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Hard margin SVM

w.Xx+b<0
min wW.w
| W,b
= s.t. (w.x+b) y; 21 Vj
Solve efficiently by quadratic
- programming (QP)
= - Assumes data is linearly

— separable




Soft margin SVM

Allow “error” in classification
min w.w + C ZE

w,b,{&;}
- s.t. (w.x+b) y; 2 1-§ V|
- =20 V]
- § - “slack” variables

= (>1if x; misclassifed)

pay linear penalty if mistake

C - tradeoff parameter (C = oo
recovers hard margin SVM)
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SVM - linearly separable case

n training points (Xq, o) Xp) + 5

d features X; is a d-dimensional vector ¥ .
+ 0
+ & +
Primal problem: minimize,, ; %w.w ., ;
(wxj+b)y; > 1, Vj *

w - weights on features (d-dim problem)

Convex quadratic program — quadratic objective, linear
constraints

But expensive to solve if d is very large
Often solved in dual form (n-dim problem)



Detour - Constrained Optimization

ming x2
s.t. x>0
min, x2 ming z2
s.t. x> -1
r* =0 ¥ =0

Constraint inactive

r* = max(b,0)

min, z2
s.t. »>1
\\\ j///
£
¥ =1

Constraint active
(tlght) 5




Constrained Optimization

D
b +vel MiNg T
§ s.t. >0
Equivalent unconstrained optimization:
' min, x? + (x-b)
¥ =b

Replace with lower bound (o >= 0)
x2 + I(x-b) >= x2- a(x-b)



Primal and Dual Problems

Notice that

Primal problem: p* = ming 2 = Imin max L(CE, Oé)

s.t. x>0 T a0

Why?  L(z,a) = 22 — a(x — b)

max L(x, ) = 22 — min 04(33 — b) =
a>0 a>0

Dual problem: d* = max, d(a) = maXq ming Lz, o)
s.t. >0 s.t. a>0



Recipe for deriving Dual Problem

Primal problem:

ming 2
s.t. x>0
Moving the constraint to objective function
Lagrangian:
L(z,a) = 22 — a(x — b)
: s.t. >0

Dual problem:

min, L(x,
maxg, d(a)— Mz L@, )

s.t. >0



Why solve the Dual?

Primal problem: p* = min, 2 Dual problem: d*= max, d(a)
st. z>b s.t. a>0
- minmax L(xz, a) = Maxq Ming L(z, o)
xr o>0
- s.t. >0

» Dual problem (maximization) is always concave even if
primal is not convex

Why? Pointwise infimum of concave functions is concave.
[Pointwise supremum of convex functions is convex.]

L(z,a) = 22 — a(z — b)

» As many dual variables o as constraints, helpful if fewer
constraints than dimension of primal variable x 9



Connection between Primal and Dual

Primal problem: p* = min, 2 Dual problem: d*= max, d(a)
st. >0 s.t. a>0

» Weak duality: The dual solution d* lower bounds the primal
solution p* i.e. d* £ p*

To see this, recall [(z,a) = 22 — a(z — b)
For every feasible x’ (i.e. x’ 2 b) and feasible o’ (i.e. a’ > 0) , notice
that
d(a) = Mming L(x, ) £ x2—a’(x'-b) £ x’2
Since above holds true for every feasible x’, we have d(a) < x*? = p*
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Connection between Primal and Dual

Primal problem: p* = min, 2 Dual problem: d*= max, d(a)
st. >0 s.t. a>0

» Weak duality: The dual solution d* lower bounds the primal
solution p* i.e. d* £ p*

Duality gap = p*-d*

» Strong duality: d* = p* holds often for many problems of
interest e.g. if the primal is a feasible convex objective with linear
constraints (Slater’s condition)
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Connection between Primal and Dual

What does strong duality say about a* (the a that achieved optimal value of
dual) and z* (the x that achieves optimal value of primal problem)?

KKT (Karush-Kuhn-Tucker conditions)

Whenever strong duality holds, the following conditions (known as KKT con-
ditions) are true for o* and x*:

e 1. yL(x*,a*) =0 i.e. Gradient of Lagrangian at x* and «* is zero.
e 2. ¥ > bi.e. x* is primal feasible
o 3. o > 01i.e. a” is dual feasible

o 4. a*(z* —b) =0 (called as complementary slackness)
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Constrained Optimization — Dual Problem

min, z2 min, z2
s.t. > -1 s.t. >1
i 5
¥ =0 ¥ =1
a*=0 a*>0
constraint is inactive constraint is active
x*>-1 x*=1

min, x2
s.t. > -1

x> 1

> Poll:
Lagrangian
Dual variables
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Dual SVM - linearly separable case

n training points, d features (X4, ..., X,,) where x: is a d-dimensional
vector
* Primal problem: minimizey, g, %w.w

(w.xj + b) yi > 1, Vj
w - weights on features (d-dim problem)

 Dual problem (derivation):

L(w,b,«a) = %W.W — 22 {(W.Xj + b) Y — 1}
Oéj Z O, \V/j

o - weights on training pts (n-dim problem)
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Dual SVM - linearly separable case

e Dual problem (derivation):
MmaXqa Miny p L(w,b, o) = %W.W — 2.5 [(W.Xj -+ b) Yj — 1}

Oéj ZO, V]

oL

oL
=0 Ty =
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Dual SVM - linearly separable case

* Dual problem:

MmaXqa Miny p L(w,b, o) = %W.W — 2.5 [(W.Xj + b) Yj — 1}

Oéj ZO, V]

=W =) ajy;X; = 2_ajy; =0
j j
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Dual SVM - linearly separable case

. 1
MaxXimiliZE ZZ Q; — 5 Zz,j Q05 Y Y §XG.X

2.5 iy = O

87 Z O
Dual problem is also QP — Z Y X;
Solution gives as i

What about b?




Dual SVM: Sparsity of dual solution

S
(X,j>(b =
Il
QO
oS +[ o.>0
X J
NG,
ocj>0
@ a:O

W= ) ajyiX;
j

Only few ays can be
non-zero : where
constraint is active

(w.x; + bly,=1

Support vectors —
training points j whose
QS are non-zero
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Dual SVM - linearly separable case

. 1
MaxXimiliZE ZZ Q; — 5 Zz,j Q05 Y Y §XG.X

2 0qy; = 0

87 Z O
Dual problem is also QP W= ) yiX;
Solution gives os > i

b=y — W.Xg
Use any one of support vectors with for any k where oy, > 0

o, >0 to compute b since constraint is
tight (w.x, + b)y, =1 o




Dual SVM — non-separable case

* Primal problem:

minimizey g, %w.w + C 5§,

(wx;+b)y; >1—¢, Vj &y
§; >0, Vy j
Lagrange
* Dual problem: Multipliers
maxaaﬂ minW,b,{Ej} L(W7 b? fa ., /L)
st.a; >0 Vg

pi >0 Vj
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Dual SVM — non-separable case

L 1
MaxXimizZeqy ZZ Q; — 5 Zz,j Q05 YiY i XG. X

2. &y; = O
Ezpizo
comes from 8_L — 0 Lntuition: :
O It C->eo, recover hard-margin SVM
Dual problem is also QP W = Z QY X
: : ?
: >
Solution gives as b=y, — W.X,
for any k where C' > ap. > 0




So why solve the dual SVM?

* There are some quadratic programming algorithms
that can solve the dual faster than the primal,
(specially in high dimensions d>>n)

* But, more importantly, the “kernel trick”!!!
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