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Learning Theory

* We have explored many ways of learning from
data

 But...

— Can we certify how good is our classifier, really?
— How much data do | need to make it “good enough”?



PAC Learnability

* True function space, F

* Model space, H

Fis PAC Learnable by a learner using H if

there exists a learning algorithm s.t. for all functions in
F, for all distributions over inputs, forall0<¢g,0<1,

with probability > 1-0, the algorithm outputs a model
h e Hs.t. error,,(h)<e¢

in time and samples that are polynomial in 1/¢, 1/9.



A simple setting

e Classification

— mi.i.d. data points

— Finite number of possible classifiers in model class
(e.g., dec. trees of depth d)

 Lets consider that a learner finds a classifier h
that gets zero error in training

— error.i,(h) =0

 What is the probability that h has more than ¢
true (= test) error?
— errory(h) 2 ¢

4
Even if h makes zero errors in training data, may make errors in test



How likely is a bad classifier to get m
data points right?

* Consider a bad classifier hi.e. error,.(h) 2 €
* Probability that h gets one data point right

<1-¢

* Probability that h gets m data points right

<(1-¢)m



How likely is a learner to pick a bad
classifier?

e Usually there are many (say k) bad classifiers in model class
hy, h,, ..., hy s.t. error,(h;))2€ i=1, ..,k

* Probability that learner picks a bad classifier = Probability
that some bad classifier gets O training error
Prob(h, gets O training error OR
h, gets O training error OR ... OR

h, gets 0 training error)

Union
< Prob(h, gets O training error) + bound
Prob(h, gets O training error) + ... + Loose but
works

Prob(h, gets O training error)
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< k(1-¢)m



How likely is a learner to pick a bad
classifier?

e Usually there are many many (say k) bad classifiers in the
class

hy, h,, ..., hy s.t. error,(h)2€ i=1, .,k

* Probability that learner picks a bad classifier

< k(1-¢)™ < [H]| (1-g)m< |H]| e&m
~Ls Size of model class

L N

m € H|




PAC (Probably Approximately Correct)
bound

 Theorem [Haussler’88]: Model class H finite, dataset
D with mi.i.d. samples, 0 < € < 1: for any learned
classifier h that gets O training error:

P(errofirye(h) > €) < |H|€_m€§ 0

* Equivalently, with probability > 1 — 0
errorrqye(h) <e

Important: PAC bound holds for all h with 0 training error, but
doesn’t guarantee that algorithm finds best h!!!
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Using a PAC bound
|[Hlem < 9

* Given € and o, yields sample complexity
In|H| + In 5

€

#training data, 1, >

 Given m and 9, yields error bound
In|H| + In 5

m

error, € >




Poll

Assume m is the minimum number of training examples sufficient
to guarantee that with probability 1 — 6 a consistent learner using
model class H will output a classifier with true error at worst .

Then a second learner that uses model space H’ will require 2m
training examples (to make the same guarantee) if |[H' | =2|H]|.

A. True B. False

If we double the number of training examples to 2m, the error
bound € will be halved.

C. True D. False



Limitations of Haussler’s bound

» Only consider classifiers with 0 training error

h such that zero error in training, error,,,(h) =0

» Dependence on size of model class |H|

In|H|+ In 3
m >

€

what if |H| too big or H is continuous (e.g. linear
classifiers)?
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What if our classifier does not have
zero error on the training data?

* Alearner with zero training errors may make
mistakes in test set

* What about a learner with error,,,;,(h) # 0 in training
set?

* The error of a classifier is like estimating the
parameter of a coin!

error,, .(h) := P(h(X) 2Y) = P(H=1)=:0

1 1 ~
error -(h):=_§ 1y x.\2yv E—E 7, =:0
train m i h(Xz)#Yz m i

12



Hoeffding’s bound for a single
classifier

* Consider mi.i.d. flips xy,...,x.,, where x. € {0,1} of
a coin with parameter 0. For O<e<1:

1

2

e Central limit theorem:
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Hoeffding’s bound for a single
classifier

* Consider mi.i.d. flips xy,...,x.,, where x. € {0,1} of
a coin with parameter 0. For O<e<1:

1

2

* For a single classifier h

2
P (Ierrortrue(h ) — errortra/m(h )|2 E) S 26_2m€
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Hoeffding’s bound for |H| classifiers

* For each classifier h:
2
P (errorirye(h;) — errortrain(hi)|2 €) < 26_2m€
 What if we are comparing |H| classifiers?

Union bound

e Theorem: Model class H finite, dataset D with mi.i.d.
samples, 0 < € < 1: for any learned classifier h € H:

P (erroriyue(h) — erroryain(h)| > €) < 2|H[e > < §

Important: PAC bound holds for all h, but doesn’t guarantee that ..
algorithm finds best h!!!



Summary of PAC bounds for finite
model classes

With probability > 1-0,
1) Forall h € Hs.t. error,,(h) =0,

error,,.(h) < & = In |[H| 4 1In § Haussler’s bound

m

2) ForallheH
errory,(h) - error,y(h)| < & J

2
In|H|+In%

2m

Hoeffding’s bound
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PAC bound and Bias-Variance tradeoff

2
P qerrortrue(h) — errOrtrain(h)l > 6) < Q‘H’€_2m€ < 0

* Equivalently, with probability > 1 —§

In|H| +In2
erroryrye(h) < erroryeqn(h) + \ >
* Fixed m l l
Model class
complex small large
simple large small
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What about the size of the model

class? 2
2|H|e 2™ < §
 Sample complexity

* How to measure the complexity of a model class?

— E.g. decision trees:
trees with depth k
trees with k leaves
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Number of decision trees of depth k

Recursive solution: m > 1 (m |H| + In 2)
— 2¢2 )

Given n binary attributes
H, = Number of binary decision trees of depth k
Hy= 2
H, = (#choices of root attribute)
*(# possible left subtrees)
*(# possible right subtrees) =n*H,, *H,,

Write L, = log, H
L, =1
L, =log, n+ 2L, _,=log, n+ 2(log, n + 2L,,)
=log, n + 2log, n + 2%log, n + ... +2%(log, n + 2L,)
So L, =(2%1)(1+log, n) +1 19



PAC bound for decision trees of depth k

In 2 )

k
m> 25 (25~ DA +1og2m) + 1+ 095

e Badl!!!
— Number of points is exponential in depth k!

* But, for m data points, decision tree can’t get too big...

Number of leaves never more than number data points, so
we are over-counting a lot!
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Number of decision trees with k leaves

m > 2%2 (In |H| + In%)
H, = Number of binary decision trees with k leaves
H, =2
H, = (#choices of root attribute) *
[(# left subtrees wth 1 leaf)*(# right subtrees wth k-1 leaves)

+ (# left subtrees wth 2 leaves)*(# right subtrees wth k-2 leaves)

+ ...

+ (# left subtrees wth k-1 leaves)™*(# right subtrees wth 1 leaf)]

k—1
Hi =n Z H;Hy_; =nk1C, (C,., : Catalan Number)

1 =1
Loose bound (using Sterling’s approximation):

Hk S nk—122k—1 )



Number of decision trees

1 2
e With k leaves M52 ('n H]+1n 5)

logy Hy < (k—1)logyn + 2k — 1 linear in k
number of points m is linear in #leaves

* With depth k

log, H, = (2%1)(1+log, n) +1  exponential in k

number of points m is exponential in depth
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What did we learn from decision trees?

 Moral of the story:

Complexity of learning not measured in terms of size
of model space, but in maximum number of points
that can be classified using a classifier from this model

space
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Rademacher Complexity

* Instead of all possible labelings, measure complexity
by how accurately a model space can match a
random labeling of the data.

For each data point i, draw random label - +
o
o] st. P(o,=+1)=)%=P(0,=-1)
o T

Then empirical Rademacher complexity of H is

}A%m(H):IEJ Sup( ZO’Z >

he H

24

Max correlation possible with random labels



Rademacher Bounds

* With probability = 1-6,

(2/0)

~ lo
errortrue<h) S errortrain(h) + Rm(H) T 3\/ gm

where empirical Rademacher complexity of H

}A%m(H):IEJ Sup( ZO’Z >

he H

is purely data-dependent.
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Finite model class

 Rademacher complexity can be upper bounded in
terms of model class size |H|:

~ 2In|H
Rm<H>g\/ n|H|

m

 Often Rademacher bounds are significantly better,
e.g. ...
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Linear models with bounded norm

 Consider h(X)=<w, X, > with fixed ||w||, | X:]| < R

. 1 <& |
Rm H :EJ Su — O'ih Xz
= g (3 ).

_wlR

/M
Complexity increases with number of parameters d and
norm of weights
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Summary of PAC bounds

With probability > 1-0,

1) forallh € Hs.t. errory,,(h) =0,
In|H|+In Finite
<g= 0
errorye(h) < m _ hypothesis
space
2) forallh eH, 5
In|H In <
|errore(h) - errory(h)| <& J Hiring .
2m
3) Forallh e H, Infinite hypothesis space

|errortrue(h) — err'Ortrain(h) | Sg= fim(H) + 3\/log§i/5)





