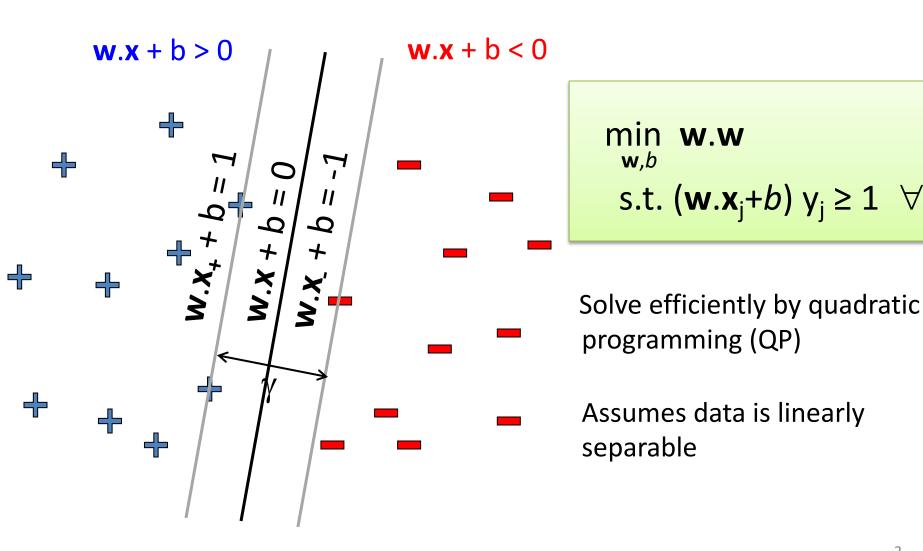
Support Vector Machines - Dual formulation

Aarti Singh

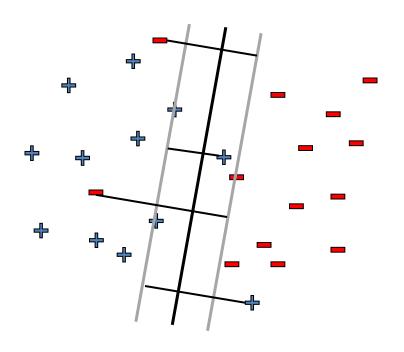
Machine Learning 10-701 Feb 6, 2023

Hard margin SVM



Soft margin SVM

Allow "error" in classification



$$\min_{\mathbf{w},b,\{\xi_{j}\}} \mathbf{w}.\mathbf{w} + C \sum_{j} \xi_{j}$$

$$s.t. (\mathbf{w}.\mathbf{x}_{j}+b) y_{j} \ge 1-\xi_{j} \quad \forall j$$

$$\xi_{j} \ge 0 \quad \forall j$$

$$\xi_j$$
 - "slack" variables
= (>1 if x_i misclassifed)

pay linear penalty if mistake

C - tradeoff parameter (C = ∞ recovers hard margin SVM)

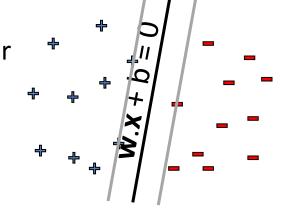
Still QP ©

n training points
$$(\mathbf{x}_1, ..., \mathbf{x}_n)$$

d features \mathbf{x}_j is a d-dimensional vector

• <u>Primal problem</u>: mir

$$\min_{\mathbf{w},b} \quad \frac{1}{2}\mathbf{w}.\mathbf{w} \\
\left(\mathbf{w}.\mathbf{x}_j + b\right) y_j \ge 1, \ \forall j$$



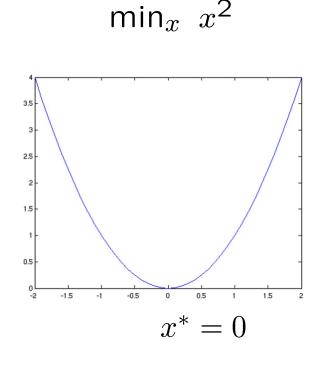
w - weights on features (d-dim problem)

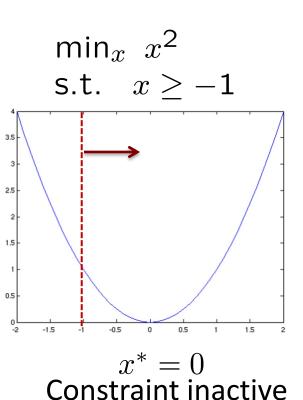
- Convex quadratic program quadratic objective, linear constraints
- But expensive to solve if d is very large
- Often solved in dual form (n-dim problem)

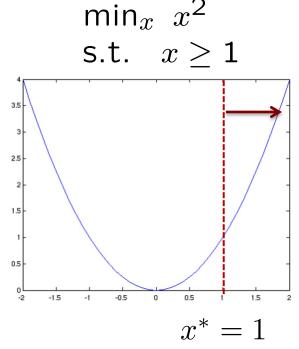
Detour - Constrained Optimization

$$\min_{x} x^{2}$$
s.t. $x \ge b$

$$x^* = \max(b, 0)$$

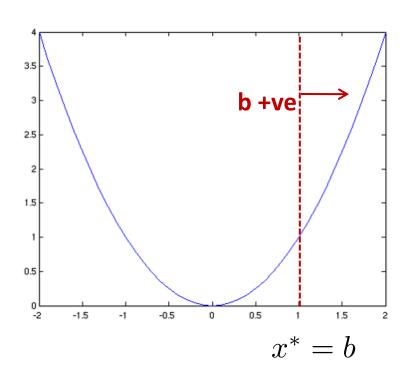






Constraint active (tight)

Constrained Optimization



$$\min_x x^2$$
 s.t. $x \ge b$

Equivalent unconstrained optimization: $min_x x^2 + I(x-b)$

Replace with lower bound (
$$\alpha >= 0$$
)
 $x^2 + I(x-b) >= x^2 - \alpha(x-b)$

Primal and Dual Problems

Notice that

Primal problem: p* =
$$\min_x x^2$$
 = $\min_x \max_{\alpha \geq 0} L(x, \alpha)$ s.t. $x \geq b$

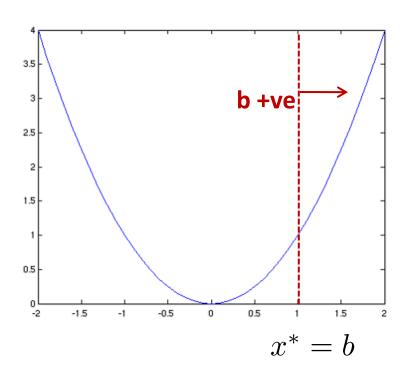
Why?
$$L(x,\alpha) = x^2 - \alpha(x-b)$$

$$\max_{\alpha \ge 0} L(x,\alpha) = x^2 - \min_{\alpha \ge 0} \alpha(x-b) =$$

Dual problem:
$$d^* = \max_{\alpha} d(\alpha) = \max_{\alpha} \min_{x} L(x, \alpha)$$

s.t. $\alpha \geq 0$ s.t. $\alpha \geq 0$

Recipe for deriving Dual Problem



Primal problem:

$$\min_x x^2$$

s.t. $x > b$

Moving the constraint to objective function Lagrangian:

$$L(x, \alpha) = x^2 - \alpha(x - b)$$

s.t. $\alpha \ge 0$

Dual problem:

max
$$_{\alpha}$$
 $d(\alpha)$ \rightarrow min $_{x} L(x,\alpha)$ s.t. $\alpha \geq 0$

Why solve the Dual?

Primal problem: p* =
$$\min_x x^2$$

s.t. $x \ge b$

Dual problem: d* =
$$\max_{\alpha} d(\alpha)$$
 s.t. $\alpha > 0$

$$= \min_{x} \max_{\alpha \ge 0} L(x, \alpha)$$

=
$$\max_{\alpha} \min_{x} L(x, \alpha)$$

s.t. $\alpha \geq 0$

- Dual problem (maximization) is always concave even if primal is not convex
 - Why? Pointwise infimum of concave functions is concave. [Pointwise supremum of convex functions is convex.]

$$L(x,\alpha) = x^2 - \alpha(x-b)$$

 \succ As many dual variables α as constraints, helpful if fewer constraints than dimension of primal variable x

Connection between Primal and Dual

Primal problem: p* =
$$\min_x x^2$$

s.t. $x \ge b$

Dual problem: d* =
$$\max_{\alpha} d(\alpha)$$
 s.t. $\alpha > 0$

Weak duality: The dual solution d^* lower bounds the primal solution p^* i.e. $d^* \le p^*$

To see this, recall
$$L(x, \alpha) = x^2 - \alpha(x - b)$$

For every feasible x' (i.e. $x' \ge b$) and feasible α' (i.e. $\alpha' \ge 0$), notice that

$$d(\alpha) = \min_{x} L(x, \alpha) \le x'^2 - \alpha'(x'-b) \le x'^2$$

Since above holds true for every feasible x', we have $d(\alpha) \le x^{*2} = p^*$

Connection between Primal and Dual

Primal problem: p* =
$$\min_x x^2$$
 Dual problem: d* = $\max_\alpha d(\alpha)$ s.t. $x \ge b$ s.t. $\alpha \ge 0$

Weak duality: The dual solution d^* lower bounds the primal solution p^* i.e. $d^* \le p^*$

> Strong duality: d* = p* holds often for many problems of interest e.g. if the primal is a feasible convex objective with linear constraints (Slater's condition)

Connection between Primal and Dual

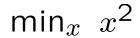
What does strong duality say about α^* (the α that achieved optimal value of dual) and x^* (the x that achieves optimal value of primal problem)?

KKT (Karush-Kuhn-Tucker conditions)

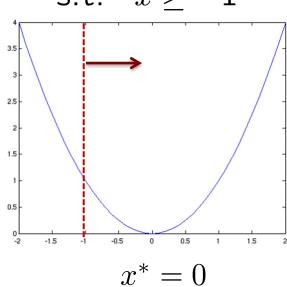
Whenever strong duality holds, the following conditions (known as KKT conditions) are true for α^* and x^* :

- 1. $\nabla L(x^*, \alpha^*) = 0$ i.e. Gradient of Lagrangian at x^* and α^* is zero.
- 2. $x^* \ge b$ i.e. x^* is primal feasible
- 3. $\alpha^* \geq 0$ i.e. α^* is dual feasible
- 4. $\alpha^*(x^* b) = 0$ (called as complementary slackness)

Constrained Optimization – Dual Problem

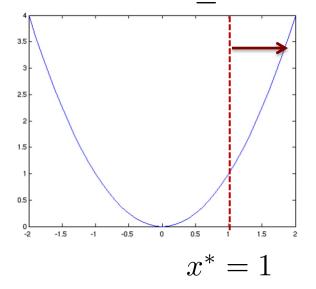


s.t.
$$x \ge -1$$



$$min_x x^2$$

s.t.
$$x > 1$$



$$min_x x^2$$

s.t.
$$x \ge -1$$

$$x \ge 1$$

constraint is inactive

$$x^* > -1$$

 α * = 0

$$\alpha^* > 0$$
 constraint is active

$$x^* = 1$$

Lagrangian

Dual variables

n training points, d features $(\mathbf{x}_1, ..., \mathbf{x}_n)$ where \mathbf{x}_i is a d-dimensional vector

• <u>Primal problem</u>: minimize_{w,b} $\frac{1}{2}$ w.w $\left(\mathbf{w}.\mathbf{x}_j + b\right)y_j \geq 1, \ \forall j$

w - weights on features (d-dim problem)

<u>Dual problem</u> (derivation):

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2}\mathbf{w}.\mathbf{w} - \sum_{j} \alpha_{j} \left[\left(\mathbf{w}.\mathbf{x}_{j} + b \right) y_{j} - 1 \right]$$

 $\alpha_{j} \ge 0, \ \forall j$

 α - weights on training pts (n-dim problem)

• Dual problem (derivation):

$$\max_{\alpha} \min_{\mathbf{w}, b} L(\mathbf{w}, b, \alpha) = \frac{1}{2} \mathbf{w} \cdot \mathbf{w} - \sum_{j} \alpha_{j} \left[\left(\mathbf{w} \cdot \mathbf{x}_{j} + b \right) y_{j} - 1 \right]$$

$$\alpha_{j} \geq 0, \ \forall j$$

$$\frac{\partial L}{\partial \mathbf{w}} = 0 \qquad \Rightarrow \mathbf{w} = \sum_{j} \alpha_{j} y_{j} \mathbf{x}_{j}$$

$$\frac{\partial L}{\partial b} = 0 \qquad \Rightarrow \sum_{j} \alpha_{j} y_{j} = 0$$

Dual problem:

$$\max_{\alpha} \min_{\mathbf{w}, b} L(\mathbf{w}, b, \alpha) = \frac{1}{2} \mathbf{w} \cdot \mathbf{w} - \sum_{j} \alpha_{j} \left[\left(\mathbf{w} \cdot \mathbf{x}_{j} + b \right) y_{j} - 1 \right]$$

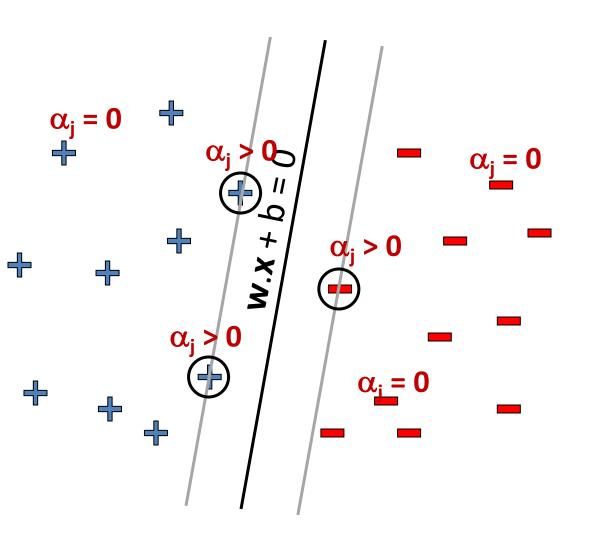
$$\Rightarrow \mathbf{w} = \sum_{j} \alpha_{j} y_{j} \mathbf{x}_{j} \qquad \Rightarrow \sum_{j} \alpha_{j} y_{j} = 0$$

Dual problem is also QP Solution gives α_i s

$$\mathbf{w} = \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i}$$

What about b?

Dual SVM: Sparsity of dual solution



$$\mathbf{w} = \sum_{j} \alpha_{j} y_{j} \mathbf{x}_{j}$$

Only few α_j s can be non-zero : where constraint is active

$$(\mathbf{w}.\mathbf{x}_i + \mathbf{b})\mathbf{y}_i = 1$$

Support vectors – training points j whose α_i s are non-zero

maximize
$$_{\alpha}$$
 $\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \cdot \mathbf{x}_{j}$ $\sum_{i} \alpha_{i} y_{i} = 0$ $\alpha_{i} \geq 0$

Dual problem is also QP Solution gives $\alpha_j s$

Use any one of support vectors with $\alpha_k>0$ to compute b since constraint is tight $(w.x_k + b)y_k = 1$

$$\mathbf{w} = \sum_{i} \alpha_i y_i \mathbf{x}_i$$

$$b = y_k - \mathbf{w}.\mathbf{x}_k$$

for any k where $\alpha_k > 0$

Dual SVM – non-separable case

Primal problem:

$$\begin{aligned} & \text{minimize}_{\mathbf{w},b,\{\xi_j\}} \frac{1}{2} \mathbf{w}.\mathbf{w} + C \sum_{j} \xi_j \\ & \left(\mathbf{w}.\mathbf{x}_j + b \right) y_j \geq 1 - \xi_j, \ \forall j \\ & \xi_j \geq 0, \ \forall j \end{aligned}$$

• Dual problem:

Lagrange Multipliers

$$\begin{aligned} \max_{\alpha,\mu} \min_{\mathbf{w},b,\{\xi_{\mathbf{j}}\}} L(\mathbf{w},b,\xi,\alpha,\mu) \\ s.t.\alpha_{j} &\geq \mathbf{0} \quad \forall j \\ \mu_{j} &\geq \mathbf{0} \quad \forall j \end{aligned}$$

Dual SVM – non-separable case

$$\begin{aligned} \text{maximize}_{\alpha} \quad & \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}. \mathbf{x}_{j} \\ & \sum_{i} \alpha_{i} y_{i} = \mathbf{0} \\ & C \geq \alpha_{i} \geq \mathbf{0} \end{aligned}$$

$$\text{comes from } \frac{\partial L}{\partial \xi} = \mathbf{0} \qquad \begin{aligned} & \underbrace{\text{Intuition:}}_{\text{If } C \rightarrow \infty \text{, recover hard-margin SVM}} \end{aligned}$$

Dual problem is also QP Solution gives α_i s

$$\mathbf{w} = \sum_i \alpha_i y_i \mathbf{x}_i$$

$$b = y_k - \mathbf{w}.\mathbf{x}_k$$
 for any k where $C > \alpha_k > 0$

So why solve the dual SVM?

 There are some quadratic programming algorithms that can solve the dual faster than the primal, (specially in high dimensions d>>n)

But, more importantly, the "kernel trick"!!!