
Batch reinforcement learning and fitted Q iteration

Akshay Krishnamurthy
akshaykr@microsoft.com

November 10, 2020

1 Batch reinforcement learning

Batch reinforcement learning broadly refers to reinforcement learning problems in which the learner does not get to
interact with the environment. Instead, the learner is simply presented with a batch of experience collected by some
decision-making policy, and the goal is to use this data to learn a near-optimal (or at the very least) better policy.
This setting is quite important for high-stakes decision-making scenarios, like those that might arise in precision
medicine or where safety is a serious concern. On the other hand, one significant challenge is that exploration is
not controlled by the learner. Thus we will either (a) require some assumptions that ensure that the data-collection
policy effectively covers the state-action space, or (b) not be able to find a global near-optimal policy.

In addition to this “coverage” issue, we will also face some representational issues when we turn to the function
approximation setting. Due to our inability to collect data, the space of algorithms we may use is quite limited.

2 The formal setting

We consider the discounted MDP setting, where there is a state space S, action space A, transition operator
P , reward function R, discount factor γ ∈ [0, 1) and a starting state distribution d0. We adopt the standard
normalizations that R(s, a) ∈ ∆([0, 1]) so that the value functions V π and Qπ functions take values in [0, Vmax] with
Vmax := 1/(1− γ).

In batch RL, rather than interact with the environment to collect data, we will be presented with n tuples
(x, a, r, x′) where (x, a) ∼ µ, r ∼ R(x, a) and x′ ∼ P (· | x, a). Here µ is an approximation of the data collection
policy, and it is only an approximation because we think of the tuples as iid. This is primarily to simplify the
analysis, and it is possible to obtain results when we replace the iid dataset with one actually collected by a policy,
which involves dealing with temporal correlations. See for example a paper by Antos, Munos, and Szepesvari for
these kinds of arguments.

Given the dataset {(xi, ai, ri, x′i)}ni=1
iid∼ µ our goal is to output a near optimal policy for the MDP, that is we

would like our algorithm to produce a policy π̂ such that, with probability at least 1− δ, V (π̂) ≥ V ? − ε, for some
(ε, δ) pair. As usual, the number of samples n will depend on the accuracy parameters (ε, δ) and we would like n
to scale favorably with these.

Example 1. Suppose that γ = 0 and d0 is supported on a single state x0, so that we are only interested in optimizing
the immediate reward from this state x0. This is just a multi-armed bandit problem, but we do not get to control
the data collection process. If µ = d0 ◦ δa for some fixed action a, then while we can effectively learn the reward for
this action, we have no hope of learning the reward for any other action. Therefore, if µ is not already the optimal
policy, we have no hope of competing with the optimal policy.

The issue in the above example is that µ is not providing sufficient coverage over the state-action space. And
since we are not able to explore, this can completely prevent us from learning a near-optimal policy. To avoid this,
it is common to impose some coverage assumptions.

1

2.1 Tabular setting, uniform approximation

Let’s start out with perhaps the strongest one:
{assum:unif_conc}

Assumption 1 (Uniform concentrability). We assume that there exists some constant Cunif <∞ such that

(x, a) ∈ S ×A :
1

µ(x, a)
≤ Cunif

Clearly this imposes a constraint on the number of states and actions in the system. Since in the best case, µ is
the uniform distribution over S × A, and there can be at most Cunif state-action pairs. So now we are effectively
in the tabular setting and we can obtain some pretty strong guarantees.

Proposition 2. In the batch RL setting, if Assumption 1 holds, then there is an algorithm such that

V ? − V (π̂) ≤ Õ

(
1

(1− γ)2

(√
Cunif

n
+ Vmaxγ|S|

√
Cunif

n

))

Proof sketch. If Cunif < ∞ then given n samples, we can expect that for any (x, a) pair, we will have n/Cunif

samples from this (x, a) pair (and this will be concentrated). Thus, we can simply approximate the reward and
transition operator using the empirical frequencies:

R̂(x, a) =

∑n
i=1 1{(xi, ai) = (x, a)}ri∑n
i=1 1{(xi, ai) = (x, a)}

, P̂ (x′ | x, a) =

∑n
i=1 1{(xi, ai, x′i) = (x, a, x′)}∑n

i=1 1{(xi, ai) = (x, a)}
.

A fairly standard concentration argument would reveal that

∀x, a :
∣∣∣R̂(x, a)−R(x, a)

∣∣∣ .√Cunif

n
=: ∆R ‖P̂ (· | x, a)− P (· | x, a)‖TV . |S|

√
Cunif

n
=: ∆P .

I am omitting constants and logarithmic factors here, and this analysis is not very sharp at all. In particular if you
used Bernstein inequality for P̂ , I think you can shave off a factor of S.

This means that we have a model M̂ that is uniformly accurate to the true MDP. If we plan in the model, we
will obtain a policy π̂ that turn out to be near-optimal. In particular

V ? − V (π̂) = Ed0
[
Q?(x0, π

?(x0))−Qπ̂(x0, π̂(x0))
]

≤ Ed0
[
Q?(x0, π

?(x0))− Q̂(x0, π
?(x0)) + Q̂(x0, π̂(x0))−Qπ̂(x0, π̂(x0))

]
= Ed0

[
Q?(x0, π

?(x0))− Q̂(x0, π
?(x0)) + Q̂(x0, π̂(x0))−Q?(x0, π̂(x0)) + γEx1∼Px0,π̂(x0)

(V ?(x1)− V π̂(x1))
]

(This is basically just the performance difference lemma.) This calculation telescopes, and we will get

V ? − V (π̂) ≤
∞∑
h=0

γhEdh,π̂
[∣∣∣Q?(x, π?(x))− Q̂(x, π?(x))

∣∣∣+
∣∣∣Q̂(x, π̂(x))−Q?(x, π̂(x))

∣∣∣]
Let’s focus on one of these pairs and one time step h, since the other terms will be analogous

E
[∣∣∣Q?(x, π?(x))− Q̂(x, π?(x))

∣∣∣] ≤ E
[∣∣∣R(x, π?)− R̂(x, π?(x))

∣∣∣+ γ
∣∣∣Ex′∼Px,π?(x)V

?(x′)− γEx′∼P̂x,π?(x) V̂ (x′)
∣∣∣]

≤ ∆R + γE
[∣∣∣Ex′∼P (V ?(x′)− V̂ (x′)) +

(
Ex′∼P − Ex′∼P̂

)
V̂ (x′)

∣∣∣]
≤ ∆R + Vmaxγ∆P + γEEx′∼Px,π? (x)

∣∣∣V ?(x′)− V̂ (x′)
∣∣∣

Note that this calculation does not depend on the distribution over x or the policy π?. This last term is a recursive
term, which can be seen as follows:

E
∣∣∣V ?(x′)− V̂ (x′)

∣∣∣ = E
∣∣∣max
a

Q?(x′, a)−max
a

Q̂(x′, a)
∣∣∣ ≤ E

∣∣∣Q?(x′, π̃(x))− Q̂(x′, π̃(x))
∣∣∣

2

where π̃(x′) = argmaxa max{Q?(x′, a), Q̂(x′, a)} chooses the larger of the two actions. Since we have uniform
approximation of the MDP, this recursive term can be controlled similarly, so we get

error ≤ ∆R + Vmaxγ∆P + γ · error⇒ error ≤ 1

1− γ
(∆R + Vmaxγ∆P) .

We plug this in above to get

V ? − V (π̂) ≤ 2

1− γ
(∆R + Vmaxγ∆P) ·

∞∑
h=0

γh =
2

(1− γ)2
(∆R + Vmaxγ∆P) .

Plugging in the definitions of ∆R and ∆P , we’ll obtain the result.

This is kind of a simplistic setting, since it is tabular and we have great coverage of the environment, but it is I
think the simplest setting where we can see some of the key analysis techniques for more complex settings.

3 Fitted Q iteration, its guarantee, and analysis

Let’s now turn to a setting where there is function approximation. First we will relax the concentrability condition
as follows. First recall that dπh is the state-action distribution induced by executing policy π for h steps.

{assum:concentrability}
Assumption 3 (Concentrability). There exists a constant C such that

∀ nonstationary π, h, x, a :
dπh(x, a)

µ(x, a)
≤ C.

This assumption requires that the state visitation density ratio is bounded for any non-stationary policy π,
which may not even be induced by the function class that we are going to use. We will see why we need this
assumption in the proof. However, note that concentrability does not require that the state space is finite, but it
does place some constraints on the system dynamics.

Since the state space could be large, we will have to resort to function approximation. A standard way to do
this is to try to directly approximate the Q? function using a class of functions F : S × A → [0, Vmax]. With this
setup, perhaps the most natural algorithm is Fitted Q iteration, which initializes f0 ∈ F arbitrarily, and iterates:

fk ← argmin
f∈F

n∑
i=1

(f(xi, ai)− ri − γmax
a′

fk−1(x′i, a
′))2

The analysis of this method typically relies on a representational condition for the function class F . Recall the
definition of the bellman optimality operator

T f : (x, a) 7→ E
[
r + γmax

a′
f(x′, a′) | x, a

]
.

We use T F := {T f : f ∈ F} to denote the entire class of functions after applying the Bellman operator.
{assum:completeness}

Assumption 4 (Completeness). We assume that T F ⊂ F .

Note that this implies that Q? ∈ F , which is the weaker assumption we would hope is sufficient. This follows
since Q? is the fixed point of the Bellman operator, and if we repeatedly apply T , we remain in F .

Theorem 5 (FQI guarantee). The kth iterate of Fitted Q Iteration guarantees that with probability 1− δ

V ? − V πk ≤ O

(
Vmax

(1− γ)2

√
C log(|F|/δ)

n

)
+

2γkVmax

1− γ

The first term is the estimation error term, which goes to 0 as we get more data. The second term is “optimization
error” term that goes to 0 as we do more iterations. This term can always be made arbitrarily small at the expense
of more computation.

3

Proof. We’ll use the “norm” notation to make things more concise. Here ‖f‖22,ν := Ex,a∼νf2(x, a) where ν is a
distribution over the state-action pairs.

The first step is a uniform convergence argument. This would yield

∀k : ‖fk − T fk−1‖22,µ ≤ O
(
V 2
max log |F|/δ

n

)
=: ∆sq

We can go through this calculation if you all think it would be useful, but the main point is that we are doing least
squares regression, and due to Assumption 4, we are actually realizable. In particular, the minimizer of the risk
function f 7→ Eµ(f(x, a) − r − γmaxa′ fk−1(x′, a′))2 is the “bellman backup” function T fk−1, which happens to

belong to F . When we write-out the excess risk, we’ll see that this equals ‖f − T fk−1‖22,µ, which is what we can
bound using the generalization argument.

Next, we will use a similar argument to the one above. By performance difference lemma (note that dh,πk here
is a distribution over states only !)

V ? − V (πk) =

∞∑
h=0

γhEdh,πk [Q?(x, π?(x))−Q?(x, πk(x)]

≤
∞∑
h=0

γh
(
‖Q? − fk‖1,dh,πk◦π? + ‖Q? − fk‖1,dh,πk◦πk

)
≤
∞∑
h=0

γh
(
‖Q? − fk‖2,dh,πk◦π? + ‖Q? − fk‖2,dh,πk◦πk

)
.

Here we are using the norm notation, but this is precisely the inequality we had previously. As before, we can
handle both of these terms in a similar way. For an distribution ν induced by a nonstationary policy, we have

‖Q? − fk‖2,ν ≤ ‖Q
? − T fk−1‖2,ν + ‖fk − T fk−1‖2,ν

≤ γ

√
Ex,a∼ν

[∣∣∣Ex′∼Pxa max
a

Q?(x′, a)−max
a

fk−1(x′, a)
∣∣∣2]+ ‖fk − T fk−1‖2,ν

≤ γ ‖Q? − fk−1‖2,ν◦π̃ +
√
C ‖fk − T fk−1‖2,µ

≤ . . . ≤
k−1∑
t=0

√
Cγt ‖fk−t − T fk−t−1‖2,µ + sup

ν̃
γk ‖Q? − f0‖2,ν̃

≤ 1

1− γ
√
C ·∆sq + γkVmax.

Here ν̃ is some distribution induced by a nonstationary policy. Plugging this in to the performance difference
calculation yields the theorem.

4 Some remarks on concentrability

The concentrability assumption is worth thinking about for a bit. It’s clear that uniform concentrability imposes
an upper bound on the number of state-action pairs in the system, but what about Assumption 3?

This assumption does place some strong constraints on the system and the exploratory policy, but it does not
preclude infinitely large state spaces. One nice example is the block MDP model that some of us have been studying
for a couple of years.

Concentrability can also be modified if we restrict ourselves to linear functions. If all functions are linear in
some feature space φ(x, a), then the norm

‖f − f ′‖22,ν = Eν(〈f − f ′, φ(x, a)〉)2 = (f − f ′)>Σν(f − f ′)

4

Where Σν = Eνφ(x, a)φ(x, a)>. Exploiting this special structure, it suffices to measure coverage in terms of these
second moment matrices. In particular, we can instead assume

λmax

(
Σ−1/2µ ΣdπhΣ−1/2µ

)
≤ Clinear

And we can see why as follows:

‖f‖22,ν = f>Σνf = f>Σ1/2
µ Σ−1/2µ ΣνΣ−1/2µ Σ1/2

µ f = tr(Σ−1/2µ ΣνΣ−1/2µ · Σ1/2
µ ff>Σ1/2

µ)

≤ λmax

(
Σ−1/2µ ΣdπhΣ−1/2µ

)
· ‖f‖22,µ

So for linear functions, this allows us to shift distributions. Note that this is exactly how we used concentrability in
the FQI proof, and this is the only place we used it. So for linear functions, you could use this definition and just
replace the dependence on C with Clinear. As a final remark, this notion clearly allows us to scale to large state
spaces, since if µ is supported on the standard basis and the features are bounded in norm, we would always have
Clinear bounded.

5 Some remarks on completeness

The other assumption we should scrutinize is the completeness assumption. This one is quite a strong representa-
tional constraint on the function class. In particular, one thing that is quite disappointing is that the assumption
is “non-monotonic” in the sense that a small function class may satisfy this, while a larger class that contains the
small class may not.

We would hope that we can get away with Q? ∈ F only, which is a monotonic assumption. This was shown to
be possible in a recent paper by Tengyang Xie and Nan Jiang, but it requires very strong concentrability conditions,
stronger than Assumption 3, and it has a non-parametric flavor that loses the 1/ε2 convergence rate. The assumption
is that µ(a | s) ≥ 1/CA and P (s′ | s, a)/µ(s′) ≤ CS . I think the basic idea here is that we can run a tournament,
where we always compare two functions, discretized to a certain resolution. In doing so, the bellman back up can
be written in terms of a “coarse” state-abstraction of the space, and this allows us to achieve the bayes optimal
error using functions that are piecewise constant over the state abstraction.

On the other hand, with weaker concentrability assumptions, this kind of guarantee is not possible. This was
proved in a very recent paper by Ruosong Wang, Dean Foster, and Sham. They show that if you have the Linear
concentrability condition and Q? is a linear function in the feature map, then you cannot avoid exp(d) sample
complexity for batch RL.

6 Other results

A couple of other remarks

1. A popular approach these days is this “minimax” approach where you optimize

argmin
Q∈Q

max
w∈W

|L(Q,w)| , L(Q,w) := Eµ
[
w(x, a)

(
r + γmax

a′
Q(x′, a′)−Q(x, a)

)]
.

Intuitively this is saying that you want to have low “average” bellman error on all data-distributions (induced
by importance weighting). These algorithms have some nice properties, such as they provide valid confidence
intervals under pretty weak conditions.

2. It is also possible to avoid the 1/(1− γ)2 dependence using various minimax algorithms, as shown in a paper
by Tengyang and Nan recently. Algorithmically, one approach is to use “bellman residual minimization”

f̂ = argmin
f∈F

max
g∈G

Eµ[(f(x, a)− r − γmax
a′

f(x′, a′))2]− Eµ[(g(x, a)− r − γmax
a′

f(x′, a′))2]

The intuition is that we’d like to optimize just the first part, but this is susceptible to the so called “double-
sampling” issue, since the conditional expectation over x′ is outside the square. The second term intuitively

5

subtracts off the bayes error for the square loss problem to account for this. In the proof, the key lemma is a
different performance difference decomposition

V (π)− V (πf) ≤ 1

1− γ

(
Edπ [T f − f] + Edπf [f − T f]

)
The terms in this decomposition look quite similar to the optimization problem we solve. This is similar to
what we did in the FQI proof, except we had terms depending on Q? − f . To relate these terms to the FQI
optimization problem, we incurred another factor if 1/(1− γ).

3. Lastly, in the absence of coverage conditions, we clearly cannot compete with the optimal policy, but maybe we
can get something? This has been studied in a couple of recent papers (by Yao Liu, Adith Swaminathan, Alekh
Agarwal, and Emma Brunskill, and another by Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and
Thorsten Joachims). These papers introduce some “penalty” to discourage the learned policy from drifting
off of the data distribution. With such approaches it is possible to compete with the best policy that is well-
supported by the data distribution. However it is much harder to run these algorithms, because the penalty
functions typically require some kind of density estimation.

References

1. Tengyang Xie and Nan Jiang. Q? approximation schemes for batch reinforcement learning: A theoretical
comparison. 2020.

2. Tengyang Xie and Nan Jiang. Batch value-function approximation with only realizability. 2020.

3. Ruosong Wang, Dean P. Foster, and Sham M. Kakade. What are the statistical limits of offline RL with linear
function approximation?

4. Andras Antos, Csaba Szepesvari, and Remi Munos. Learning near-optimal policies with Bellman-residual
minimization based fitted policy iteration and a single sample path. 2007.

5. Yao Liu, Adith Swaminathan, Alekh Agarwal, and Emma Brunskill. Provably good batch reinforcement
learning without great exploration. 2020.

6. Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. MOReL: Model-based
offline reinforcement learning. 2020.

6

	Batch reinforcement learning
	The formal setting
	Tabular setting, uniform approximation

	Fitted Q iteration, its guarantee, and analysis
	Some remarks on concentrability
	Some remarks on completeness
	Other results

