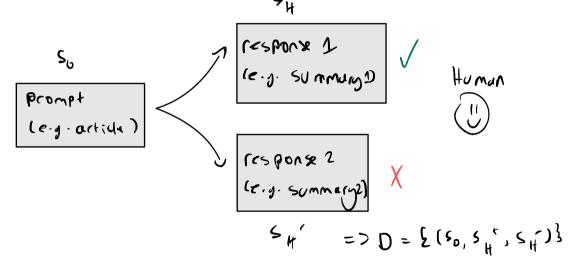
An Entroduction to QL from Iteman Fee Qbuck
() Language as an MDP
(2) Two key (hullenges of Fine-Tuning
(3) Learning from Preferences
(4) FL - Regularized RL
(5) dn the Internation Geometry of QLHF
(1)
$$M = \frac{1}{2}$$

(2) $M = \frac{1}{2}$
(3) $M = \frac{1}{2}$
(4) $M = \frac{1}{2}$
(4) $M = \frac{1}{2}$
(5) Set of partial geneties, e.g. all strigs we lea $\leq H \rightarrow 15$ |= $(M + A)$
(4) $M = \frac{1}{2}$
(5) $M = \frac{1}{2}$
(5) $M = \frac{1}{2}$
(6) $Prompts, e.g. $\frac{1}{2}$ (b) $\frac{1}{2}$ (c) $\frac{1}{2}$ (c$

3 <u>Denued Design</u> is hard for problems where the behavior we want is for on upent to be "human-like" (e.g. Self-driving, Chat-60ts), => key ided: <u>Learn</u> the remert function from data warne => for RuthF, we will learn from preference feed back



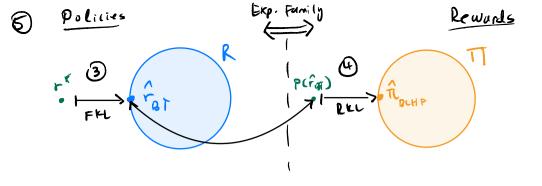
= \mathcal{F} Brudley - Terry "Model : $P_{r}(S_{H}^{+} > S_{H}^{-}) = \frac{1}{1 + exp(r^{*}(S_{H}^{-}) - r^{*}(S_{H}^{+}))}$ = \mathcal{F} polite fiction", ask no fater = $\mathcal{F}(r^{*}(S_{H}^{+}) - r^{*}(S_{H}^{-}))$

$$\begin{split} \hat{\Gamma}_{BT} &= \operatorname{argmin} \quad D_{FL} \left(P_{T^{*}} \| P_{r} \right) \left(\operatorname{for and} FL P_{roj} \right) \\ & reR \\ &= \operatorname{argmin} \quad \mathbb{E} \left[Log P_{r} \left(s_{h} r_{s} s_{h} r \right) - \log P_{r} \left(s_{h} r_{s} s_{h} r \right) \right] \\ & r \in R \quad s_{h} r_{sh} r_{sh} v P_{r} \\ & \sim \operatorname{argmin} \quad \mathbb{E} \left[- \log P_{r} \left(s_{h} r + s_{h} r \right) \right] \left(FKL = MLR \right) \\ & r \in R \quad 0 \\ & r \in R \quad 0 \\ & r \in R \quad 0 \\ \end{split}$$

a bone FL-regularized PL problem at the trajectory level.

Let's work w/ trajectoy_level distributions w/o prompts:
= arwmax
$$\frac{1}{2}$$
 [$\hat{\Gamma}_{0T}(S) = log P(S) + log P_{ret}(S)$]
S.t. $\sum P(S) = 1$ => $P := 0$ under probe distribution
= argumax minu $\sum P(S)$ [$\hat{\Gamma}_{0T}(S) - log P(S) + log P_{ret}(S)$] + $\lambda (\sum P(3) - 1)$
 $P = \lambda$
= argumax minu $\sum P(S)$ [$\hat{\Gamma}_{0T}(S) - log P(S) + log P_{ret}(S)$] + $\lambda (\sum P(3) - 1)$
 $P = \lambda$
= argumax minu $\sum P(S)$ [$\hat{\Gamma}_{0T}(S) - log P(S) + log P_{ret}(S)$] + $\lambda (\sum P(3) - 1)$
 $P = \lambda$
= argumax minu $\sum P(S)$ [$\hat{\Gamma}_{0T}(S) - log P(S) + log P_{ret}(S)$] + $\lambda (\sum P(3) - 1)$
 $P = \lambda$
= argumax minu $\sum P(S)$ [$\hat{\Gamma}_{0T}(S) - log P(S) + log P_{ret}(S) + \lambda (\sum P(S) - 1)$]
= $2rgmax$ minu $\sum P(S)$ [$\hat{\Gamma}_{0T}(S) + log P_{ret}(S) + \lambda (\sum P(S) - 1)$]
 $\sum [\hat{\Gamma}_{0T}(S) - log P(S) = 0$
 $= \sum [\hat{\Gamma}_{0T}(S) - log P(S) + log P_{ret}(S) + \lambda (\sum P(S) - 1)]$
 $= \sum log P(S) = \hat{\Gamma}_{0T}(S) + log P_{ret}(S) + \lambda (\sum P(S) - 1)]$
 $= \sum log P(S) = \hat{\Gamma}_{0T}(S) + log P_{ret}(S)$
 $= \sum log P(S) = 2p_{ret}(S) \cdot exp(\hat{\Gamma}_{0T}(S))$
 $= \sum k_{0}(S) - k_{0}(S) - 1 = 0$
 $= \sum k_{0}(S) \cdot exp(\hat{\Gamma}_{0T}(S)) = exp(1 - \lambda)$
 $parthing (antion)$
 $= \sum \lambda^{*} = 1 - log (\sum P_{ret}(S) exp(\hat{\Gamma}_{0T}(S)))$
 $\lambda^{*} = |-log(2), P^{*}(S) = \frac{P_{ret}(S) - exp(\hat{\Gamma}_{0T}(S))}{2}$

Now, consider the REL projection of
$$p^{x}$$
 onto some class p^{x} :
argmin $D_{EL}(p|I|p^{x})$
 $p \in p^{x}$
 $= urgmin \sum P(s) [log P(s) - log p^{r(s)}]$ (anstart
 $p \in p^{x}$
 $= argmin \sum P(s) [log P(s) - log P_{NE}(s) - f_{gT}(s_{H}) + log 2]$
 $= argmin \sum P(s) [log P(s) - log P_{NE}(s) - f_{gT}(s_{H}) + log 2]$
 $= argmin \sum P(s) [log P(s) - log P_{ref}(s) - f_{gT}(s_{H})]$
 $p \in p^{x}$
 $= argman \sum P(s) [log P(s) - log P_{ref}(s) - f_{gT}(s_{H})]$
 $= argman \sum P(s) [f_{gT}(s_{H}) - log \frac{P(s)}{P_{ref}(s)}]$
 $= argman \sum P(s) [f_{gT}(s_{H})] + P_{EL}(P || P ref)$
 $P \in P^{x}$
Now, let set $P = \frac{1}{2} P(s) = \frac{1}{2} \pi(r_{H}(s_{H}) | \pi \in T(s)$ and swip:
 $= argman \sum [f_{gT}(s_{H})] + D_{FL}(\pi || \pi_{ref})$
 $\pi \in TL set (P = 5 an REL projection)$



<u>Assule</u>: We can easily incorporate contexts/prompts/init-states: $P^{*}(S_{H}|S_{5}) = \frac{\prod_{n}^{H} \pi_{ret}(A_{n}|S_{n}) \cdot exp(\hat{r}_{br}(S_{H}))}{Z(S_{0})}$