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Outline

e What is Software Architecture?
Definition & Intent
Architecture Representations as Models
Potential Benefits

e Basic concepts of software architecture
Views, Styles, and Tactics

e CPS Architectures
Adding physical elements to the models
Reconciling multiple views
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Examples of Software
Architecture
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More Examples
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FIGURE 7. Flight Computer Operating System (The FOOS dispalcher coordinates
and controls all work performed by the on-board computers.)
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More Examples
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Figure 2. Display PostScript interpreter components.

An varview of the DISFLAY posTSCRIPTTE Syatem, Adobe Systess Incorporated, Mareh 016, 19BE, P. 10
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More Examples
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Existence and deletion ?reference counts)
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Secure Tree

Basic crash-resistant file structure
Conditional commit
Provision of secure array of blocks

System
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Figure 2. Abstraction layering.

IEEE Sofrware, "Helix: The architecture of the XM5 Distribuced File Sverenm,
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More Examples
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More Examples
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More Examples
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Software Architecture in Context -

SOA
Model-driven design

Component-based Systems
Product lines

Software architecture,””

Object-oriented Patterns Programming-
Packages 1990 in-the-world

Pipes and filters /
Software development environments

Inher|tance> objects 1980

Abstract data types
Programming-in-the-large
Information hidin

NATO SE conference ﬁ.970

Programming-
in-the-large

Programming

Separate compilation -in-the-small
Subroutines 1960
/ Programming-
1950 any-which-way
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What i1s Software Architecture? oot

e There are many definitions in the literature
e The definition that | currently use is*

* Documenting Software Architecture: Views and Beyond, 2"d Ed. Clements et al. 2010.
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Issues Addressed by
Software Architecture :

e Gross decomposition of a system into parts

e often using rich abstractions for component interaction
(or system “glue’)
e often using common design patterns/styles

e Emergent system properties
e performance, throughput, latencies
o reliability, security, fault tolerance, evolvability

e Rationale
e justifying architectural decisions and tradeoffs

e Envelope of allowed change
e “load-bearing walls”
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Example of Google File
System
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Architectures as Models

e Representations of software architecture
can be treated as models

e Architecture-based design is then

a form of model-based design Requiremen
e Representations L
Informal: box-and-line (ppt, visio, ...) [soteercniecue
Semi-formal: formal syntax le

(UML, SysML)
Formal: formal semantics (AADL, Acme, ...)
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Component-and-Connector
Models

system
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Potential Benefits T

e Abstraction — manage complexity, support
reuse (component, style, tactic), naturally
represent computations in a given domain

e Guidance — constrain developers, support
conceptual integrity

e Implementation support —tools for moving
from architecture to code

e Analysis — support decision making, allowing
application of existing analytical theories &
tools

© David Garlan & Bruce Krogh 16



Outline -

e What is Software Architecture?
e Definition & Intent
e Architecture Representations as Models
e Benefits

e Basic concepts of software architecture
e Views, Styles, and Tactics

e CPS Architectures
e Adding physical elements to the models
e Reconciling multiple views
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Recall °:
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What is a Structure? — 1

e Software architecture is an abstraction of the
structures that comprise the software that is
part of a software-intensive system.

e Systems have many structures
code
processes/threads
files

© David Garlan & Bruce Krogh 19



What Is A Structure? — 2

e A representation of a structure is usually called
a view of the system.

Physical Perspective

e Allocation Views: A
- computers l
- devices
- networks
— w ZRuntime Perspective
Static Perspective « Component-and-connector Views

* Module Views: - processes
- classes - sequence diagrams
- functions - dataflow
- interfaces
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Structures and Views — 1

To the bady

5 Heart Anatomy

Key

---& Blood flow ol

1 F $th
A human body is a static view of a dynamic view
comprised of multiple one human of that structure
structures. structure

One body has many structures, and those structures have many
views. So it is with software...

© David Garlan & Bruce Krogh 21



Three Important Classes of T
Architectural View

How It Is structured as a set of code units
module views

How It IS structured as a set of elements that
have run-time behavior and interactions
component-and-connector views

How It relates to non-software structures in Its
environment?
allocation views
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Example: Alternating i
Characters - Module View °
Produce alternating case of characters
INn a stream | “sofTWareArchitecture”
main —=
// Wemm ItEcTuRe”
split lower upper merge
\ ‘/Legend
config input/output Module
Definition/Use Modularization Uses  —
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Example continued:
C&C View :

Legend

Filter

Components and Connectors Pipe —
Binding ——
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Module Views

e Elements are design-time artifacts: code,
libraries, modules, packages, config files
e Common types of module views
Decomposition views — part-whole relations
Class diagrams — usage, inheritance, realization
Layer diagrams — restricts usage patterns

© David Garlan & Bruce Krogh 25



A-7E Decomposition View




A-7E Layered View

Function driver

Shared services

Data Physical Filter
banker models behaviors

Device interfaces

Application datatypes

Software
utilities

Extended computer

Key: Behavior-hiding module

Software decision hiding module

Hardware hiding module
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Component & Connector Views

e Elements are components and connectors
e May be hierarchical
e Annotations provide semantics

© David Garlan & Bruce Krogh 28



Eample C&C View

®
-
Legend
Administrator M Facade
Console e Component Web Component
1
LDAP Directory
N\

RDBMS

m
Rule & 8 §' Integrated

== Data Re )

o P Direct Adapter

Configuration DB

Indirect Adapter

Controller

Viewer

Transaction Log

Dl mwoO

Interface

SOAP Conndgtor
& roles

F—< >—1{1 LDAP ConnectorY

& roles
B—< >—m DB Connector

& roles
E——)——1 RMI Connector

& roles

—
Change Log

108.1pu|

=1
=
S
@
Q
—

Tle1depy
oong
ZJa1depy

— Event Bus
—a Connector

? ; & rol
I‘l‘l I‘E System Boundary
—
External External ern, External
(53 e
LDAP1 | DAP2 6@&% rlan éﬁruc Krogh 29




Elaboration of Join Engine
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Styles

e Define a specialized vocabulary for a kind of
view
Pipes and filters
Clients and servers
Publishers and subscribers

e Establish constraints
Clients can’t talk to each other directly
No cycles in a pipe-and-filter system

e Provide analysis opportunities

© David Garlan & Bruce Krogh 31
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o
A (Partial) Catalogue of Styles
e Data flow e Event-based
batch sequential asynchronous messaging
pipes and filters publish-subscribe
process control implicit invocation
e Call-return data-triggered

main program-subroutine

. . e Data-centered
object-oriented

component-based repository
peer-to-peer blackboard
service-oriented shared variable

N-tiered
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Specialized Architectural Styles

e There Is a spectrum of architectural styles
e Some are generic; others are more domain-specific
and specialized.
e Specialization supports analysis, code reuse, tools

Generic Domain-Spec
: : Component Component
Generic Generic Sty - -
o Integration Integration :
Styles Specializatigns Star?dards Star?dards Prpduct Lines

EJB ektronix Oscilloscopes
Xerox Network Scanning
Arch

Domain-Specificity =———>

© David Garlan & Bruce Krogh 33



Example: NASA Mission Data | ss:
Systems (MDS) :

e MDS defines an architectural framework for a

family of NASA space systems

e System of architectural component types

e Rules on how they can be connected

e Run-time infrastructure for executing MDS
systems

e Reusable code base

e Checking/ensuring conformance to MDS is

an important and hard problem

e Many rules, many components, complex topology

» Mapping between architectural design and code
IS non-trivial g
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Temperature Control System

"set comstra

—get temp meas” T
- 1 TSEN

© David Garlan & Bruce Krogh 36

"get command"




The MDS Style

Constraint Execution

State Update * | ) wmTm

Measurement Query
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Tactics

e A tactic Is a design decision that refines a high
level style/pattern and is influential in the
control of a quality attribute response.

e Tactics complement and refine patterns that
make up the architecture.

____________________________________________________________________________________________
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Fault
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Avallability Tactics
4 Availability
Fault
masked
Fault or
Fault Recovery Fault Recovery Fault repair
Detection Preparation and Prevention |made
l ancll Repair Reiniroduction l .
« Ping/Echo *Voting « Shadow « Removal
e Heartbeat *Active « State From Service
«Exception  Redundancy Re-synchronization « Transactions
» Passive * Rollback * Process
Redundancy Monitor
e Spare
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Performance Tactics
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Outline

e What is Software Architecture?
e Definition & Intent
e Architecture Representations as Models
e Benefits

e Basic concepts of software architecture
e Views, Styles, and Tactics

e CPS Architectures
e Adding physical elements to the models
e Reconciling multiple views
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Extending Architecture to CPS

e Three main problems

Extending architecture models to support both
cyber and physical elements (and their
Interactions)

Incorporating existing modeling techniques
Reconciling multiple views

© David Garlan & Bruce Krogh 42



High Level
Control Processg

PS

Low Level
Control Processaq

Electronics
Interface

Ultrasonic Ranger
Battery
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Extended with Physical oo
Elements

e Include physical system as a set of interacting
components with shared variables/coupled
constraints

Components: Physical elements (mechanical,
electrical, thermal, environmental,...)

Connectors: Physical interactions (conservation laws,
energy flows, ...)

Behavior: Dynamic behavior of elements (DAEs, LHA,
.0)
e Bridging elements link physical elements to
cyber elements

© David Garlan & Bruce Krogh 44



Quadrotor Architectural Model | ::°

Cyber elements

Bridging elements

Physical elements
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Models as Architectural Views
Control  —s[fks f: ] camp T" > Sl
Model %[ = 11

R | ——
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Arch. View X
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