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NTP on random
1. Supervised Fire-Tuling" (SFT) :

internet text I NTP on curated text=Free

2. RL from Human Feedback

Our focus for today
Challenge 1 : What is r ?

- the freward design" problem
=> Leads to B : learning from preferences

Challenge 2 : How to stay "close" to tree ?

- the "fire-tuning" problem
= s Leads to D : FL-regularized RL



& Renal Design is hard for problems where the behavior
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# Let us use Free to refer to the output of SFT -

he want to stay "close" in policy space to three

during RAHF to not exploit "the recall moded.

This leads to the KL-Rey clorine& RL Problem :
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=> Intuitively
,

RCHF is doing "mode-selection" on top of SFT

Surprisingly enough , there is a closed form answer to the

a bone FL-regularized RL problem at the trajectory level.
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Now
,
consider the RFL projection of p* onto some class IP :
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=> Thus
,
MaxEnt/Soft DL is an RFL projection
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Aside : he can easily in corporate contexts/ prompts /init. states :

It

&* (SH(s) = ThPretsism) · exP(B+
(SH))
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It you like to learn :

- how you actually solve
the RL problem in practice

-

who we can't just optimize the policy on pret . data

- how to do the above wo Bradley Terry a sumption

Take 17-740 wr Drew,
Steven ,

and I next Semester !

hebsite : www
, interactive-learning-algos . github . is


