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1 Setup
We have seen so far that in both online and offline RL, no algorithm is computationally tractable in the
general function approximation setting. The reason is that, to achieve optimism/pessimism, the algorithm
requires to search over the whole version space to find the most optimistic/pessimistic function or model.

However, if we think about real-world application, there is no reason to stop us from doing both – for example,
in robotics, we nowadays have abundant offline demonstration data, and we often have access to online
interaction as well. This gives the idea of Hybrid RL, which allows the learner to have both offline data and
online interaction. As we will see, this framework indeed breaks the computational barrier of online or offline
RL in the general function approximation setting.

Notation. We consider finite horizon Markov Decision Process M = {S,A, H,R, P, d0}. We define a policy
π := {π0, . . . , πH−1} where πh : S 7→ ∆(A) and let dπh denotes the state-action occupancy induced by π at
step h. Let V π

h (s) = E[
∑H−1

τ=h rτ |π, sh = s] and Qπ
h(s, a) = E[

∑H−1
τ=h rτ |π, sh = s, ah = a] be value functions

and let Q⋆ and V ⋆ denote the optimal value functions. We define the Bellman operator T such that for any
f : S ×A 7→ R, T f(s, a) = E[R(s, a)] + Es′∼P (s,a) maxa′ f(s′, a′).

We assume that for each h we have an offline dataset Dh of m samples (s, a, r, s′) drawn iid via (s, a) ∼
νh, r ∼ R(s, a), s′ ∼ P (s, a). For function approximation, we are given a function class F = F0 × · · · × FH−1

with Fh ⊂ S ×A 7→ [0, Vmax]. Let πf to be the greedy policy w.r.t. f .

2 Hybrid Q Iteration
Now let us consider perhaps the most natural way to combine offline and online data: I use both offline and
online data to fit a value function, and then I act greedily w.r.t. this value function, collect more online data,
use both offline and online data to learn a new value function and repeat. We can see that this procedure is
very simple - no complicated schemes of optimism or pessimism are needed, and as we will see, this simple
procedure indeed has provable guarantees.

We outlined the algorithm in Algorithm 1. Specifically, to combine offline and online data, Algorithm 1 uses
a half and half mixture. For the value function learning, it performs the finite horizon Fitted-Q-Iteration
(FQI) (Munos and Szepesvári, 2008), treating the data mixture as an offline dataset. Note that the major
computation requirement of Algorithm 1 is the least squares regression in FQI, and thus the algorithm is
oracle-efficient.

3 Proof Sketch
We start with the stardard model-free function approximation assumption on the realizable and Bellman-
complete value function class.

Assumption 3.1 (Realizability and Bellman completeness). For any h, we have Q⋆
h ∈ Fh. Additionally, for

any fh+1 ∈ Fh+1, we have T fh+1 ∈ Fh.
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Algorithm 1 Hybrid Q-Iteration (Hy-Q)
require Value class: D, #iterations: T , offline dataset Dν

h of size moff = T for h ∈ [H − 1].
1: Initialize f1

h(s, a) = 0.
2: for t = 1, . . . , T do
3: Let πt be the greedy policy w.r.t. f t i.e., πt

h(s) = argmaxa f
t
h(s, a).

4: For each h, collect mon = 1 online tuples Dt
h ∼ dπ

t

h .
5: Set f t+1

H (s, a) = 0.
6: for h = H − 1, . . . , 0 do
7: Estimate f t+1

h using least squares regression on the aggregated data Dt
h = Dν

h +
∑t

τ=1Dτ
h:

f t+1
h ← argmin

f∈Fh

{
ÊDt

h
(f(s, a)− r −max

a′
f t+1
h+1(s

′, a′))2
}

With this assumption, we have the usual guarantee that our learned value function has small error on both
the offline data and the historical online data:

Lemma 3.1 (Bellman error bound for FQI). Let δ ∈ (0, 1), with probability at least 1− δ, for any h ∈ [H − 1]
and t ∈ [T ], ∥∥f t+1

h − T f t+1
h+1

∥∥2
2,νh
≤ O

(
V 2
max log(2HT |F|/δ)

t

)
,

and
t∑

τ=1

∥∥f t+1
h − T f t+1

h+1

∥∥2
2,dπτ

h

≤ O
(
V 2
max log(2HT |F|/δ)

)
.

This is just by standard concentration arguments.

Hybrid RL decomposition. With this in mind, the following is the core idea of hybrid RL, which state
that, given any comparator policy πe as long as the learned value function has small Bellman error on both
πe’s visitation distribution, and the greedy policy w.r.t. the learned value function, then the greedy policy
can compete with πe.

Lemma 3.2. Given any comparator policy πe, for any f ∈ F and corresponding greedy policy πf , we have

Es0∼d0

[
V πe

0 (s0)− V πf

0 (s0)
]
≤

H−1∑
h=0

Esh,ah∼dπe

h
[T fh+1(sh, ah)− fh(sh, ah)]︸ ︷︷ ︸

offline error

+E
sh,ah∼dπf

h

[fh(sh, ah)− T fh+1(sh, ah)]︸ ︷︷ ︸
online error

.

To see why this is true, we can consider the following decomposition:

Es0∼d0

[
V πe

0 (s0)− V πf

0 (s0)
]
= Es0∼d0

[
V πe

0 (s0)−max
a

f0(s0, a) + max
a

f0(s0, a)− V πf

0 (s0)
]
.

The second difference should be famaliar to some of the readers since it is just a variant of the performance
difference lemma:

Es∼d0
[max

a
f0(s, a)− V πf

(s)] = Es∼d0
[Ea∼πf

0 (s)
f0(s, a)− V πf

0 (s)]

= Es∼d0
[Ea∼πf

0 (s)
f0(s, a)− T f1(s, a)] + Es∼d0

[Ea∼πf
0 (s)
T f1(s, a)− V πf

0 (s)]

= E
s,a∼dπf

0
[f0(s, a)− T f1(s, a)]+

Es∼d0
[Ea∼πf

0 (s)
[R(s, a) + γEs′∼P(s,a) max

a′
f1(s

′, a′)−R(s, a) + Es′∼P(s,a)V
πf

1 (s′)]]

= E
s,a∼dπf

0
[f0(s, a)− T f1(s, a)] + E

s∼dπf
1
[max

a
f1(s, a)− V πf

1 (s)]
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and we can complete the second part by induction. The proof for the offline error is similar, and we leave it
as an exercise for the readers.

Controlling Offline Error. To control the offline error, like in the offline RL literature, we need to make
an assumption on the coverage of the offline data. To see why this makes sense, consider running Algorithm 1
with an offline data with no information provided, and since Algorithm 1 does not perform any exploration,
we should not expect the returned policy to be good. Specifically, we use the following notion of coverage:

Definition 3.1 (Bellman error transfer coefficient). For any policy π, define the transfer coefficient as

Cπ := max

0, max
f∈F

∑H−1
h=0 Es,a∼dπ

h
[T fh+1(s, a)− fh(s, a)]√∑H−1

h=0 Es,a∼νh
(T fh+1(s, a)− fh(s, a))

2

.

The definition cares about the ratio of the expected worst-case (in the context of the function class) Bellman
error under the policy π to the expected Bellman error under the offline data. Note that this notion of
coverage in terms of expected Bellman error is very general in the sense that it is smaller than the coverage
definition used previously. It is easy to see that Cπ ≤ sups,a,h

dπ
h(s,a)

νh(s,a)
, the density ratio coverage used in

tabular MDPs. And one can also prove that Cπ is smaller than the relative condition number used in linear
MDPs.

Now with the transfer coefficient, we can immediately bound the offline error: for each h, we have with
probability at least 1− δ,

T∑
t=1

Es,a∼dπe

h

[
T f t

h+1(s, a)− f t
h(s, a)

]
≤

T∑
t=1

Cπe

√
Es,a∼νh

(
T f t

h+1(s, a)− f t
h(s, a)

)2 ≤ Õ(
√
TV 2

max log(|F|/δ)).

Controlling Online Error. The online error is the Bellman error of the current value function under the
greedy policy w.r.t. the function. This term suggests that there is an implicit exploration in the procedure: if
the current value function is accurate on its own, then we are done; otherwise, we explore. To bound this
term, we can use any existing complexity measure in the online RL literature, that measures “how many
times of distribution shift one can expect in a structured MDPs”, for example, Bellman rank (Jiang et al.,
2017), bilinear rank (Du et al., 2021), Bellman eluder dimension (Jin et al., 2021), or coverage (Xie et al.,
2023). In this note, we use the bilinear rank as an example.

Definition 3.2 (Bilinear model (Du et al., 2021)). We say that the MDP together with the function class F
is a bilinear model of rank d if for any h ∈ [H − 1], there exist two (unknown) mappings Xh,Wh : F 7→ Rd

with maxf ∥Xh(f)∥2 ≤ BX and maxf ∥Wh(f)∥2 ≤ BW such that:

∀f, g ∈ F :
∣∣∣Es,a∼dπf

h

[gh(s, a)− T gh+1(s, a)]
∣∣∣ = |⟨Xh(f),Wh(g)⟩|.

The intuition of the bilinear model is that, consider the Bellman error matrix E ∈ R|F|×|F|, where Ef,g denotes
the Bellman error of g under the πf , where f, g ∈ F , then this matrix has rank at most d. Thus we should
only expect O(d) times of distribution shift – the Bellman error of any function under any policy can be well
approximated by a linear combination of d other policies. Thus we can bound the online error as

T∑
t=1

E
s,a∼dπf

h

[
f t
h(s, a)− T f t

h+1(s, a)
]
≤

T∑
t=1

∣∣∣Es,a∼dπf

h

[
f t
h(s, a)− T f t

h+1(s, a)
]∣∣∣ = T∑

t=1

∣∣〈Xh(f
t),Wh(f

t)
〉∣∣.

Let Σt
h :=

∑t
τ=1 Xh(f

τ )Xh(f
τ )⊤ + λI, we get

T∑
t=1

∣∣〈Xh(f
t),Wh(f

t)
〉∣∣ ≤ T∑

t=1

∥Xh(f
t)∥Σ−1

t−1;h

√√√√t−1∑
τ=1

Es,a∼dτ
h

[(
f t
h(s, a)− T f t

h+1(s, a)
)2]

+ λB2
W .

3



Using standard elliptical potential argument (Lemma 3.4), the first term
∑T

t=1 ∥Xh(f
t)∥Σ−1

t−1;h
≤ O(

√
dT ),

and the second term is just the historical Bellman error, and together we have the online error is bounded by
Õ(

√
TdV 2

max log(|F|/δ)).

Thus combining everything, we have the following theorem:

Theorem 3.1 (Cumulative suboptimality). With probability at least 1− δ, Algorithm 1 obtains the following
bound on cumulative subpotimality w.r.t. any comparator policy πe,

T∑
t=1

V πe

− V πt

= Õ
((

max{Cπe , 1}+
√
d
)
·
√

V 2
maxH

2T · log(|F|/δ)
)
.

Now we can compare with the online RL results: for example in bilinear models, the best known regret
bound is Õ(

√
dV 2

maxH
2T · log(|F|/δ)), and we can see that the hybrid RL algorithm only needs to pay for the

additional coverage term Cπe . In return, we get a computationally efficient algorithm without any deliberate
designs for optimism or pessimism.

From the statistical perspective, we see that in the worst case, hybrid RL does not seem to have any advantage
over online RL. This point is rigorously shown in Xie et al. (2021), with a lower bound in the tabular setting
that matches the lower bound for either online or offline RL. More recently, Li et al. (2024) and Tan et al.
(2024) gives more refined analysis using a more instance-dependent style coverage measure.

3.1 Example: Linear Bellman Completeness
Now we consider a canonical example that is still considered computationally hard without future assumption
on the dynamics or action space: linear Bellman completeness (Wu et al., 2024; Golowich and Moitra, 2024).

Definition 3.3. Consider linear function approximation, where Fh =
{
f : f(s, a) = θ⊤ϕh(s, a), ∥θ∥2 ≤ B

}
,

and ϕh ∈ Rd. We say the MDP is linear Bellman complete if for all h, there exists a mapping Th : Rd → Rd

such that, for all θ with ∥θ∥ ≤ B and s, a, we have

⟨ϕh(s, a), T θ⟩ = Es′∼Ph(s,a)[max
a′
⟨ϕh+1(s

′, a′), θ⟩].

If we plug into the Bellman optimality condition we can see that Q⋆ ∈ F and the completeness condition
holds by definition.

To see why the bilinear rank assumption holds, we can see by definition, we can take Wh to be θh − T θh+1

and Xh be the expected feature map. Thus the bilinear rank is at most d.

Finally, we can use standard covering number argument to show that a ℓ∞ ε-net of F has size at most
O
((

B
ε

)d), and thus we can get the following theorem:

Lemma 3.3. Let δ ∈ (0, 1), suppose the MDP is linear Bellman complete, Cπ∗ <∞, and consider Fh defined
above. Then, with probability 1− δ, Algorithm 1 finds an ε-suboptimal policy with total sample complexity
(offline + online):

n = Õ

(
B2C2

π∗H4d2 log(B/εδ)

ε2

)
.

3.2 Technical Lemma
Lemma 3.4. Let Xh(f

1), . . . , Xh(f
T ) ∈ Rd be a sequence of vectors with ∥Xh(f

t)∥ ≤ BX <∞ for all t ≤ T .
Then,

T∑
t=1

∥Xh(f
t)∥Σ−1

t−1;h
≤

√
2dT log

(
1 +

TB2
X

λd

)
,

where the matrix Σt;h :=
∑t

τ=1 Xh(f
τ )Xh(f

τ )⊤ + λI for t ∈ [T ] and λ ≥ B2
X .
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Proof. Since λ ≥ B2
X , we have that

∥Xh(f
t)∥2

Σ−1
t−1;h

≤ 1

λ
∥Xh(f

t)∥2 ≤ 1.

Thus, using elliptical potential lemma (Lattimore and Szepesvári, 2020, Lemma 19.4), we get that

T∑
t=1

∥Xh(f
t)∥2

Σ−1
t−1;h

≤ 2d log

(
1 +

TB2
X

λd

)
.

The desired bound follows from Jensen’s inequality which implies that

T∑
t=1

∥Xh(f
t)∥Σ−1

t−1;h
≤

√√√√T ·
T∑

t=1

∥Xh(f t)∥2
Σ−1

t−1;h

≤

√
2Td log

(
1 +

TB2
X

λd

)
.
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