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k-NN classifier

Test document
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k-NN classifier (k=5)

Test document

What should we predict? ...
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Average? Majority? Why?
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k-NN classifier

» Optimal Classifier: f"(z) = argmaxP(y|z)
= arg myaxP(x\y)P(y)

e k-NN Classifier: fixyn(z) = arg max Punn(z|y)P(y)
= arg max ky
~ k -
P zly) = =2 > # training pts of class y k. =k
kv (21) Ny amongst k NNs of x ; ’

L—— # total training pts of class y



1-Nearest Neighbor (kNN) classifier
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2-Nearest Neighbor (kNN) classifier
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3-Nearest Neighbor (kNN) classifier
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5-Nearest Neighbor (kNN) classifier
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What is the best k?

1-NN classifier decision boundary Voronoi

Diagram

K=1

As k increases, boundary becomes smoother (less jagged).
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What is the best k?

Approximation vs. Stability (aka Bias vs Variance) Tradeoff

* Larger K => predicted label is more stable (low variance) but
potentially less accurate (high bias)

 Smaller K => predicted label can approximate best classifier
well given enough data (low bias) but predict label is
unstable (high variance)
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Local Kernel Regression

* What is the temperature

in the room? at location x?
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Average "Local” Average
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Local Kernel Regression @

Nonparametric estimator © 0%%0 o’ ¢
Nadaraya-Watson Kernel Estimator

n
(X)) = w;Y; Where wi(X) = ,
1=1 = h

Weight each training point based on distance to test
point

Boxcar kernel yields boxcar kernel :

local average K(x) = +1(2)
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power

power

Choice of kernel bandwidth h
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Kernel Regression as Weighted Least
Squares

min 3w (D -V () =
1 =1

Weighted Least Squares

Kernel regression corresponds to locally constant estimator
obtained from (locally) weighted least squares

i.e.set f(X)=p (aconstant)
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Kernel Regression as Weighted Least
Squares

set f(X,) =P (aconstant)

> : K (55)
min » w;(8 —Y;) w;(X) = X-X,
A= S K (S5)
constant
n n
9J(B) — 9 w;(B—-Y;) =0 Notice that Z w; = 1

1=1
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Local Linear/Polynomial Regression

min 3w (D -V () =
1 =1

Weighted Least Squares

Local Polynomial regression corresponds to locally polynomial
estimator obtained from (locally) weighted least squares

Le.set f(Xi) = fotB1(X;—X)+22(X;—X) - +5p<x _x)?

(local polynomial of degree p around X)
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Summary

* Non-parametric approaches

Four things make a nonparametric/memory/instance
based/lazy learner:

1. Adistance metric, dist(x,X))
Euclidean (and many more)

2. How many nearby neighbors/radius to look at?
k, A/h

3. A weighting function (optional)
W based on kernel K

4.  How to fit with the local points?
Average, Majority vote, Weighted average, Poly fit



Summary

* Parametric vs Nonparametric approaches

» Nonparametric models place very mild assumptions on
the data distribution and provide good models for
complex data

Parametric models rely on very strong (simplistic)
modeling assumptions

» Nonparametric models typically require storage and
computation of the order of entire data set size.

Parametric models, once fitted, are much more efficient
in terms of storage and computation.



