
Supporting evolving requirements in CPS
by abstraction layers in the architecture

Stefan Kowalewski, Andre Stollenwerk
April 11th 2011, ACPS, Chicago, IL

2

Outline

Motivation: Lifelong evolving constraints

 Abstraction Layers in rapid control prototyping

 Model based generated code in medical engineering

3

Lifetime Adaption

 Fastened development process of embedded systems
- Smart phones
- Automotive assist systems
- Biomedical engineering
- Rapid prototyping (Fabbing @ home)

 Result in continuous adaption to variations of constraints
 Requirement changes during runtime may throw back to

falling branch of V-model
 Changes can also result of usage of agile methods
 Moving boundary between design, development and

operation

4

Design Constraints

 Small adoptions during design process enable fast
adoptions during life-time

 Impossible aspects to predict during design time
- All possible interactions
- Use cases of a system’s life

 Lifelong evolving requirements

5

Approach: introduction of abstraction layers

 Well defined interfaces between different modules

 Increased interoperability

 Lower effort in maintaining and lifetime development

 Automated data management

 Predictable code modules

6

Outline

 Motivation: Lifelong evolving constraints

Abstraction Layers in rapid control prototyping

 Model based generated code in medical engineering

7

Requirements

Software Engineering:
 reusability
 support of different

modeling environments
 maintainability
 configurable sensors

Control Engineering:
 modeling environment

e.g. Matlab / Simulink
 ability to simulate
 ability to change sensors

and actuators without
reimplementing the model

8

Simulation and code generation

9

Architecture 1/2

Library

Velocity

.

.

.

Modeling Tool

Sensor-Model
C

all

… …

Abstraction Layer

10

Architecture 2/2

Sensor 1

Sensor-
Model Driver

Simulation RCP-
System

Features:

• managed variability sensors / actuators

• change of Modeling Environment

• easy switch form simulation to RCP-System

Configuration-
tool for Sensor
and Actuators

Sensor 2

Abstraction Layer

Sensor-
Model Driver

Basic Layer

ADC_Driver.o DIO_Driver.o PWM_Driver.o CAN_Driver.o SPI_Driver.o …

HIS ADC HIS DI HIS DO HIS PWM CAN SPI

11

Variability

 sensors or actuators:

 model
 documentation

12

Feature Tree – Parking Assistant

Parking Assistant

Distance

Left Distance

Ultrasonic
Sensor

Ultrasonic
Sensor

Front
Distance

Infrared
Sensor

Ultrasonic
Sensor

Velocity

Impulse
Front

Hall Impulse
Rear

Sensors

Direction

Compass

User
Commands

Remote
Control

Simulation
Remote Contr.

Debug

Simulation with
Direction

Simulation
without Direct.

Plant

Front Brake

Brake

Rear Brake

Steering

Actuators

Throttle

Back
Distance

Right
Dinstance

Algorithm with
Direction

Algorithm with-
out Direction

Controller

requires requires requires

requires

13

Development of a Rapid-Control-Prototyping-System

Aspects:

• consistent modelbased
Development

• systematic design of the
Hardware- and Softwaresystem

• enable early simulation

• support the developer
configuration sensors and
actuators

• functional and nonfunctional
requirements of a small company

14

Evaluation: Engine Control Unit

 integration of all Sensors and Actuators

 evaluation with a real engine

15

Outline

 Motivation: Lifelong evolving constraints

 Abstraction Layers in rapid control prototyping

Model based generated code in medical engineering

16

System Setup of the SmartECLA Project

16

17

Model Based Safety Measures

18

Model Based Safety Measures - Example

19

Software System Architecture

Operating System

Hardware Abstraction Layer

Data Provisioning Layer

Model

Wrapping Layer

20

Wrapping Layer in Detail

DPL

M1 M2 M3

V1 V2 V3 V6V4 V5

W
ra

pp
er

Operating System

Hardware Abstraction Layer

21

Resulting SW architecture

 Integration of model based generated code to existing
code framework

 Model changes do not cause changes in surrounding SW
framework

 Dynamic adaptations take place at compile time

 Lean and static data management

 Fully predictable memory consumption and runtime
behavior of the data management

22

Conclusion

 Fuzzy boundary between development and operation

 Improvements during development process
- Efficient switching between simulation and real environment
- Exchangeability of sensors and actuators
- Exchangeability of development tools

 Tendency to static and thus predictable code

 Layered SW architecture enables SW partitioning

23

Thanks for your attention !

DPL

M1 M2 M3

V1 V2 V3 V6V4 V5

W
ra

pp
er

Operating System

Hardware Abstraction Layer

Questions, Comments, Suggestions… ?
Parking Assistant

Distance

Left Distance

Ultrasonic
Sensor

Ultrasonic
Sensor

Front
Distance

Infrared
Sensor

Ultrasonic
Sensor

Velocity

Impulse
Front

Hall Impulse
Rear

Sensors

Direction

Compass

User
Commands

Remote
Control

Simulation
Remote Contr.

Debug

Simulation with
Direction

Simulation
without Direct.

Plant

Front Brake

Brake

Rear Brake

Steering

Actuators

Throttle

Back
Distance

Right
Dinstance

Algorithm with
Direction

Algorithm with-
out Direction

Controller

requires requires requires

requires

	Supporting evolving requirements in CPS by abstraction layers in the architecture
	Outline
	Lifetime Adaption
	Design Constraints
	Approach: introduction of abstraction layers
	Outline
	Requirements
	Simulation and code generation
	Architecture 1/2
	Architecture 2/2
	Variability
	Feature Tree – Parking Assistant
	Development of a Rapid-Control-Prototyping-System
	Evaluation: Engine Control Unit
	Outline
	System Setup of the SmartECLA Project
	Model Based Safety Measures
	Model Based Safety Measures - Example
	Software System Architecture
	Wrapping Layer in Detail
	Resulting SW architecture
	Conclusion
	Thanks for your attention !

