Learning Theory

Aarti Singh

Machine Learning 10-701 Mar 29, 2023

Slides courtesy: Carlos Guestrin

Learning Theory

- We have explored **many** ways of learning from data
- But…
	- Can we certify how good is our classifier, really?
	- How much data do I need to make it "good enough"?

PAC Learnability

- True function space, F
- Model space, H
- F is **PAC Learnable** by a learner using H if

there exists a learning algorithm s.t. for all functions in F, for all distributions over inputs, for all $0 < \varepsilon$, $\delta < 1$, with probability $> 1-\delta$, the algorithm outputs a model

 $h \in H$ s.t. error_{true}(h) $\leq \varepsilon$

in time and samples that are polynomial in $1/\epsilon$, $1/\delta$.

A simple setting

- Classification
	- m i.i.d. data points
	- **Finite** number of possible classifiers in model class (e.g., dec. trees of depth d)
- Lets consider that a learner finds a classifier *h* that gets zero error in training
	- $-$ error_{train} (h) = 0
- What is the probability that *h* has more than ε true (= test) error?
	- $-$ error_{true} $(h) \geq \varepsilon$

4 **Even if** *h* **makes zero errors in training data, may make errors in test**

How likely is a bad classifier to get m data points right?

- Consider a bad classifier *h* i.e. error_{true}(h) $\geq \varepsilon$
- Probability that *h* gets one data point right $\leq 1 - \varepsilon$
- Probability that *h* gets *m* data points right

 $\leq (1-\varepsilon)^m$

How likely is a learner to pick a bad classifier?

- Usually there are many (say k) bad classifiers in model class $h_1, h_2, ..., h_k$ s.t. $error_{true}(h_i) \ge \varepsilon$ i = 1, ..., k
- Probability that learner picks a bad classifier = Probability that some bad classifier gets 0 training error Prob(h_1 gets 0 training error OR

 $h₂$ gets 0 training error OR ... OR

 h_k gets 0 training error)

 \leq Prob(h₁ gets 0 training error) + Prob(h₂ gets 0 training error) + ... + Prob(h_k gets 0 training error)

Union bound Loose but works

 $\leq k (1-\varepsilon)^m$

How likely is a learner to pick a bad classifier?

• Usually there are many many (say k) bad classifiers in the class

$$
h_1, h_2, ..., h_k \qquad \qquad s.t. error_{true}(h_i) \geq \varepsilon \quad i = 1, ..., k
$$

• Probability that learner picks a bad classifier

 $\leq k (1-\varepsilon)^m \leq |H| (1-\varepsilon)^m \leq |H| e^{-\varepsilon m}$ \rightarrow Size of model class

PAC (Probably Approximately Correct) bound

• *Theorem [Haussler'88]*: Model class *H* finite, dataset *D* with *m* i.i.d. samples, $0 < \varepsilon < 1$: for any learned classifier *h* that gets 0 training error:

$$
P(\text{error}_{true}(h) \ge \epsilon) \le |H|e^{-m\epsilon} \le \delta
$$

• Equivalently, with probability $\geq 1-\delta$

$$
\text{error}_{true}(h) \leq \epsilon
$$

Important: PAC bound holds for all *h* **with 0 training error***,* **but doesn't guarantee that algorithm finds best** *h***!!!**

Using a PAC bound $|H|e^{-m\epsilon} \leq \delta$

• Given ε and δ , yields sample complexity #training data, $\mid m \geq$ $\frac{ \ln |H| + \ln \frac{1}{\delta}}$ ϵ

• Given m and δ , yields error bound

$$
\text{error, } \epsilon \geq \frac{\ln |H| + \ln \frac{1}{\delta}}{m}
$$

Poll

Assume m is the minimum number of training examples sufficient to guarantee that with probability $1 - \delta$ a consistent learner using model class H will output a classifier with true error at worst ε.

Then a second learner that uses model space Hʹ will require 2m training examples (to make the same guarantee) if $|H' | = 2|H|$.

A. True B. False

If we double the number of training examples to 2m, the error bound ε will be halved.

C. True D. False

Limitations of Haussler's bound

 \triangleright Only consider classifiers with 0 training error

h such that zero error in training, error $_{\text{train}}(h) = 0$

 \triangleright Dependence on size of model class $|H|$

$$
m \ge \frac{\ln|H| + \ln\frac{1}{\delta}}{\epsilon}
$$

what if |H| too big or H is continuous (e.g. linear classifiers)?

What if our classifier does not have zero error on the training data?

- A learner with zero training errors may make mistakes in test set
- What about a learner with $error_{train}(h) \neq 0$ in training set?
- The error of a classifier is like estimating the parameter of a coin!

$$
error_{true}(h) := P(h(X) \neq Y) \equiv P(H=1) =: \theta
$$

$$
error_{train}(h) := \frac{1}{m} \sum_{i} 1_{h(X_i) \neq Y_i} \equiv \frac{1}{m} \sum_{i} Z_i =: \widehat{\theta}
$$

Hoeffding's bound for a single classifier

• Consider *m* i.i.d. flips $x_1,...,x_m$, where $x_i \in \{0,1\}$ of a coin with parameter θ . For $0 < \varepsilon < 1$:

$$
P\left(\left|\theta - \frac{1}{m}\sum_{i} x_i\right| \ge \epsilon\right) \le 2e^{-2m\epsilon^2}
$$

• Central limit theorem:

Hoeffding's bound for a single classifier

• Consider *m* i.i.d. flips $x_1,...,x_m$, where $x_i \in \{0,1\}$ of a coin with parameter θ . For $0 < \varepsilon < 1$:

$$
P\left(\left|\theta - \frac{1}{m}\sum_{i} x_i\right| \ge \epsilon\right) \le 2e^{-2m\epsilon^2}
$$

• For a single classifier h

 $2e^{-2m\epsilon^2}$

Hoeffding's bound for |H| classifiers

- For each classifier h_i : $2e^{-2m\epsilon^2}$
- What if we are comparing |H| classifiers? Union bound
- *Theorem*: Model class *H* finite, dataset *D* with *m* i.i.d. samples, $0 < \varepsilon < 1$: for any learned classifier $h \in H$:

$$
P\left(\text{error}_{true}(h) - \text{error}_{train}(h)\right) \ge \epsilon\right) \le 2|H|e^{-2m\epsilon^2} \le \delta
$$

Important: PAC bound holds for all h, but doesn't guarantee that algorithm finds best *h***!!!**

Summary of PAC bounds for finite model classes

With probability $\geq 1-\delta$, 1) For all $h \in H$ s.t. error_{train}(h) = 0, $error_{true}(h) \leq \varepsilon =$ $\epsilon =$ $\ln|H| + \ln\frac{1}{\delta}$ *m*

Haussler's bound

2) For all
$$
h \in H
$$

\n $|\text{error}_{\text{true}}(h) - \text{error}_{\text{train}}(h)| \le \varepsilon = \sqrt{\frac{\ln |H| + \ln \frac{2}{\delta}}{2m}}$
\n $\sqrt{\frac{\text{Hoeffding's bound}}{\text{Hoeffding's bound}}}$

PAC bound and Bias-Variance tradeoff

 $2|H|e^{-2m\epsilon^2} \leq \delta$

• Equivalently, with probability $\geq 1-\delta$

What about the size of the model class? $2|H|e^{-2m\epsilon^2} \leq \delta$

• Sample complexity

$$
m \ge \frac{1}{2\epsilon^2} \left(\ln|H| + \ln\frac{2}{\delta} \right)
$$

- How to measure the complexity of a model class?
	- E.g. decision trees:

trees with depth k trees with k leaves

Number of decision trees of depth k

Recursive solution:

$$
m \ge \frac{1}{2\epsilon^2} \left(\ln|H| + \ln\frac{2}{\delta} \right)
$$

Given *n* **binary** attributes

 H_k = Number of **binary** decision trees of depth k

 $H_0 = 2$

 $H_k =$ (#choices of root attribute)

*(# possible left subtrees)

*(# possible right subtrees) = $n * H_{k-1} * H_{k-1}$

Write Lk = log2 Hk L0 = 1 Lk = log2 n + 2Lk-1 = log2 n + 2(log2 n + 2Lk-2) = log2 n + 2log2 n + 22log2 n + … +2k-1(log2 n + 2L0) So Lk = (2k -1)(1+log2 n) +1 ¹⁹

PAC bound for decision trees of depth k

$$
m \ge \frac{\ln 2}{2\epsilon^2} \left((2^k - 1)(1 + \log_2 n) + 1 + \log_2 \frac{2}{\delta} \right)
$$

- Bad!!!
	- Number of points is exponential in depth k!

• But, for *m* data points, decision tree can't get too big…

Number of leaves never more than number data points, so we are over-counting a lot! 20

Number of decision trees with k leaves $m \geq \frac{1}{2c^2} \left(\ln |H| + \ln \frac{2}{\delta} \right)$

- H_k = Number of binary decision trees with k leaves
- $H_1 = 2$
- H_k = (#choices of root attribute) *
	- $[$ (# left subtrees wth 1 leaf)*(# right subtrees wth k-1 leaves)
	- + (# left subtrees wth 2 leaves)*(# right subtrees wth k-2 leaves)
	- $+$ …

+ (# left subtrees wth k-1 leaves)*(# right subtrees wth 1 leaf)]

$$
H_k = n \sum_{i=1}^{k-1} H_i H_{k-i} = n^{k-1} C_{k-1}
$$
 (*C*_{k-1}: Catalan Number)

Loose bound (using Sterling's approximation):

$$
H_k \le n^{k-1} 2^{2k-1}
$$

Number of decision trees

• With k leaves $m \geq \frac{1}{2c^2} \left(\ln |H| + \ln \frac{2}{\delta} \right)$

linear in k number of points m is linear in #leaves $\log_2 H_k \leq (k-1) \log_2 n + 2k - 1$

• With depth k

exponential in k number of points m is exponential in depth $log_2 H_k = (2^k - 1)(1 + log_2 n) + 1$

What did we learn from decision trees?

• Moral of the story:

Complexity of learning not measured in terms of size of model space, but in maximum *number of points* that can be classified using a classifier from this model space

Rademacher Complexity

• Instead of all possible labelings, measure complexity by how accurately a model space can match a random labeling of the data.

For each data point i, draw random label σ_i s.t. $P(\sigma_i = +1) = \frac{1}{2} = P(\sigma_i = -1)$

Then empirical Rademacher complexity of H is

$$
\widehat{R}_m(H) = \mathbb{E}_{\sigma} \left[\sup_{h \in H} \left(\frac{1}{m} \sum_{i=1}^m \sigma_i h(X_i) \right) \right]
$$

Max correlation possible with random labels

- +

+

Rademacher Bounds

• With probability $\geq 1-\delta$,

$$
\mathrm{error}_{true}(h) \le \mathrm{error}_{train}(h) + \widehat{R}_m(H) + 3\sqrt{\frac{\log(2/\delta)}{m}}
$$

where empirical Rademacher complexity of H

$$
\widehat{R}_m(H) = \mathbb{E}_{\sigma} \left[\sup_{h \in H} \left(\frac{1}{m} \sum_{i=1}^m \sigma_i h(X_i) \right) \right]
$$

is purely data-dependent.

Finite model class

• Rademacher complexity can be upper bounded in terms of model class size |H|:

$$
\widehat{R}_m(H) \le \sqrt{\frac{2\ln|H|}{m}}
$$

• Often Rademacher bounds are significantly better, e.g. …

Linear models with bounded norm

• Consider $h(X_i) = \langle w, X_i \rangle$ with fixed $||w||$, with fixed $||w||$, $||X_i|| \leq R$

$$
\widehat{R}_m(H) = \mathbb{E}_{\sigma} \left[\sup_{h \in H} \left(\frac{1}{m} \sum_{i=1}^m \sigma_i h(X_i) \right) \right]
$$

:

$$
\leq \frac{\|w\| R}{\sqrt{m}}
$$

Complexity increases with number of parameters d and norm of weights

Summary of PAC bounds

3) For all
$$
h \in H
$$
,
 $|\text{error}_{\text{true}}(h) - \text{error}_{\text{train}}(h)| \le \varepsilon = \hat{R}_m(H) + 3\sqrt{\frac{\log(2/\delta)}{m}}$