
Copyright @ 2008 Ananda Gunawardena

Lecture 03

Bits, Bytes and Data Types

In this lecture

• Computer Languages

• Assembly Language

• The compiler

• Operating system

• Data and program instructions

• Bits, Bytes and Data Types

• ASCII table

• Data Types

• Bit Representation of integers

• Base conversions

• 1’s compliment, 2’s compliment and negative numbers

• Variable and storage classes – static, register, auto and extern

• Functions – pass by value, pass by reference

• Reading and Writing files

• Exercises

Computer Languages
A computer language is a language that is used to communicate with a machine. Like all

languages, computer languages have syntax (form) and semantics (meaning). High level

languages such as Java are designed to make the process of programming easier, but

programmer typically has little control over how efficient the code will run on the

hardware. On the other hand, Assembly language programs are harder to write but are

designed so that programmer can optimize the performance of the code. Then there is the

machine language, the language the machine really understands. All computer languages

are designed to communicate with hardware at the end. But programs written in high

level languages may go through many steps of translations before being executed.

Programs written in C are first converted to an assembly program (designed for the

underlying hardware), which then in turn is converted to the machine language, the

language understood by the hardware. There may be many steps in between. Machine

language “defines” the machine and vice versa. Machine language instructions are

simple. They typically consist of very simple instructions such as adding two numbers or

moving data or jumping from one instruction to another. However, it is of course very

difficult to write and debug programs in machine language.

Assembly Language
Programs written in a high level language such as C go through a process of translations

that eventually leads to a set of instructions that can be executed by the underlying

hardware. One layer of this program translation is the assembly language. A high level

language is translated into assembly language. Each CPU/processor has its own assembly

language. Assembly code is then translated into the target machine code. Assembly

languages are human readable and contains very simple instructions. For example,

Copyright @ 2008 Ananda Gunawardena

instructions such as Add two numbers, or move memory from one place to another or

jump from one place to another etc.

A high level instruction written in C such as

A = A + 1 could be translated into (hypothetical) Assembly as follows.

Mov R1, A // move A to register 1

Inc R1 // increment R1 by 1

Mov A, R1 // move R1 to A

Eventually this assembly code is mapped into the corresponding machine language so

that the underlying hardware can carry out the instructions.

The Compiler
A compiler (such as gcc – GNU C compiler or lately GNU compiler collection) translates

a program written in a high level language to object code that can be interpreted and

executed by the underlying system. Compilers go through multiple levels of processing

such as, syntax checking, pre-processing macros and libraries, object code generation,

linking, and optimization among many other things. A course in compiler design will

expose you to many of the tasks a compiler typically does. Writing a compiler is a

substantial undertaking and one that requires a lot of attention to detail and understanding

of many theoretical concepts in computer science.

Operating System
Each machine needs an Operating System (OS). An operating system is a software

program that manages coordination between application programs and underlying

hardware. OS manages devices such as printers, disks, monitors and manage multiple

tasks such as processes. UNIX is an operating system. The following figure

demonstrates the high level view of the layers of a computer system. It demonstrates that

the end users interface with the computer at the application level, while programmers

deal with utilities and operating system level. On the other hand, an OS designed must

understand how to interface with the underlying hardware architecture.

Copyright @ 2008 Ananda Gunawardena

Data and Program Instructions
All data and program instructions are stored as sequences of bytes in the memory called

Random Access Memory (RAM). Typically data and instructions are stored in specific

parts of the RAM as directed by the OS/compiler. As programs are executed, each

instruction is fetched from memory and executed to produce the results. To increase the

speed of execution of a program, a compiler may use fast accessed memory locations

such as registers and cache memory. There could be 8 registers in the machine with one

called the zero register (containing the value zero for initializations). The following

figure demonstrates the architecture of a uni-processor machine that contains a CPU,

memory and IO modules.

Application programs

Utilities

Operating System

Computer Hardware

OS Designer

End user Programmer

Copyright @ 2008 Ananda Gunawardena

Bits, Bytes and Data Types
A bit is the smallest unit of storage represented by 0 or 1. A byte is typically 8 bits. C

character data type requires one byte of storage. A file is a sequence of bytes. A size of

the file is the number of bytes within the file. Although all files are a sequence of bytes,m

files can be regarded as text files or binary files. Text files are human readable (it consists

of a sequence of ASCII characters) and binary files may not be human readable (eg:

image file such as bitmap file).

If you have a UNIX shell, you can type

> ls -l filename // to find out the size of the file(and many other things).

Eg: -rw-r--r-- 1 guna staff 11977 Feb 24 2004 joel.txt

Standard units of memory

1000 bytes = 1 Kilobytes(KB)

1000 KB = 1 megabyte (MB)

1000MB = 1 Gigabyte(GB)

1000 GB = 1 Terabyte(TB)

1000 TB = 1 Petabyte(PB)

Each data byte can be represented using an ASCII (or extended ASCII) value. An ASCII

table is given below. Standard ASCII table assigns each character to a numerical value.

For example ‘A’ = 65 and ‘a’ = 97. Printable standard ASCII values are between 32 and

126. The 8
th

 bit in the byte may be used for parity checking in communication or other

device specific functions.

Copyright @ 2008 Ananda Gunawardena

Each ASCII value can be represented using 7 bits. 7 bits can represent numbers from

0 = 0000 0000 to 127 = 0111 1111 (total of 128 numbers or 2
7
)

Data Types
C has all the standard data types as in any high level language. C has int, short, long,

char, float, double. C has no boolean data type or string type. C has no Boolean type but

0 can be used for false and anything else for True. A C string is considered a sequence of

characters ending with null character ‘\0’. We will discuss more about strings later. You

can read more about data types in K&R page 36.

An integer is typically represented by 4 bytes (or 32-bits). However this depends on the

compiler/machine you are using. It is possible some architectures may use 2 bytes while

others may use 8 bytes to represent an integer. But generally it is 4 bytes of memory. You

can use sizeof(int) to find out the number of bytes assigned for int data type.

For example:

printf(“The size of int is %d \n”, sizeof(int));
prints the size of an integer in the system you are working on.

Find out the sizes of data types in unix.andrew.cmu.edu.

Bit Representation of Integers
If you take a low level look at an integer, this is how integer with value 10 is represented

using 4 bytes (32-bits) in the memory:

Copyright @ 2008 Ananda Gunawardena

00000000 00000000 00000000 00001010

Highest bit is the signed bit. Unsigned numbers uses the highest order bit as well to store

the value of the number and hence doubling the range of values. To understand this

concept, assume a signed number represented using 8 bits.

0111 1111 - What is the value of this?

1111 1111 – What is the highest value that can be represented if all 8 bits are used for the

number?

Base Conversions
Understanding different bases is critical to understanding how data is represented in the

memory. We consider base-2 (binary), base-8 (octal), base-10(decimal) and base-

16(hexadecimal). A number can be represented in any of the bases stated above. The

following digits are used in each base.

Base-2 - 0, 1

Base-8 - 0, 1, 2, 3,…, 7

Base-10 – 0, 1, 2, …, 9

Base-16 - 0,1, 2,…., 9, A, B, C, D, E, F

A number that is in base-10 such as 97 can be written in base-2 (binary) as follows. To

convert the number to binary, find the sums of the powers of 2 that makes up the number,

that is 97 = 64 + 32 + 1, and then represent this number using a binary pattern such as

follows.

97 = 01100001

Each number can be converted from binary(base-2) to any other base such as

octal(base-8), decimal(base-10) or hex (base-16).

Examples: 0000 1010 =

 0101 1110 =

Examples: 70 =

 300 =

Exercise: Write 456 in base-2, base-8, and base-16

Negative Numbers, One’s Complement and Two’s

Complement

Signed data is generally represented in the computer in their two’s complement. Two’s

complement of a number is obtained by adding 1 to its one’s complement. So how do we

find one’s complement of a number? Here is the definition

One’s complement of x is given by ~x. Obtain the one’s complement of a number by

negating each of its binary bits. For example one’s complement of 30 is (16-bit short)

30 = 16 + 8 + 4 + 2 = 00000001 11100000 � binary 30

Copyright @ 2008 Ananda Gunawardena

~30 = 11111110 00011111 � its one’s complement

The two’s complement of the number is obtained by adding 1 to its one’s complement.

That is, the two’s complement of 30 is obtained as follows.

 11111110 00011111

 + 1

 11111110 00100000
Hence -30 is represented as its two’s complement, that is ~30 + 1 = 11111110 00100000

Exercise: Perform binary addition of 34 + (-89) using two’s complement of the negative

number.

Variables
A C variable can be declared as follows

int x = 10;

This defines a variable x of type int (32-bits) and assigns 10 as the initial value. It is

possible to find both the value and a pointer to (address of) the variable x. The value and

the address of the variable can be found using:

printf(“The value is %d and the address is %x \n”, x, &x);

The format statements %d (decimal) and %x(hexadecimal) are used to format the

output. A variable declared as int x is called an automatic variables. Automatic variables

are not initialized, and given a place in the runtime stack, and it is the programmer’s

responsibility to initialize the variables. When a variable goes out of scope, the memory

is given back. In addition to automatic storage class, C variables can be declared to be

static, extern or register variables.

Storage Class Specifiers

Auto, Static, Extern and Register Variables
Any variable defined inside a function or file are considered to be an auto variable unless

specified otherwise. That is, the scope of the variable is within the function or file it is

declared. For example, consider a file program.c that contains the following.

#include <stdio.h>

int n; ���� file scope below this line

int main() {

 int n; ���� main function scope only

}

Copyright @ 2008 Ananda Gunawardena

int foo() {

 int n; ���� foo function scope only

}

Let us look at the scope of the variables declared in this file. The first int n that is

declared just below the #include statement can be seen by any function below it. In other

words, the location of the variable determines where the variable is meaningful. Any

function declared above first int n will not be able to see the variable n. The variables n

defined inside functions main and foo are only meaningful within the functions.

STATIC VARIABLES
Static variables can be declared externally, that is, outside of any function, or internally,

that is inside a function. An external static variable declared outside of functions is

visible to users of the file, but not to the functions in other files. An internal static

variable declared inside a function retains its value during all function call to the

function. For example, consider the file program.c that contains the following

declarations.

#include <stdio.h>

static int n; ���� external static variable – not visible to any other file

int main() {

 foo();

 foo();

}

int foo() {

 static int n; ���� internal static variable – retains its value during multiple calls to foo

}

Functions can also be declared static, making them visible only to the source file where

it is declared. Normally functions are visible to any part of the program. But by making

them static, we can limit the scope of the function only to the source file where it is

declared. For example,

static int foo () {

}

Only has the scope of the file, where it is declared and cannot be seen by any other file.

EXTERN VARIABLES
Extern variables can be used to share value of a variable among many functions.

Typically, all variables declared inside a function are local variables and they are created

when function is invoked and released when function is exited. However, if we are to

Copyright @ 2008 Ananda Gunawardena

share the same variable among many functions, then we can define the variable to be

“extern” as follows.

int n; � allocates storage for the external variable

int foo () {

 extern int n; � refers to the n defined above

}

int foo2() {

 extern int n; � refers to the same n as above

}

It should be noted that the use of “extern” inside the function can be avoided if all

functions using n are defined below the external definition of n.

The use of extern is more evident when “extern” variables can be shared across multiple

files. For example, if program.c defines an external variable n, then program2.c and

program3.c can refer to the value of the external variable by using the qualifier “extern”.

Extern variables therefore are useful for sharing variables among several files.

REGISTER VARIABLES
Some variables that may be accessed by the program frequently can be specified to be a

“register” variable.

register int x;

This will request the compiler to consider allocating a register location, a fast access

memory location, for the variable x. However, compiler may completely ignore this

request. The use of a register variable depends on hardware restrictions such as number

of registers available etc. If a register cannot be allocated for a particular variable, then

the directive is ignored. However, the address of a register variable cannot be accessed

regardless of whether it is placed in a register or not.

Functions
Functions are important part of C programming. Functions allow us to break the program

into manageable units that can be individually developed and tested. Procedural

decomposition or breaking the program into small procedures is the best way to develop

C programs. It allows easy debugging by localizing debugging problems. We have seen

many examples of using functions to make C programs better. C function prototypes are

defined in the beginning of a file, so the source code can be compiled without having the

function fully developed. For example,

void foo(int);

int main(int argc, char* argv[]){

Copyright @ 2008 Ananda Gunawardena

 int ptr;

 foo(ptr);

 …….

}

The above code can be compiled just with the prototype.

� gcc –c main.c

Passing Arguments
Arguments to functions can be passed by value or by reference. A value parameter is a

safe way to pass the value (or copy) of any type of a variable. When an address of a

variable is passed into a function, the reference parameter provides direct access to the

“global” variable that was passed into the function. This is a very powerful concept as we

can give access to a large data structure without actually making a copy of it in the

runtime stack. Let us look at the concepts of pass by value and pass by reference in more

detail.

Pass by value
A copy of the variable can be passed to a function by value. The original variable is not

changed. A copy is placed on the runtime stack for use during the execution.

Example:

void foo(int x) { x++; }

int a = 12;

foo(x);

Although x is incremented inside the function foo, x will not affect the original value of a

as x is a copy of the variable a.

Pass by Reference
The address of a variable can be passed to a function. This allows us to manipulate the

original variable directly from the function. We will discuss this after we study more

about pointers.

Writing a Program in C
Now you are ready to write a simple program in C (using emacs or vi editor or any other

editor), compile using gcc, and run and debug the program. We will give you some notes

on a C and Unix primer, but there is a good tutorial introduction to C in K&R chapter 1.

Please read and do some of the activities. Note that C uses header files (.h) to link to

predefined libraries. You can get a list of the header files used in the course from

Bb � header files. I will continue to update this list as semester progresses. C header

files are equivalent to Java interfaces where you can learn what specific standard C

functions that you can get from a predefined C library.

Copyright @ 2008 Ananda Gunawardena

A typical C program given in a single file looks like the following.

• Include all libraries

• Include your libraries

• Define macros

• Define any global variables

• Define Function Prototypes

• The main program

• The function definitions

Here is an example:

#include <stdio.h>

#include “mylib.h”

#define n 10

int size = 10;

int foo(int , double);

…

int main(int argc, char* argv[]) {

 ….

 return 0;

}

int foo(int x , double y) {

 …..

}

Reading and Writing with Files
Input and output is essential in any programming language. C has three standard files,

stdin, stdout and stderr. Other files opened as follows.

Typing: man fopen -- produces the following

NAME

 fopen, fdopen, freopen - stream open functions

SYNOPSIS

 #include <stdio.h>

 FILE *fopen(const char *path, const char *mode);

 FILE *fdopen(int fildes, const char *mode);

 FILE *freopen(const char *path, const char *mode, FILE *stream);

DESCRIPTION

 The fopen function opens the file whose name

Copyright @ 2008 Ananda Gunawardena

 is the string pointed to by path and asso-

 ciates a stream with it.

Here is an example of how to read values from a file and write the output to stdout.

FILE* fp = fopen(“filename”, “r”);

while (fscanf(fp, “%d”, &num) > 0) {

 fprintf(stdout, “%d”, num);

}

We used two functions, fscanf and fprintf to read and write values to/from file. To find

more information about fscanf and fprintf type:

% man fprintf

% man fscanf

For the following exercises, you may want to understand how to do following activities

in C

• Read an int from stdin (keyboard)

• Write something to stdout (terminal)

• Formatting output - %d (decimal), %c (char), %s (string or char*) – see page 154

K& R – table 7.1

Further Readings
[1] K & R – chapters 2.1 – 2.6, 4.1

Exercises
3.1. Write a C program that can show the number of bytes used by each of standard data

types, such as int, double, etc (hint: use sizeof). Use this information to understand the

size of the maximum and minimum signed integers. (hint: INT_MIN, INT_MAX). Look

for same in other data types. Include <limits.h> and <float.h>. See Bb header files links.

3.2. Write a C program to find the storage locations (or addresses) of 3 variables (int,

double, string or char*) you declare. The values will be given in hexadecimal notation.

3.3 Write a program that reads an integer from stdin and output its decimal, binary,

hexadecimal and octal representations.

See: democode/exerercise code to see the solutions

