Software Architectures:

Concepts, Lessons Learned,
Extensions to CPS

[]
institute for
| S SOFTWARE
RESEARCH

Workshop on Architectures oo
for Cyber-Physical Systems °oe
[_

David Garlan & Bruce Krogh
Carnegie Mellon University

Outline

e What is Software Architecture?
Definition & Intent
Architecture Representations as Models
Potential Benefits

e Basic concepts of software architecture
Views, Styles, and Tactics

e CPS Architectures
Adding physical elements to the models
Reconciling multiple views

© David Garlan & Bruce Krogh 2

Examples of Software
Architecture

R |

architecturs 1

LEL])

transsction

grand

tables J

CEE LR T E TR T FEREERREEEA B ba

oDL
complier

type

transformers
wnd utilities

BEREES

I:I module er
pregram

O e

BEEIEREAERES

cenliral

expander

FRaRdESEE R
"

irace
manager

Tayers
and alilitfes

1

JUPITER

A—B Acalla B

Am=dB dats path

Figure 3.1 The Configuration of the GENESIS Prowotype

Ganasis: A Reconfiguration Database Management System, 0. 5. Batory, J.R. Barnect, J.F. Garza, K.PF. Saich,

ibgsssd

K. Toukuda, B.C. Twichell, T.E. Wise. Depactoent of Compurer Sclemces, Universicy of Tewss ar Austis,

© David Garlan & Bruce Krogh

More Examples

e
|
|

=
|
|
]

5 Totrmaes :
. e e B - i
! EITLI Pl |
| Mlepomi [
P U P I
Tiersa
ﬁ::w“ | Borriom
Tiems I i
Up-td i
:“—- | = - :G“#r— i
R ! = [I
e | : e 0
o | B Bt Pt
—_p—e Empmw
Bl bgore gy
} i
Lresi ©
Ity — 1D Camplation :
1 Pracemey
I By
Crerlyy
I WD Covai ?I- -
| Fiinismmiarsy X <
1 ;
| ¢
| o
L. 2 o
& i L e e — -
II' ey in
‘hlay lewniin FOOE GIT Laiy \.':F’
m:hl-uuiui-l" B

FIGURE 7. Flight Computer Operating System (The FOOS dispalcher coordinates
and controls all work performed by the on-board computers.)

Lommunications of the ACH, “Architecture of the Space Shuttle Pri Ly
sommunlcations of the ACH
September 1984, Val. 27, Mo. 9, P. 933 ¥ FHRREE SRR FaTekn Rys i 0i 3. oaskiny

© David Garlan & Bruce Krogh

More Examples

Window System
i Fron
Application a: dt DPS i:;k Display
Program K
og adap- emel adap- System
ter ter
OS adapter
Operating System

Figure 2. Display PostScript interpreter components.

An varview of the DISFLAY posTSCRIPTTE Syatem, Adobe Systess Incorporated, Mareh 016, 19BE, P. 10

© David Garlan & Bruce Krogh

More Examples

Client Layar*

Access domain -management
Buffering and record-level 1/0
Transaclion coordination
-E;nTLTaFEr--- _______________ T T T T
Implementation of standara server interface
Logger, agent, and Instance {asks
Helix Directorles
Path name to.FID mapping
Single-file ‘daiahasa] update by one task
Procedural Interface for queries
Object (FID directary)

- Identification and capability access (via FIDs)

FID to tree-roof mapping; table of (FID,root,ref__count)
Existence and deletion ?reference counts)

Cancurrency control (file interlocking)

Secure Tree

Basic crash-resistant file structure
Conditional commit
Provision of secure array of blocks

System

Commit and restart autharity
Disk space allocation
Commit domains

Cache

Caching and performance optimization
Commil support (flush)

Frame allocation (to domains)
Optional disk shadowing

Canonical Disk

[Physical disk access]

“Also calied clien! Helix.

Figure 2. Abstraction layering.

IEEE Sofrware, "Helix: The architecture of the XM5 Distribuced File Sverenm,
Marek Fridrich and William Older, May L985, Vol. 2, Wo. 3, P. 23

© David Garlan & Bruce Krogh

More Examples

chem
dag
diormat
drag
- dotchart 5
rafer ot_al et grap ple bl eqn alg
scatmat
L flo
map
swizzle
index
terms diroff
Indx
flortid bditroff pm praview |- scresn
laser
pedi printer
photo
type-
setter

© David Garlan & Bruce Krogh

More Examples

' Distributed
Services Level

1
]
L
L]
]
1
1
1]
1
1
1
1

1
[}
]
1
Mgmt || |.---- % :
Client T
Connector :
1
' "
~ X 1
S .
': R T C 1
N 1
Browser ~ Protocol !
b 1
e Adapter i

]
1
I
1
]

lanagueagiy

Java Virtual Machine

Ficure 2.1
JMX Management Architecture.

© David Garlan & Bruce Krogh

More Examples

Appheation| . o .
T ifile name, chunk mdex) GES master o0

GFS client | File namespace f-' chunk 2efl)
(chunk handle, '

chunk locatioas)

Legand:
ey Data messages

— Contel messagas

Instructions to chnkserver

Chunkserver state

GFS chunkserver GES chunkserver

Limux file system Limx file system
Source: “The Google File System”

- - A | =
|—H|—H — LHL] —
Sanjay Ghemawat, Howard Gobioff,

and Shun-Tak Leung. SOSP 2003. Figure 1: GFS Architecture

(chumk handle, bvie range)

chomk data

© David Garlan & Bruce Krogh 9

Software Architecture in Context -

SOA
Model-driven design

Component-based Systems
Product lines

Software architecture,””

Object-oriented Patterns Programming-
Packages 1990 in-the-world

Pipes and filters /
Software development environments

Inher|tance> objects 1980

Abstract data types
Programming-in-the-large
Information hidin

NATO SE conference ﬁ.970

Programming-
in-the-large

Programming

Separate compilation -in-the-small
Subroutines 1960
/ Programming-
1950 any-which-way

© David Garlan & Bruce Krogh 10

What i1s Software Architecture? oot

e There are many definitions in the literature
e The definition that | currently use is*

* Documenting Software Architecture: Views and Beyond, 2"d Ed. Clements et al. 2010.

© David Garlan & Bruce Krogh 11

Issues Addressed by
Software Architecture :

e Gross decomposition of a system into parts

e often using rich abstractions for component interaction
(or system “glue’)
e often using common design patterns/styles

e Emergent system properties
e performance, throughput, latencies
o reliability, security, fault tolerance, evolvability

e Rationale
e justifying architectural decisions and tradeoffs

e Envelope of allowed change
e “load-bearing walls”

© David Garlan & Bruce Krogh 12

Example of Google File
System

Appheation

I:f:i]e name, chimk IJ.IIZ".EE:I . GES master - too/bar

GFS client | File namespace f-' chunk 2efl)
(chunk handle, !

chunk locatioas)

Legand:
ey Data messages

— Contel messagas

Instructions to chnkserver
Clumkserver state

GFS chunkserver GES chunkserver

Limux file system Limx file system
Source: “The Google File System”

- - A | =
|—H|—H — LHL] —
Sanjay Ghemawat, Howard Gobioff,

and Shun-Tak Leung. SOSP 2003. Figure 1: GFS Architecture

(chumk handle, bvie range)

chomk data

© David Garlan & Bruce Krogh 13

Architectures as Models

e Representations of software architecture
can be treated as models

e Architecture-based design is then

a form of model-based design Requiremen
e Representations L
Informal: box-and-line (ppt, visio, ...) [soteercniecue
Semi-formal: formal syntax le

(UML, SysML)
Formal: formal semantics (AADL, Acme, ...)

© David Garlan & Bruce Krogh 14

Component-and-Connector
Models

system
connector
component

N\

port role

© David Garlan & Bruce Krogh

15

Potential Benefits T

e Abstraction — manage complexity, support
reuse (component, style, tactic), naturally
represent computations in a given domain

e Guidance — constrain developers, support
conceptual integrity

e Implementation support —tools for moving
from architecture to code

e Analysis — support decision making, allowing
application of existing analytical theories &
tools

© David Garlan & Bruce Krogh 16

Outline -

e What is Software Architecture?
e Definition & Intent
e Architecture Representations as Models
e Benefits

e Basic concepts of software architecture
e Views, Styles, and Tactics

e CPS Architectures
e Adding physical elements to the models
e Reconciling multiple views

© David Garlan & Bruce Krogh 17

Recall °:

© David Garlan & Bruce Krogh 18

What is a Structure? — 1

e Software architecture is an abstraction of the
structures that comprise the software that is
part of a software-intensive system.

e Systems have many structures
code
processes/threads
files

© David Garlan & Bruce Krogh 19

What Is A Structure? — 2

e A representation of a structure is usually called
a view of the system.

Physical Perspective

e Allocation Views: A
- computers l
- devices
- networks
— w ZRuntime Perspective
Static Perspective « Component-and-connector Views

* Module Views: - processes
- classes - sequence diagrams
- functions - dataflow
- interfaces

© David Garlan & Bruce Krogh 20

Structures and Views — 1

To the bady

5 Heart Anatomy

Key

---& Blood flow ol

1 F $th
A human body is a static view of a dynamic view
comprised of multiple one human of that structure
structures. structure

One body has many structures, and those structures have many
views. So it is with software...

© David Garlan & Bruce Krogh 21

Three Important Classes of T
Architectural View

How It Is structured as a set of code units
module views

How It IS structured as a set of elements that
have run-time behavior and interactions
component-and-connector views

How It relates to non-software structures in Its
environment?
allocation views

© David Garlan & Bruce Krogh 22

000
. . 0000
Example: Alternating i
Characters - Module View °
Produce alternating case of characters
INn a stream | “sofTWareArchitecture”
main —=
// Wemm ItEcTuRe”
split lower upper merge
\ ‘/Legend
config input/output Module
Definition/Use Modularization Uses —

© David Garlan & Bruce Krogh 23

Example continued:
C&C View :

Legend

Filter

Components and Connectors Pipe —
Binding ——

© David Garlan & Bruce Krogh 24

Module Views

e Elements are design-time artifacts: code,
libraries, modules, packages, config files
e Common types of module views
Decomposition views — part-whole relations
Class diagrams — usage, inheritance, realization
Layer diagrams — restricts usage patterns

© David Garlan & Bruce Krogh 25

A-7E Decomposition View

A-7E Layered View

Function driver

Shared services

Data Physical Filter
banker models behaviors

Device interfaces

Application datatypes

Software
utilities

Extended computer

Key: Behavior-hiding module

Software decision hiding module

Hardware hiding module
© David Garlan & Bruce Krogh

27

Component & Connector Views

e Elements are components and connectors
e May be hierarchical
e Annotations provide semantics

© David Garlan & Bruce Krogh 28

Eample C&C View

®
-
Legend
Administrator M Facade
Console e Component Web Component
1
LDAP Directory
N\

RDBMS

m
Rule & 8 §' Integrated

== Data Re)

o P Direct Adapter

Configuration DB

Indirect Adapter

Controller

Viewer

Transaction Log

Dl mwoO

Interface

SOAP Conndgtor
& roles

F—< >—1{1 LDAP ConnectorY

& roles
B—< >—m DB Connector

& roles
E——)——1 RMI Connector

& roles

—
Change Log

108.1pu|

=1
=
S
@
Q
—

Tle1depy
oong
ZJa1depy

— Event Bus
—a Connector

? ; & rol
I‘l‘l I‘E System Boundary
—
External External ern, External
(53 e
LDAP1 | DAP2 6@&% rlan éﬁruc Krogh 29

Elaboration of Join Engine

Legend
Message
Handler
- Interface
o O m Call &
Return
m Transaction
Coordinator Agent
[Send port
= Receive port
[l Context
<Fagade
Receiver p——O—11 U —CO—n R Component>
Translator
A
O
o
3
ge
2o
g3
o]
ve)
Y
<Event Bus>

© David Garlan & Bruce Krogh 30

Styles

e Define a specialized vocabulary for a kind of
view
Pipes and filters
Clients and servers
Publishers and subscribers

e Establish constraints
Clients can’t talk to each other directly
No cycles in a pipe-and-filter system

e Provide analysis opportunities

© David Garlan & Bruce Krogh 31

000
(| X
o
A (Partial) Catalogue of Styles
e Data flow e Event-based
batch sequential asynchronous messaging
pipes and filters publish-subscribe
process control implicit invocation
e Call-return data-triggered

main program-subroutine

. . e Data-centered
object-oriented

component-based repository
peer-to-peer blackboard
service-oriented shared variable

N-tiered

© David Garlan & Bruce Krogh 32

Specialized Architectural Styles

e There Is a spectrum of architectural styles
e Some are generic; others are more domain-specific
and specialized.
e Specialization supports analysis, code reuse, tools

Generic Domain-Spec
: : Component Component
Generic Generic Sty - -
o Integration Integration :
Styles Specializatigns Star?dards Star?dards Prpduct Lines

EJB ektronix Oscilloscopes
Xerox Network Scanning
Arch

Domain-Specificity =———>

© David Garlan & Bruce Krogh 33

Example: NASA Mission Data | ss:
Systems (MDS) :

e MDS defines an architectural framework for a

family of NASA space systems

e System of architectural component types

e Rules on how they can be connected

e Run-time infrastructure for executing MDS
systems

e Reusable code base

e Checking/ensuring conformance to MDS is

an important and hard problem

e Many rules, many components, complex topology

» Mapping between architectural design and code
IS non-trivial g

E AcmeStudio - TempControlSystem.acme - AcmeStudio == m

Fle Edit View Navigate Search Project BRun Design Famiy Window Help

IBE~H0 & B ®&~]] 2] e~ ~[[F 26|k im0 R A[100%]

= | &= navigator = = = | ® &+ x ||El*TempControlsystem.acme x l
IE == RainbowMDS l=* Global Typespace
B = docs "set comstrat] B comnonent
B &= familes R (= MDSEam
®-& Images T ActuatorT
=@ Mds s Il ControllerT
[]" tests S |l EstimatorT
B Rocky7.acme —_— TCON
--[B TempControlSystem.acme - *® ExecutableT
- & Topology.acme W ExecutiveT
M HealthstateVarT
T schedulerT
"heaterenr/off" " ISensorT
—1StateVarT
CommandNotifConnT
i g "getcommand’ * CommandQueryConnT
anMsL.TEST * CommandSubmitConnT
* ConstraintExecConnT
* ExecuteConnT
2= outline E & & v x MeasurementMotifConnT
EI€ﬂ= anMsL -~ * MeasurementQueryConnT
= 8 EXEC * PointToPointConnT
- Eg\:l < I i H >] PubSubConnT _
TEST Acme Source Famiy - MDSFam System - anMsL |
SHV B Element View H n
SACT
TSEN _ | [Name: | TEST Description |
T conn01 Properties Rules | Structure Representaﬁons' Errors' Typesl
r stUpc!Connl 4 v Rule 2.2: An estimator that is not event driven can have no command notification ports
T stNotifConn2 4 v Rule 3.1: An estimator that needs no command evidence can have no command query ports
¥ stUpdConn2 4 v Rule 4.1: An estimator that requires no measurement data can have no measurement query ports
¥ conno3 4 v Rule 5.2: An estimator that is not event driven can have no measurement notification ports
3 cmdnotifConnl 4 v Rule 7.2: Each estimator state update port must be connected to only one state variable.
4+ conni ~ || ' Estimators can only have ports of type StateUpdateReqrPortT, StateQuenyReqPortT, CommandQueryReqrPortT, Co...
+ cmdsubConni a v jnvariant Forall p in seff.ports | O Exists t in {CommandNotifProvPortT, CommandQueryReqrPortT, MeasurementQu...
I sthotifConn1l
- conn05 |+ | | Element View | Tasks
© David Garlan & Bruce Krogh | | | 35

Temperature Control System

"set comstra

—get temp meas” T
- 1 TSEN

© David Garlan & Bruce Krogh 36

"get command"

The MDS Style

Constraint Execution

State Update * |) wmTm

Measurement Query

OBawa-Garlan & Bruce Krogh 37

Tactics

e A tactic Is a design decision that refines a high
level style/pattern and is influential in the
control of a quality attribute response.

e Tactics complement and refine patterns that
make up the architecture.

__

© David Garlan & Bruce Krogh 38

Fault

o000
000
(| X J
O
Avallability Tactics
4 Availability
Fault
masked
Fault or
Fault Recovery Fault Recovery Fault repair
Detection Preparation and Prevention |made
l ancll Repair Reiniroduction l .
« Ping/Echo *Voting « Shadow « Removal
e Heartbeat *Active « State From Service
«Exception Redundancy Re-synchronization « Transactions
» Passive * Rollback * Process
Redundancy Monitor
e Spare
\ © David Garlan & Bruce Krogh) 39

Performance Tactics

s
Performance
Performance Resource Resource
Demand Management Arbitration
Events
arrive l l l
—»| elIncrease Introduce » Scheduling
Computational Concurrency Policy
Efficiency * Maintain Multiple
* Reduce Copies
Computational * Increase
Overhead Available
e Manage Event Rate Resources
« Control Frequency
Of Sampllng © David Garlan & Bruce Krogh

Response
generated
within time
constraints

>

40

Outline

e What is Software Architecture?
e Definition & Intent
e Architecture Representations as Models
e Benefits

e Basic concepts of software architecture
e Views, Styles, and Tactics

e CPS Architectures
e Adding physical elements to the models
e Reconciling multiple views

© David Garlan & Bruce Krogh 41

Extending Architecture to CPS

e Three main problems

Extending architecture models to support both
cyber and physical elements (and their
Interactions)

Incorporating existing modeling techniques
Reconciling multiple views

© David Garlan & Bruce Krogh 42

High Level
Control Processg

PS

Low Level
Control Processaq

Electronics
Interface

Ultrasonic Ranger
Battery

Bruce Krogh 43

Extended with Physical oo
Elements

e Include physical system as a set of interacting
components with shared variables/coupled
constraints

Components: Physical elements (mechanical,
electrical, thermal, environmental,...)

Connectors: Physical interactions (conservation laws,
energy flows, ...)

Behavior: Dynamic behavior of elements (DAEs, LHA,
.0)
e Bridging elements link physical elements to
cyber elements

© David Garlan & Bruce Krogh 44

Quadrotor Architectural Model | ::°

Cyber elements

Bridging elements

Physical elements

© David Garlan & Bruce Krogh 45

Models as Architectural Views
Control —s[fks f:] camp T" > Sl
Model %[= 11

R | ——
model-to-architectural-view relations
Control
Arch.
Arch. View X
R architectural -view-to-base-arch. relations RY
BA | [— BA
o B S I S B =
s B = I T) S e

© David Garlan & Bruce Krogh

Base CPS Architecture

Hardware

Model

Hardware
Arch.

Arch. View Y

46

000
0000
' YXXK)
- .| sas
STARMAC Architectural Views ::-
Hardware (AADL) Software (FSP) Physical (Modelica)
ﬁ—al&& : —
Model
Arch.
View
Base | - =
aeh. <
iy by © David Garlan & Bruce Krog

References - 1

General Architecture

Shaw, M.; Garlan, D. Software Architecture: Perspectives on an
Emerging Discipline, Upper Saddle River, NJ: Prentice Hall, 1996

Bass, L.;: Clements, P. & Kazman, R. Software Architecture in
Practice, Second Edition. Boston, MA: Addison-Wesley, 2003.

Lattanze, A. Architecting Software Intensive Systems: A
Practitioners Guide, New York, NY: Taylor and Francis, 2008

Buschmann, F.; Meunier, R.; Rohnert, H.; Sommerlad, P.; Stal, M.
Pattern Oriented Software Architecture: A System of Patterns. West
Sussex England: John Wiley Ltd., 1996.

Clements, P. et al., Documenting Software Architecture: Views and
Beyond, Second Edition, Addison Wesley, 2011.

© David Garlan & Bruce Krogh 48

References - 2

Conferences
e Working International Conference on Software Architecture (WICSA)
e European Conference on Software Architecture (ECSA)

Software Architecture at CMU
° then click on publications

CPS Architecture Research at CMU

© David Garlan & Bruce Krogh 49

