, x_2, ..., x_p)$$

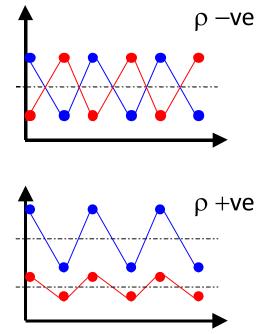
y = (y₁, y₂, ..., y_p)

Random vectors (e.g. expression levels of two genes under various drugs)

Pearson correlation coefficient

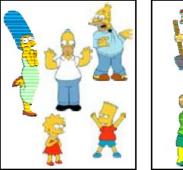
$$\rho(x, y) = \frac{\sum_{i=1}^{p} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{p} (x_i - \overline{x})^2 \times \sum_{i=1}^{p} (y_i - \overline{y})^2}}$$

where
$$\bar{x} = \frac{1}{p} \sum_{i=1}^{p} x_i$$
 and $\bar{y} = \frac{1}{p} \sum_{i=1}^{p} y_i$

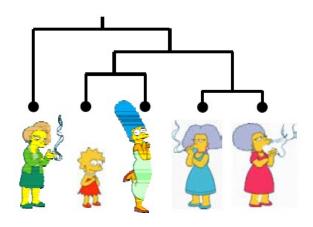


Clustering Algorithms

- Partition algorithms
 - K means clustering
 - Mixture-Model based clustering



- Hierarchical algorithms
 - Single-linkage
 - Average-linkage
 - Complete-linkage
 - Centroid-based



Partitioning Algorithms

- Partitioning method: Construct a partition of *n* objects into a set of *K* clusters
- Given: a set of objects and the number K
- Find: a partition of *K* clusters that optimizes the chosen partitioning criterion
 - Globally optimal: exhaustively enumerate all partitions
 - Effective heuristic method: K-means algorithm

K-Means

Algorithm

Input – Desired number of clusters, k

Initialize – the k cluster centers (randomly if necessary)

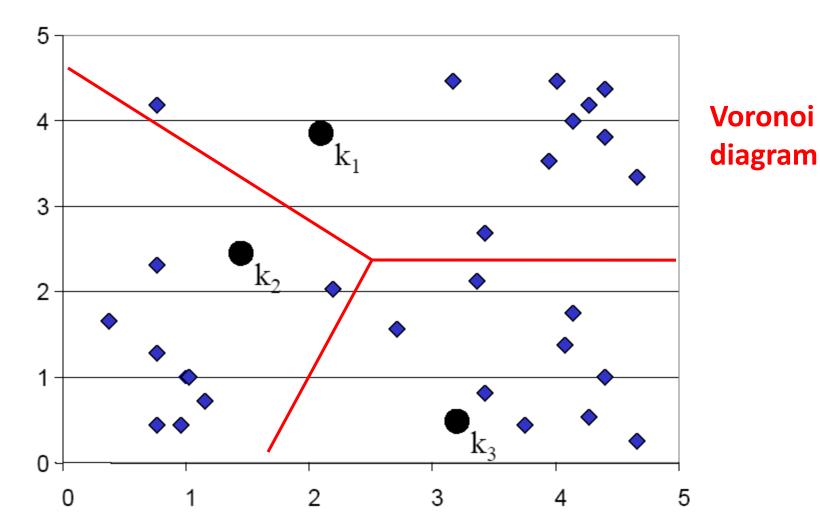
Iterate –

- 1. Assign points to the nearest cluster centers
- 2. Re-estimate the *k* cluster centers (aka the centroid or mean), by assuming the memberships found above are correct.

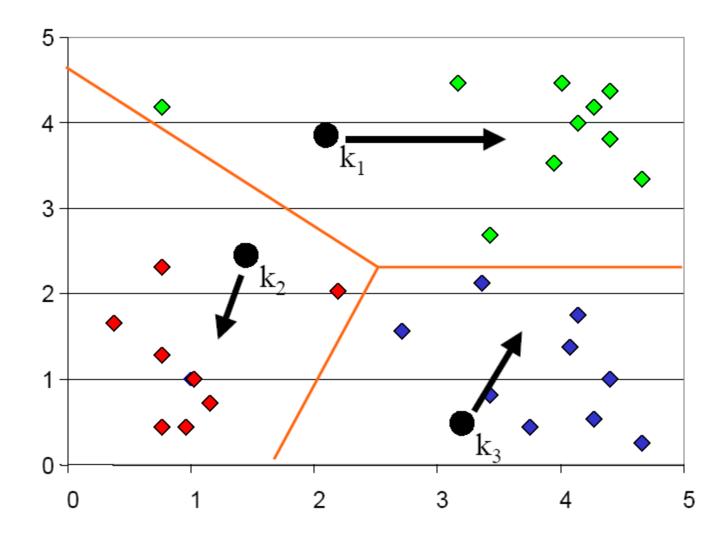
$$\vec{\mu}_k = \frac{1}{\mathcal{C}_k} \sum_{i \in \mathcal{C}_k} \vec{x}_i$$

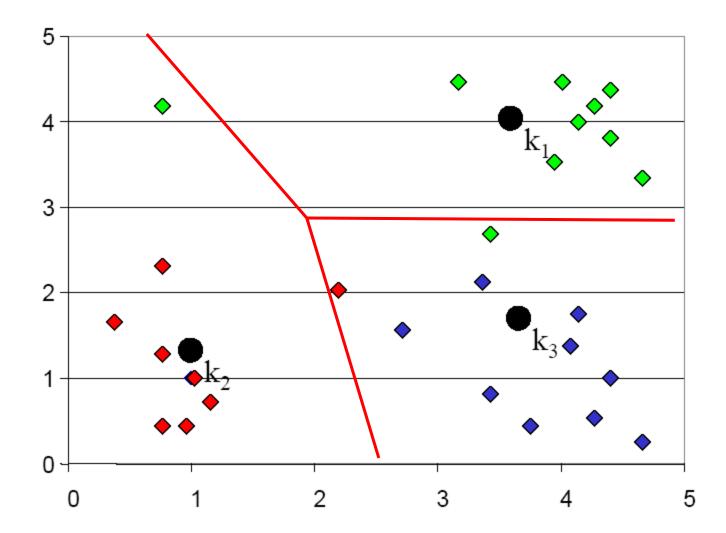
Termination –

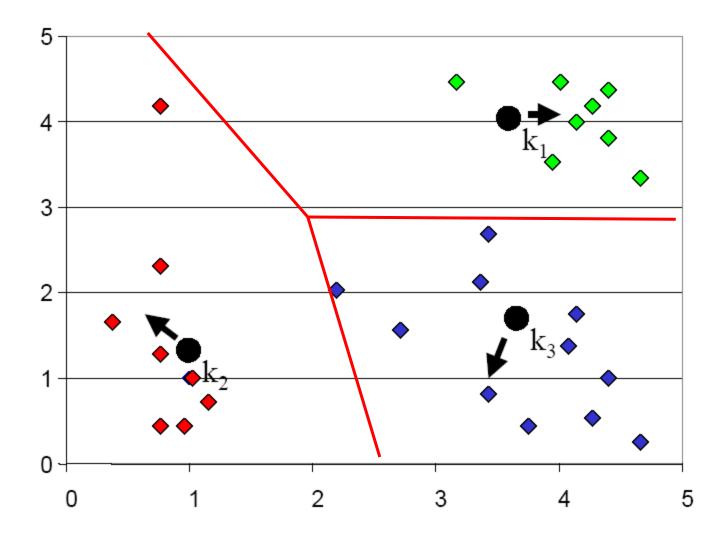
If none of the objects changed membership in the last iteration, exit. Otherwise go to 1.

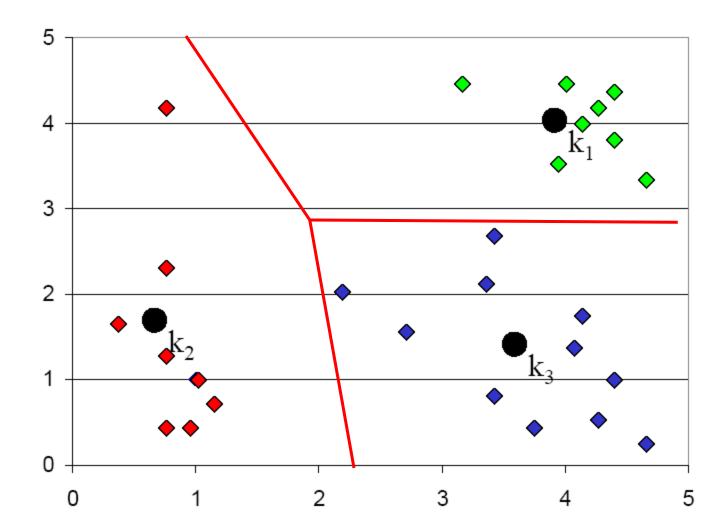


9









K-means Recap ...

Randomly initialize k centers

 $\square \mu^{(0)} = \mu_1^{(0)}, \dots, \mu_k^{(0)}$

K-means Recap ...

• Randomly initialize *k* centers $\Box \ \mu^{(0)} = \mu_1^{(0)}, \dots, \ \mu_k^{(0)}$

Iterate t = 0, 1, 2, ...

Classify: Assign each point j∈ {1,...m} to nearest center:

$$\square C^{(t)}(j) \leftarrow \arg \min_{i=1,...,k} \|\mu_i^{(t)} - x_j\|^2$$

K-means Recap ...

• Randomly initialize *k* centers $\Box \ \mu^{(0)} = \mu_1^{(0)}, \dots, \ \mu_k^{(0)}$

Iterate t = 0, 1, 2, ...

Classify: Assign each point j∈ {1,...m} to nearest center:

$$\square C^{(t)}(j) \leftarrow \arg \min_{i=1,...,k} \|\mu_i^{(t)} - x_j\|^2$$

Recenter: μ_i becomes centroid of its points:

$$\mu_i^{(t+1)} \leftarrow \arg\min_{\mu} \sum_{j:C^{(t)}(j)=i} \|\mu - x_j\|^2 \qquad i \in \{1, \dots, k\}$$

 \Box Equivalent to $\mu_i \leftarrow$ average of its points!

What is K-means optimizing?

Potential function F(µ,C) of centers µ and point allocations C:

$$F(\mu, C) = \sum_{j=1}^{m} ||\mu_{C(j)} - x_j||^2$$
$$= \sum_{i=1}^{k} \sum_{j:C(j)=i} ||\mu_i - x_j||^2$$

Optimal K-means:
 □ min_µmin_c F(µ,C)

Is the K-means objective convex?

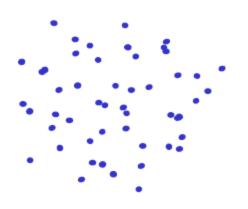
K-means algorithm

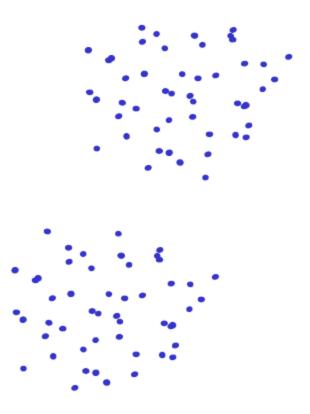
- Optimize potential function: $\min_{\mu} \min_{C} F(\mu, C) = \min_{\mu} \min_{C} \sum_{i=1}^{k} \sum_{j:C(j)=i} ||\mu_i - x_j||^2$
- K-means algorithm: (coordinate descent on F)
 - (1) Fix μ , optimize C **Expected** cluster assignment
 - (2) Fix C, optimize μ

Maximum likelihood for center

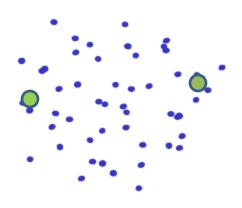
Similar to EM/Baum Welch algorithm for learning HMM parameters

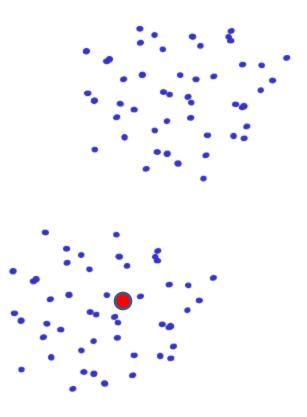
• Results are quite sensitive to seed selection.



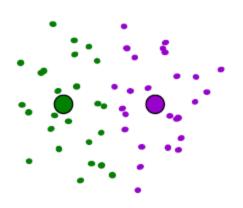


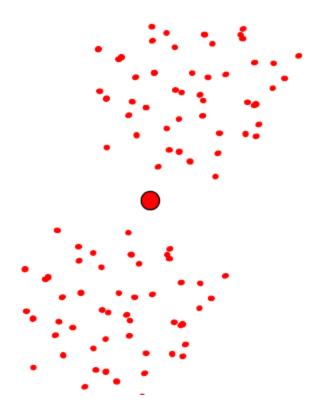
• Results are quite sensitive to seed selection.





• Results are quite sensitive to seed selection.





- Results can vary based on random seed selection.
- Some seeds can result in poor convergence rate, or convergence to sub-optimal clustering.
 - Try out multiple starting points (very important!!!)
 - k-means ++ algorithm of Arthur and Vassilvitskii
 key idea: choose centers that are far apart
 (probability of picking a point as cluster center ∝
 distance from nearest center picked so far)

Other Issues

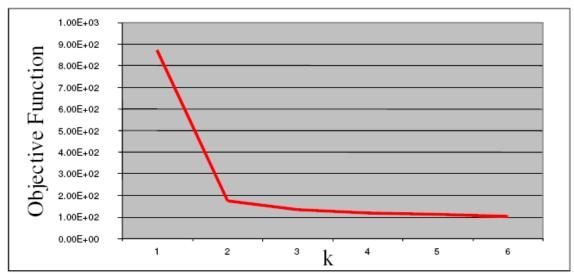
- Number of clusters K
 - Objective function

$$\sum_{j=1}^{m} ||\mu_{C(j)} - x_j||^2$$

Can you pick K by minimizing the objective over K?

m

Look for "Knee" in objective function



Other Issues

- Sensitive to Outliers
 - use K-medoids

• Shape of clusters

Assumes isotropic, equal variance, convex clusters

Partitioning Algorithms

• K-means

 hard assignment: each object belongs to only one cluster

• Mixture modeling

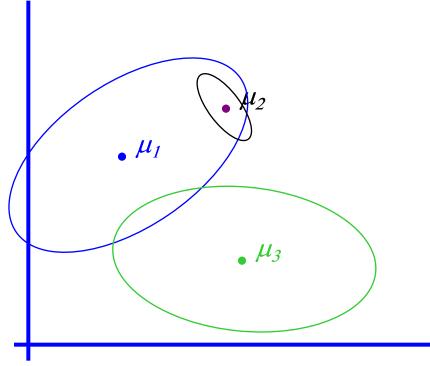
 soft assignment: probability that an object belongs to a cluster

Generative approach

Mixture models

GMM – Gaussian Mixture Model (Multi-modal distribution)

 $p(x|y=i) \sim N(\mu_i, \Sigma_i)$ $p(x) = \sum_i p(x|y=i) P(y=i)$ $\downarrow \qquad \downarrow$ Mixture
Mixture
component
Proportion



Mixture models

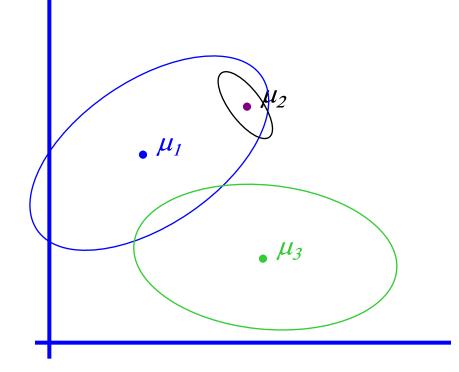
GMM – Gaussian Mixture Model (Multi-modal distribution)

- There are k components
- Component *i* has an associated mean vector μ_i
- Each component generates data from a Gaussian with mean μ_i and covariance matrix Σ_i

Each data point is generated according to the following recipe:

 Pick a component at random: Choose component i with probability P(y=i)

2) Datapoint $x \sim N(\mu_i, \Sigma_i)$



Learning GMMs via EM algorithm

Iterate. On iteration t let our estimates be

 $\lambda_t = \{ \mu_1^{(t)}, \mu_2^{(t)} \dots \mu_k^{(t)}, \Sigma_1^{(t)}, \Sigma_2^{(t)} \dots \Sigma_k^{(t)}, p_1^{(t)}, p_2^{(t)} \dots p_k^{(t)} \}$

p_i^(t) is shorthand for
estimate of P(y=i) on
t'th iteration

E-step

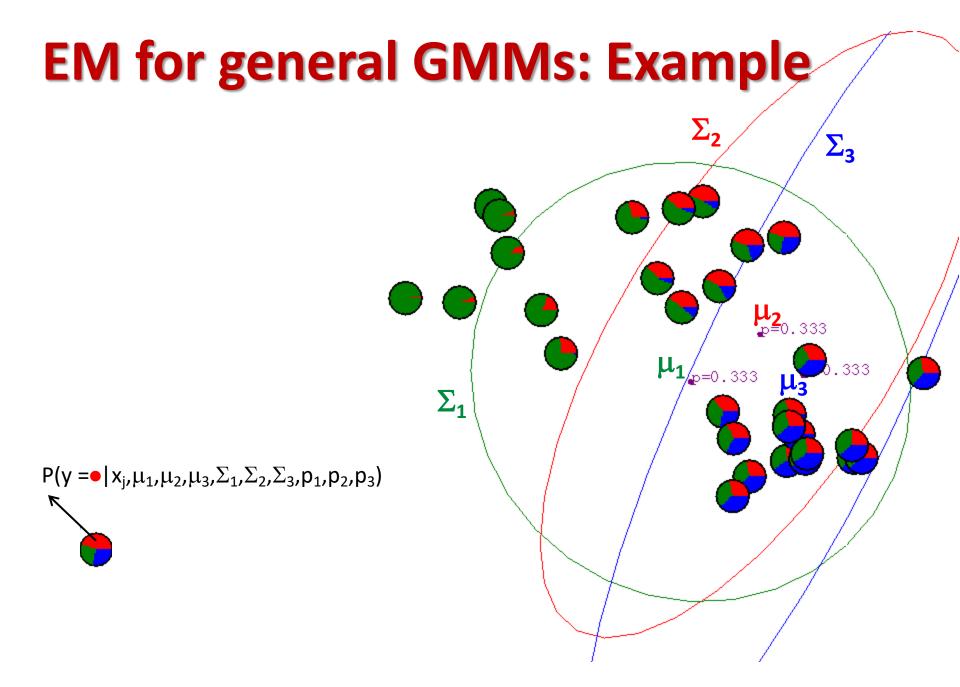
Compute "expected" classes of all datapoints for each class

M-step

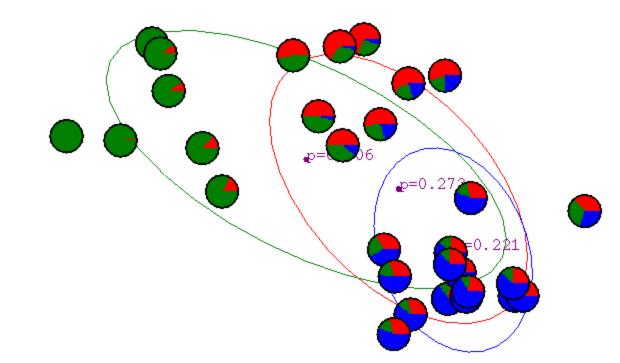
Compute MLEs given our data's class membership distributions (weights)

$$\mu_{i}^{(t+1)} = \frac{\sum_{j} P(y = i | x_{j}, \lambda_{t}) x_{j}}{\sum_{j} P(y = i | x_{j}, \lambda_{t})} \qquad \Sigma_{i}^{(t+1)} = \frac{\sum_{j} P(y = i | x_{j}, \lambda_{t}) (x_{j} - \mu_{i}^{(t+1)}) (x_{j} - \mu_{i}^{(t+1)})^{T}}{\sum_{j} P(y = i | x_{j}, \lambda_{t})}$$

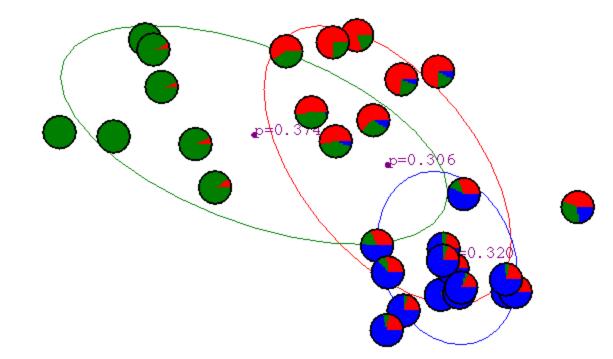
$$p_{i}^{(t+1)} = \frac{\sum_{j} P(y = i | x_{j}, \lambda_{t})}{m} \qquad m = \text{#data points}$$



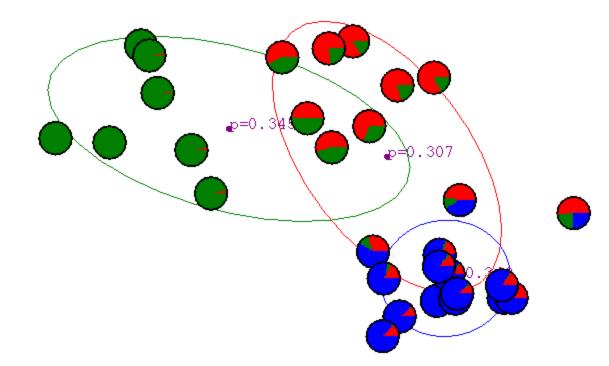
After 1st iteration



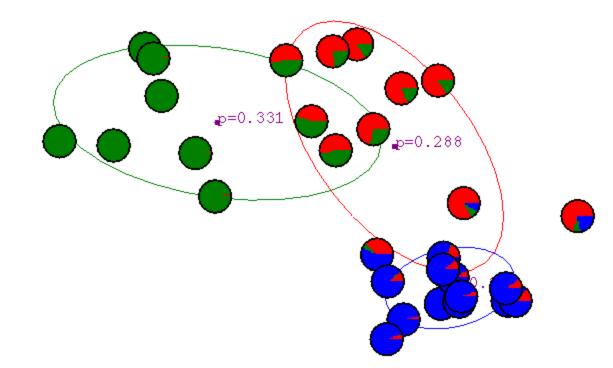
After 2nd iteration



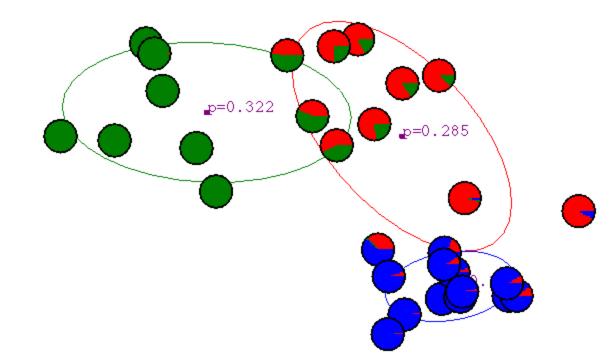
After 3rd iteration



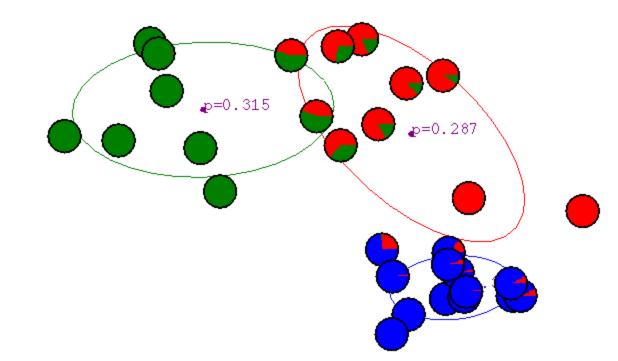
After 4th iteration



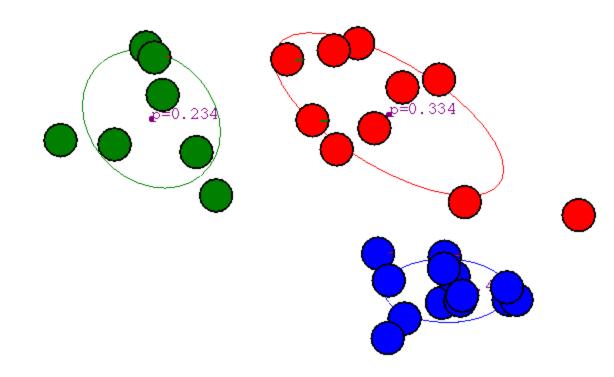
After 5th iteration



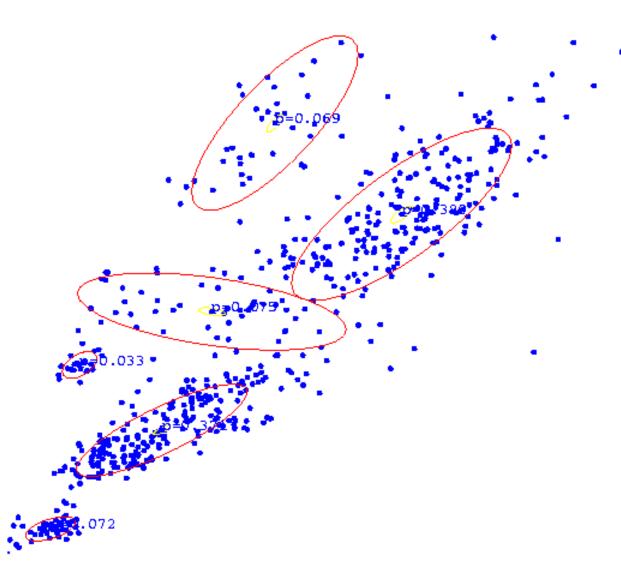
After 6th iteration



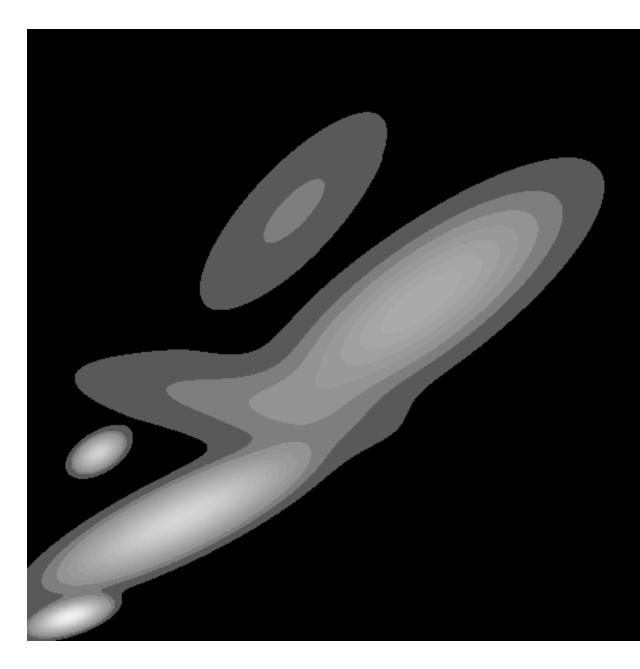
After 20th iteration

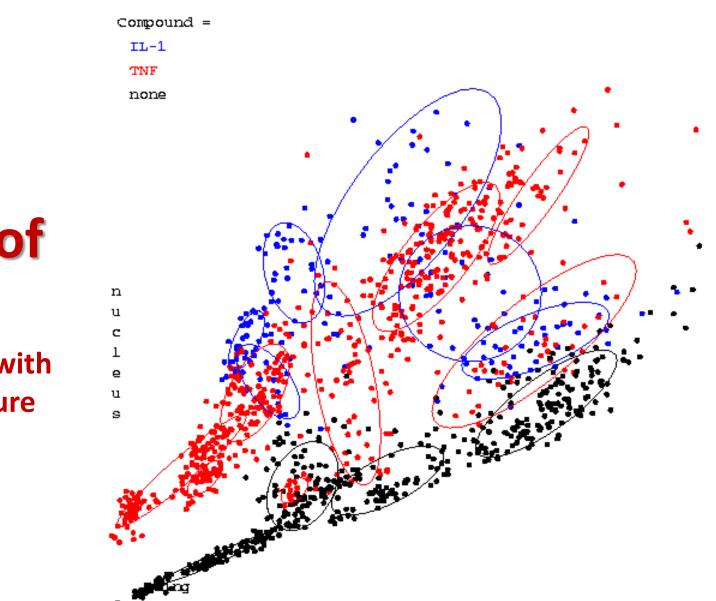


GMM clustering of assay data



Resulting Density Estimator

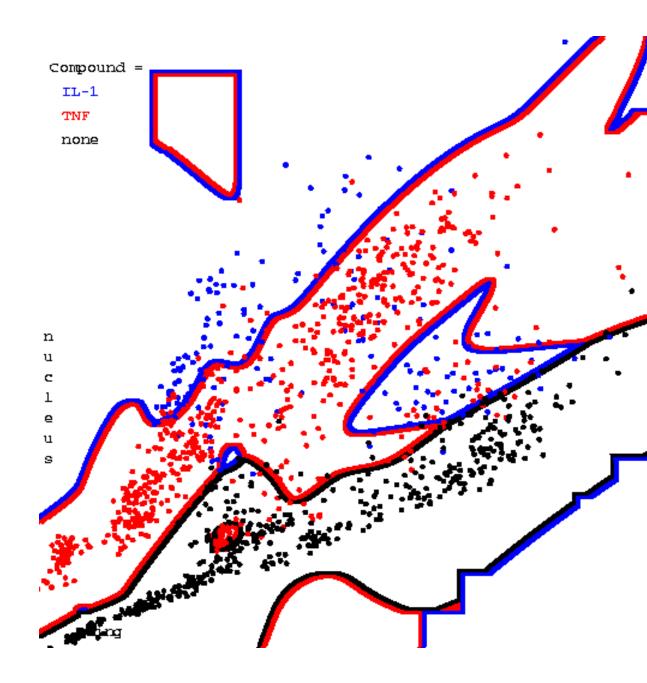




Three classes of assay

(each learned with it's own mixture model)

Resulting Bayes Classifier



Summary

- Partition based clustering algorithms
 - K-means
 - Coordinate descent
 - Seeding
 - Choosing K
 - Mixture models
 - EM algorithm