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8.1 Review

8.1.1 Maximum Entropy and Information Projection

Last time we discussed that the problem of finding the maximum entropy distribution constrained to lie in a
subset Q ⊂ P is essentially equivalent to finding the information projection of the uniform distribution onto
Q, i.e. the distribution in Q that is closest to uniform in KL sense 1

max
p∈Q

H(p) = min
p∈Q

D(p||u)

If the set of constraints in Q are linear in p, i.e. of the form Ep[fj(X)] equal to or bounded by some constant,
then the maximum entropy distribution belongs to the exponential family:

p?(x) =
exp(

∑
j λjfj(x))

Zλ

where the Lagrange parameters λ = {λj} are chosen so that p? meets the constraints.

The information projection can be defined more generally with respect to any given base distribution p0(x)
(instead of uniform):

min
p∈Q

D(p||p0)

If the set of constraints in Q are linear in p, i.e. of the form Ep[fj(X)] equal to or bounded by some constant,
then the information projection distribution belongs to the Gibbs family:

p∗(x) = p0(x)
exp(

∑
j λjfj(x))

Zλ

where the normalizing constant is the partition function:

Zλ =
∑
x

p0(x)e
∑
j λjfj(x).

1Here the uniform distribution is defined such that all distributions in Q are absolutely continuous with respect to it.
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8.2 Maximum Entropy Duality with Maximum Likelihood Esti-
mation

So far, we haven’t talked about data in the discussion of maximum entropy. Often the constraints on
the distribution are actually specified using the data. For example, when we seek Maximum likelihood
model in the exponential (Gibbs) family then we are essentially seeking the Maximum Entropy distribution
(Information Projection) given empirical constraints based on data. We will show this connection next.

Consider the maximum likelihood model given data X1, . . . , Xn

p∗ML(x) = argmax
pλ

n∏
i=1

pλ(Xi)

= argmin
pλ

n∑
i=1

log
1

pλ(Xi)

= argmin
pλ

Ep̂
[
log

1

pλ(X)

]
= argmin

pλ

Ep̂
[
log

p̂(X)

pλ(X)

]
+ Ep̂

[
log

1

p̂(X)

]
= argmin

pλ

D(p̂||pλ) +H(p̂)

= argmin
pλ

D(p̂||pλ),

since the solution is equivalent without H(p̂). Note that the final solution is not the same as the projection.
The following theorem relates maximum likelihood estimation in exponential family with base distribution
p0 to information projection of p0 onto a set of distributions with constraints specified by the empirical mean
of the sufficient statistics:

Theorem 8.1 Duality Theorem

Let αj = Ep̂[fj(X)], then

p∗ML(x) = argmin
p∈λ

D(p̂||pλ) = argmin
p∈P

Ep[fj(X)]=αi

D(p||p0) = p∗IP (x)

The theorem states that the distribution belonging to the exponential family (with sufficient statistics fj(x)
and base distribution p0(x)) whose parameters maximize the likelihood of data, is the same as the information
projection of p0(x) on to a set of distributions with linear equality constraints (specified by fj(x)) that are
given by data.

Proof: Since we know the information projection lies in the exponential family, all we need to show is that
the λ’s in the maximum likelihood model satisfy the empirical linear constraints. So lets analyze the λ’s that
achieve the maximum likelihood of the data. Recall that

Zλ =
∑
x

p0(x) exp[
∑
j

λjfj(x)] and

λ∗∗ = argmax
λ

n∏
i=1

pλ(Xi) = argmax
λ

n∏
i=1

log pλ(Xi)

= argmax
λ

n∑
i=1

[log p0(Xi) +
∑
j

λjfj(Xi)− logZλ] .
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Taking derivative with respect to λ1, · · · , λm, of the log likelihood function, we get that

∂

∂λj

n∏
i=1

log pλ(Xi) =

n∑
i=1

fj(Xi)− n
∂

∂λj
logZλ

=

n∑
i=1

fj(Xi)−
n

Zλ

∂Zλ

∂λj

=

n∑
i=1

fj(Xi)−
n

Zλ

∑
x

p0(x)fj(x) exp[
∑
k

λkfk(x)]

=

n∑
i=1

fj(Xi)− n
∑
x

[
p0(x) exp[

∑
k λkfk(x)]

Zλ
]fj(x)

=

n∑
i=1

fj(Xi)− n
∑
x

pλ(x)fj(x)

At the maximizing λ∗∗ML the derivative is equal to 0, so we get:

=⇒
∑
x

pλ∗∗ML(x)fj(x) =
1

n

n∑
i=1

fj(Xi)

=⇒ Epλ∗∗ML [fj(X)] = Ep̂[fj(X)]

8.3 Maximum Entropy Generalization and Duality with regular-
ized Maximum Likelihood

We can consider a generalization of the maximum entropy (information projection) problem [DPS08]

min
p∈P
D(p||p0) + U(Ep[f ]),

where U(Ep[f ]) is a regularizer and f = [f1(X) . . . fm(X)]>. Here are three example regularizers:

Example 8.2 Standard Maximum entropy/Information projection is obtained with

U(Ep[f ]) = 1(Ep[f ] = Ep̂[f ])

Notice that for the equivalence to hold the indicator function is defined so that 1A is 0 if A is true and ∞
otherwise. This penalty requires the true constraints to match the empirical constraints exactly.

Example 8.3 L1 Norm Regularizer

U(Ep[f ]) = 1(|Ep[fj ]− Ep̂[fj ]| ≤ βj) ∀j

Here also we use the same definition of indicator function as above. This penalty requires the true constraints
to match the empirical constraints in an `1 sense.
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Example 8.4 L2 Norm Regularizer

U(Ep[f ]) =
||Ep[f ]− Ep̂[f ]||2

2α

This penalty requires the true constraints to match the empirical constraints in `2 sense.

To find the solution to the generalized MaxEnt problem, we could consider taking the derivative of the
regularized objective with respect to p, however notice that some of the regularizations are not differentiable.
So far, we have mostly ignored such issues, assuming differentiability. But lets consider a more formal
treatment via Fenchel duality (instead of Lagrangian duality) that allows us to handle convex but non-
differentiable functions.

First, lets define the convex conjugate or Fenchel dual of a function ψ(p) as

ψ∗(λ) = sup
p

[λ>p− ψ(p)].

It is essentially the largest difference between a line through the origin with slope λ and the graph of the
function. If the function is differentiable, the largest difference happens at a point p∗ where the gradient of
the function ψ′(p∗) = λ. See the image below, for example.

For a convex function, the conjugate is just a characterization of the function in terms of (intercept values
of) its supporting hyperplanes corresponding to different slopes λ.

The following theorem relates a primal optimization problem of closed, proper and convex function(s) to the
dual optimization problem specified in terms of convex conjugate of the function(s). Recall that a function
is proper if it is not infinite everywhere.

Definition 8.5 Fenchel’s Duality

Let ψ, ϕ be closed, proper, and convex, and A is any matrix. Fenchel’s Duality states that

inf
p
ψ(p) + ϕ(Ap) = sup

λ
−ψ∗(ATλ)− ϕ∗(−λ)

Returning to the previous maximum entropy generalization problem. We can consider p(x) ≡ px as a vector,
which may be an infinite-dimensional object. Lets define a matrix F with entries Fjx = fj(x). Then,
Fp =

∑
x fj(x)p(x) = E[fj(X)] and we have the primal

min
p∈P
D(p||p0) + U(Fp)
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where U will be closed, convex, and proper. Let ψ(p) = D(p||p0) if p ∈ P and ∞ otherwise, which is closed,
proper and convex in p. To apply Fenchel duality, we first derive the conjugate of ψ(p) as

ψ∗(λ) = ln(
∑
x

p0(x)eλx).

For closed, convex and proper functions, the conjugate of a conjugate is the function itself, hence we instead
evaluate

ψ∗∗(p) = sup
λ

[λ>p− ln(
∑
x

p0(x)eλx)]

Taking derivative with respect to λx and setting it equal to 0, we get that optimal λx satisfies px =
p0(x)e

λx∑
x p0(x)e

λx
. Plugging this value of λ we get:

ψ∗∗(p) = λ>p− ln(
∑
x

p0(x)eλx) =
∑
x

px(λx − ln(
∑
x

p0(x)eλx))

=
∑
x

px ln
eλx∑

x p0(x)eλx
=
∑
x

px ln
px
p0(x)

= D(p||p0) = ψ(p)

So, using Fenchel duality we have the dual problem

sup
λ

[−ψ∗(F>λ)− U∗(−λ)] = sup
λ

[− ln
∑
λ

p0(x)e(F
>λ)x ]− U∗(−λ)

= sup
λ

[− ln
∑
λ

p0(x)e
∑
j λjfj(x) − U∗(−λ)

= sup
λ

[− lnZλ − U∗(−λ)]

We will show that this dual problem is essentially finding the regularized Maximum Likelihood model under
exponential family with base distribution p0(x). Before we can do that, we need one more notion - that of
a shifted regularizer.

8.3.1 Shifted regularization

Define a shifted regularizer with respect to any distribution t as follows

Ut(u) = U(Et[f ]− u),

Then the dual of the shifted regularizer is

U∗t (λ) = sup
u

[λ>u− Ut(u)]

= sup
u

[λ>u− U(Et[f ]− u)]

= sup
u′

[λ>Et[f ]− λ>u′ − U(u′)]

= λ>Et[f ] + U∗(−λ)
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8.3.2 Dual as Regularized Maximum Likelihood

Let Q(λ) = − lnZλ − U∗(−λ), then

Q(λ) = − lnZλ − U∗(−λ)

= − lnZλ − U∗t (λ) + λ>Et[f ]

= −Et[ln p0] + Et[ln p0 + λ>f − lnZλ]− U∗t (λ)

= −Et[ln p0] + Et[ln
p0 exp(

∑
j λjfj(x)

Zλ
]− U∗t (λ)

= −Lt(0)− Lt(λ)− U∗t (λ),

where Lt(λ) := −Et[ln pλ] is the loss of the exponential family model pλ(x) =
p0 exp(

∑
j λjfj(x)

Zλ
with respect

to distribution t. If t = p̂, then this it just the negative log likelihood of the data under the model pλ.
Therefore, the dual problem is

sup
λ
Q(λ) ≡ min

λ
Lt(λ) + U∗t (λ).

and when t = p̂, this is just regularized Maximum likelihood estimation.

We then look at some examples of how the regularization on maximum entropy/information projection
transforms to regularization term in maximum likelihood solution.

Examples:

1. U(Ep[f ]) = I(Ep[f ] = Ep̂[f ]). Then,

Up̂(Ep[f ]) = 1(Ep[f ] = 0). (8.1)

U∗p̂ (λ) = sup
u

[λ>u− 1(u = 0)] = 0. (8.2)

The last step follow since 1(u = 0) is infinity everywhere except when u = 0. The problem thus gets
back to the basic maximum entropy duality with unregularized maximum likelihood.

2. U(Ep[f ]) = I(|Ep[fj ]− Ep̂[fj ]| ≤ βj ,∀j).
Then,

Up̂(Ep[f ]) = 1(|Ep[fj ]| ≤ βj ,∀j). (8.3)

U∗p̂ (λ) = sup
u

[λ>u− 1(|uj | ≤ βj)] =
∑
j

βj |λj |, (8.4)

The last step follow since 1(|uj | ≤ βj) is infinity everywhere except when |uj | ≤ βj . Thus the expression
is maximized when uj = sign(λj)βj . This corresponds to maximum likelihood with `1 regularization.

3. U(Ep[f ]) = ||(|Ep[f ]− Ep̂[f ]||22/2α.

Then,

Up̂(Ep[f ]) = ||Ep[f ]||22/2α. (8.5)

U∗p̂ (λ) = sup
u

[λ>u− u>u/2α] = α||λ||22/2, (8.6)

The last step follows since the maximizing u = αλ (in this case, penalty is differentiable - simply take
derivative wrt u and set to zero). This corresponds to maximum likelihood with `22 regularization.
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