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Mean square error regression

Optimal predictor: f* =arg mfin E[(f(X) — Y)?]

Empirical Minimizer: fn = arg m% Z (F(X;) = Y;)?

Class of predictors

J - Class of Linear functions
- Class of Polynomial functions
- Class of nonlinear functions



Least Square solution satisfies Normal
Equations

(ATAB=ATY
pxp pxl p x1

f(ATA) is invertible,

1) If dimension p not too large, analytical solution:

8= (ATA) 1ATY fl(x)=xp

2) If dimension p is large, computing inverse is expensive O(p3)
Gradient descent since objective is convex (ATA> 0)

1 ot @0J(B)
B = 6-3 53 |,

= g'—a AT(AB - V) ;




Linear regression solution satisfies
Normal Equations

(ATA)BE=ATY
pxp pxl p x1

Whenis (AT A) invertible ? -
Recall: Full rank matrices are invertible. What is rank of (A~ A)?



Linear regression solution satisfies
Normal Equations

(ATA)BE=ATY
pxp pxl p x1

Whenis (AT A) invertible ?
Recall: Full rank matrices are invertible. What is rank of (A1 A)?

If A = USV !then

S-rxr

normal equations (SVT)B — (UTY)

rxp pxl rxl

r equations in p unknowns. Under-determined if r < p, hence no
unique solution.



Regularized Least Squares

What if (ATA) is not invertible ?

r equations , p unknowns — underdetermined system of linear equations
many feasible solutions

Need to constrain solution further

e.g. bias solution to “small” values of 3 (small changes in input don’t
translate to large changes in output)

. L Ridge Regression
Bmap = arg mﬁln i;(yi — X;8)% 4+ )\|8|3 (12 genal‘rgy)

—argmin (A5 - Y)T(AB - Y) +[5]3 A0

Buiap = (ATA +AI)TTATY
s (ATA 4+ )\I) invertible ? ;



Ridge Regression

Ridge Regression

Bune — arg min S (Y — X:5)2 2
ﬁMAP—argmﬁln 2 (Yi—Xi8)” + AIBl3 (12 penalty)

1 =1

=argmin (A5 -Y)T(AG-Y) + M|BII3 A0

Buiap = (ATA +AI)TTATY
s (ATA 4+ )\I) invertible ?



Understanding regularized Least Squares
min(AS - Y)" (A8 - Y) + Apen(8) = min J(5) + Apen(5)

Ridge Regression:

pen(8) = |16

Bs with constant J(8)
(level sets of J(B))

,82 f Unregularized Least Squares solution
A

f3s with constant 12 norm
(level sets of pen(f3))

\/ ’
N |




Regularized Least Squares

What if (ATA) is not invertible ?

r equations , p unknowns — underdetermined system of linear equations
many feasible solutions
Need to constrain solution further

I”

e.g. bias solution to “small” values of 3 (small changes in input don’t
translate to large changes in output)

. L Ridge Regression
Bmap = arg mﬁm Z (Y; — X;8)° + N8I3 (12 genal’rgy)

1—=1
~ n A>0
Buap = arg min S (Y — X;8)% + A8l Lasso -
=1 (11 penalty)

Many [3 can be zero — many inputs are irrelevant to prediction in high-
dimensional settings (typically intercept term not penalized) ;



Regularized Least Squares

What if (ATA) is not invertible ?

r equations , p unknowns — underdetermined system of linear equations
many feasible solutions
Need to constrain solution further

e.g. bias solution to “small” values of 3 (small changes in input don’t
translate to large changes in output)

~ " Ridge Regression
3 — Mmi Zy._X.32| 3(12 g g

1—=1
~ n A>0
Buap = arg min S (Y — X;8)% + A8l Lasso -
i=1 (11 penalty)

No closed form solution, but can optimize using sub-gradient descent (packages
available) 10



Ridge Regression vs Lasso
mﬂin(Aﬁ “Y)T(AB - Y) + Apen(B) = mﬁin J(B) + Apen(B)

Ridge Regression: Lasso: Ideally 10 penalty,

pen(3) = |85 pen(3) = ||8|1 but optimization
becomes non-convex

s with !

Bs with constant J(8)
(level sets of J(B))

Bs with B2 Bs with
constant constant constant
12 norm \[ 11 norm 10 norm
\J . -\ .

Lasso (11 penalty) results in sparse solutions — vector with more zero coordinates
Good for high-dimensional problems — don’t have to store all coordinates,

interpretable solution! 11



Matlab example

clear all lassoWeights = lasso(X,Y,'Lambda’, 1,

close all 'Alpha’, 1.0);
Ylasso = Xtest*lassoWeights;

n=80; % datapoints norm(Ytest-Ylasso)

p=100; % features

k=10; % non-zero features ridgeWeights = lasso(X,Y,'Lambda’,1,
'Alpha’, 0.0001);

rng(20); Yridge = Xtest*ridgeWeights;

X =randn(n,p); norm(Ytest-Yridge)

weights = zeros(p,1);

weights(1:k) = randn(k,1)+10; stem(lassoWeights)

noise = randn(n,1) * 0.5; pause

Y = X*weights + noise; stem(ridgeWeights)

Xtest = randn(n,p);
noise = randn(n,1) * 0.5;
Ytest = Xtest*weights + noise;



Matlab example

Test MSE = 33.7997

Lasso Coefficients

Test MSE = 185.9948

_ Ridge Coefficients




Least Squares and M(C)LE

Intuition: Signal plus (zero-mean) Noise model F(X) = X3

Y=f(X)+e=XB"+e¢

e ~N(0,0%I) Y ~N(XB*,o°I)

uw)gmm 00O 0000
BI\/ILE = arg mﬁax log p({Yi}?:ﬂﬁ, 02’ {Xz}?:ﬂ
‘ J

|

Conditional log likelihood

n
=argmin 3 (X6 - Y;)? =3
1=1

Least Square Estimate is same as Maximum Conditional Likelihood
Estimate under a Gaussian model | 14



Regularized Least Squares and M(C)AP

What if (ATA) is not invertible ?

BI\/IAP — arg mﬁax log _‘p({Yi}?:ﬂﬁa 027 {Xq;}‘?’;HOQ p(B)
\ J J

Y Y
Conditional log likelihood log prior

I) Gaussian Prior

8 ~ N(0, 721) p(B) x e P B/27°

n
Bumap = arg mﬁin Sy = XiB)? + Bl Ridge Regression
=1
constant(c?, 72)

Prior belief that B is Gaussian with zero-mean biases solution to “small” 15




Regularized Least Squares and M(C)AP

What if (ATA) is not invertible ?

Bmap = arg max log p({Yi} 1|ﬁ, 2 (X" +|09p(6)

Y
Conditional Iog likelihood log prior

Il) Laplace Prior

11d

B; ~ Laplace(0,t) p(B;) e~ 1Gil/t

n
Buap = argmin 3 (¥; - X;3)% + M|Bll1 Lasso
1=1
constant(c?,t)

Prior belief that B is Laplace with zero-mean biases solution to “sparse” 16




Polynomial Regression degree i
/

Univariate (1-dim) f(X) = By + 51X + 52)(2 + 4 B X™ = X3

case.

where X =1[1 X X2...X™],8=1[B1...8m]t

B=(ATA)TTATY fn(X) = XB
1 X; X? ... X7
where A = : ‘. :

1 X, X2 ... X

Multivariate (p-dim) f(X) = g, + B XM 4 B, X3 4o 4 BpX(p)

case: p p | | D D D | |

+ Z Z Bin(Z)X(]) 4+ S: S: S: x @) x () x (k)
=1 5=1 1=1 3=1 k=1

+...terms up to degree m
17



Polynomial Regression

Polynomial of order k, equivalently of degree up to k-1

k=1
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What is the right order? Recall overfitting!
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Regression with nonlinear features

| $o(X)
F(X) = Yo B X7 = Yo Bid;(X) $1(X)
\_'_I
Weight of Nonlinear

each feature features \/ b (X)

In general, use any nonlinear features

e.g. eX log X, 1/X, sin(X), ...

3= (ATA)1ATY ¢:0(X1) ¢1(X1) ¢m(:Xl)-

A= : . ;
_¢O(Xn) ¢1(Xn) ¢m(Xn)_

]?n(X) — XB X = ¢0(X) ¢1(X) ¢m(X) 19



Poll

The maximum likelihood estimate of model parameter a for
the random variable y “N(a x,x,3, 6?), where x; and x, are

random variables, can be learned using linear regression on n
iid samples of (x1,x,,y)

— True

— False



Can we kernelize linear regression?

21



Linear (Ridge) regression

min 3 (V= XB)  + Bl B=(ATA+A)TIATY
1=1

Recall Xy _ X%l) X%p) _
A = : = : e :
Xn | [ x$P 0 xP

Hence ATA is a p x p matrix whose entries denote the (sample)
correlation between the features

NOT inner products between the data points — the inner product
matrix would be AATwhich is n x n (also known as Gram matrix)

Using dual formulation, we can write the solution in terms of AAT

22



Ridge regression

min 3 (V= XB)  + Bl B=(ATA+A)TIATY

Similarity with SVMs

Primal problem: SVM Primal problem'
n
: 2 2
2 + AllBII2 min CZ&, —leb
1=
s.t. z; =Y,; — Xzﬂ S.t. fz = max(l — Y, X, w, O)
Lagrangian:

Zz2 + MIBI2 + Zaz —Y; + X;)

a; — Lagrange parameter, one per training point .



Kernelized ridge regression

B=(ATA+))'ATY

Using dual, can re-write solution as:

P

B=AT(AAT + AI)7'Y

How does this help?

* Only need to invert n x n matrix (instead of px p or m x m)
* More importantly, kernel trick!

AAT involves only inner products between the training points
BUT still have an extra AT

Recall the predicted labelis f,(X) = X3
= XA (AAT + )Y

XAT contains inner products between test point X and training points! y



Kernelized ridge regression

B=(ATA +)D)'ATY fn(X) = X8

Using dual, can re-write solution as:

P

B=AT(AAT + AI)7'Y

How does this help?

* Only need to invert n x n matrix (instead of px p or m x m)
* More importantly, kernel trick!

fo(X) = Kx (K + AI)"'Y where KX(Z) = oY) -0l Xy)
K(i,j) = ¢(X;) - ¢(X})
Work with kernels, never need to write out the high-dim vectors

Ridge Regression with (implicit) nonlinear features ¢(X)! f(X) = ¢(X)S

27



