
Lecture 03

Complexity of Algorithms

• An algorithm is a set of instructions that a computer will follow

– examples

• Solutions to most modern problems require complex algorithms

– Examples

• Efficiency of an algorithm can be measured in two ways

– Time efficiency

– Space Efficiency

• Sometimes we have to sacrifice one to get the other

• Algorithm execution time depends on many factors

– Processor, compiler, language, data size, memory management

etc..

• Lets assume standard Model of Computation

– uni-processor, RAM, Sequential instructions etc..

• Input size plays a crucial part in algorithm analysis, and we will

describe performance of an algorithm using input size n

– Example: how long does it take to reverse an array of size n?

Example: Bubble Sort

for i = 1 to n-1

 for j = 0 to n-i-1 do

 if (A[j]>A[j+1]) swap (A[j], A[j+1]);

• Let TP(n) be the performance of an algorithm P as a function of n. Find

TP(n) for bubble sort

• Lets count the operations (counting is one of the skills we have to learn)

Exercises

• Find TP(n) when algorithm P is

• Finding the minimum in an arbitrary array

• Finding the max in a sorted array

• Finding duplicates in an arbitrary array

• Finding all permutations of n items

• Finding the shortest distance between two cities

• Now that we can describe the performance of an algorithm as a

function of input size n, we will attempt to describe performance

of standard algorithm using some known functions

• Now we develop a notation to describe the performance of an algorithm

• We can obtain upper bounds, lower bounds and absolute bounds for

time efficiency of an algorithm

• We shall discuss Big-O, Big-Ω, Big-θ and Little-o notations that can be

used to get bounds for performance of an algorithm

• We will only discuss big O in this course

• Formal Definition: Given a function T:N���� N that describes the running

time of an algorithm on an input of size N, we say

• T(n) = O(f(n)) if

• there are positive constants c and n0 such that T(n) ≤≤≤≤ c××××f(n) when

n ≥≥≥≥ n0.

• c is called the constant factor.

• The n0 constant says that at some point, c××××f(N) is always bigger

than T(n)

• So we have an upper bound for T(n)

• Space complexity is also an interesting metric for assessing the

efficiency of a program.

• How much space is used by my program during runtime?

• Eg: Object [] A = new Object[N];

• We can get some measurement of how much space will be used by the

program by looking at the code

• Expressed in big O, big Omega .. notations

• But we need to look at some of the Java API’s to get a true use of

memory during execution of a program

• Class Runtime is available from Java API

• Interfaces with the environment current application is running

• Several interesting methods (see more on API)

• availableProcessors()

Returns the number of processors available to the Java virtual

machine.

• gc() Runs the garbage collector.

• maxMemory()

Returns the maximum amount of memory that the Java virtual

machine will attempt to use.

• totalMemory()

Returns the total amount of memory in the Java virtual machine.

Summary

• Runtime of an algorithm depends on many factors

• However, an asymptotic analysis of the algorithm can be obtained using

the size of the input data n

• Complexity can be discussed in terms of

• Time

• Space

