
Supporting evolving requirements in CPS 
by abstraction layers in the architecture

Stefan Kowalewski, Andre Stollenwerk
April 11th 2011, ACPS, Chicago, IL



2

Outline

Motivation: Lifelong evolving constraints

 Abstraction Layers in rapid control prototyping

 Model based generated code in medical engineering
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Lifetime Adaption

 Fastened development process of embedded systems
- Smart phones
- Automotive assist systems
- Biomedical engineering
- Rapid prototyping (Fabbing @ home)

 Result in continuous adaption to variations of constraints
 Requirement changes during runtime may throw back to 

falling branch of V-model
 Changes can also result of usage of agile methods
 Moving boundary between design, development and 

operation
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Design Constraints

 Small adoptions during design process enable fast 
adoptions during life-time

 Impossible aspects to predict during design time
- All possible interactions
- Use cases of a system’s life

 Lifelong evolving requirements
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Approach: introduction of abstraction layers

 Well defined interfaces between different modules

 Increased interoperability

 Lower effort in maintaining and lifetime development

 Automated data management

 Predictable code modules
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Requirements

Software Engineering: 
 reusability
 support of different 

modeling environments
 maintainability
 configurable sensors 

Control Engineering:
 modeling environment 

e.g. Matlab / Simulink
 ability to simulate 
 ability to change sensors 

and actuators without 
reimplementing the model
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Simulation and code generation
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Architecture 1/2
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Architecture 2/2

Sensor 1
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Variability

 sensors or actuators:

 model
 documentation
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Feature Tree – Parking Assistant
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Development of a Rapid-Control-Prototyping-System 

Aspects: 

• consistent modelbased 
Development

• systematic design of the 
Hardware- and Softwaresystem

• enable early simulation

• support the developer 
configuration sensors and 
actuators 

• functional and nonfunctional 
requirements of a small company
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Evaluation: Engine Control Unit

 integration of all Sensors and Actuators

 evaluation with a real engine
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Outline

 Motivation: Lifelong evolving constraints

 Abstraction Layers in rapid control prototyping

Model based generated code in medical engineering
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System Setup of the SmartECLA Project

16
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Model Based Safety Measures
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Model Based Safety Measures - Example



19

Software System Architecture
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Wrapping Layer in Detail

DPL

M1 M2 M3

V1 V2 V3 V6V4 V5

W
ra

pp
er

Operating System

Hardware Abstraction Layer



21

Resulting SW architecture

 Integration of model based generated code to existing 
code framework

 Model changes do not cause changes in surrounding SW 
framework

 Dynamic adaptations take place at compile time

 Lean and static data management

 Fully predictable memory consumption and runtime 
behavior of the data management
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Conclusion

 Fuzzy boundary between development and operation

 Improvements during development process
- Efficient switching between simulation and real environment
- Exchangeability of sensors and actuators
- Exchangeability of development tools

 Tendency to static and thus predictable code

 Layered SW architecture enables SW partitioning
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Thanks for your attention !
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