
A Component Model and

Software Architecture for CPS

NASA Cooperative Agreement NNX08AY49A

Abhishek Dubey, Gabor Karsai,

Nagabhushan Mahadevan

ISIS/Vanderbilt University

Outline

 Software components for real-time systems

 ARINC-653 features

 CCM features

 The ARINC Component Model

 Components and interactions

 Modeling and generation

 Application: Software Health Management

 Implementation

 An Example

 Lessons Learned / Summary

Notional Design Flow for

High-Confidence Software Systems

RA

FD

CD

HwA

SY

DPL

Functional
Mod/Sim

Arch Mod/Sim

Alloc./Sched.
Analysis

HW Pwr/
Perf Est

Latency/RT
Analysis

SwA

Requirement Specification

Control Design

Component Design

Software Architecture HW Arch. Design

System Arch. Design

Code Gen.
Verif.

SW Deployment

What is a ‘component’?

Hard Real-time Components?

 Need:

 A Component Model suitable for hard real-time systems that codifies all

component interactions and allows specification of timing requirements

 Real-time CORBA?

 QoS and scheduling attributes on CCM

 MARTE UML Profile?

 Specifications for timing properties in UML models

 AUTOSAR?

 Component execution model? (Only recently added).

ARINC-653/APEX:

Partitioning Kernel API

 Partitions:

 Spatial and Temporal separation of activities – Fault isolation!

 Partition memory size and temporal duration are fixed

 Within a partition (shared address space)

 Multiple processes (static); periodic/aperiodic, with opt deadline

 Primitives for process interactions: buffers and blackboards, semaphores and

events

 Health monitor (to restart processes)

 Across partitions (isolated address spaces)

 Fixed allotment of CPU time

 Message-based interactions via channels connecting sampling and queuing ports

 Multiple processors (‘modules’) – few details standardized

CORBA Component Model

 Components

 Generalized ‘objects’ with state

 Synchronous (call/return) interactions via provided/required interfaces

 Asynchronous (publish/subscribe) interactions via publish/subscribe interfaces

 Component homes

 Lifecycle and resource management for components

ACM:

The ARINC Component Model

 Provide a CCM-like layer on top of ARINC-653 abstractions

 Notional model:

 Terminology:

 Synchronous: call/return

 Asynchronous: publish-return/trigger-process

 Periodic: time-triggered

 Aperiodic: event-triggered

ACM:

The ARINC Component Model

 Each ‘input interface’ has its own process

 Process must obtain read-write/lock on component

 Asynchronous publisher (subscriber) interface:

 Listener (publisher) process

 Pushes (receives) one event (a struct), with a validity flag

 Can be event-triggered or time-triggered (i.e. 4 variations)

 Synchronous provided (required) interface:

 Handles incoming synchronous RMI calls

 Forwards outgoing synchronous RMI calls

 Other interfaces:

 State: to observe component state variables

 Resource: to monitor resource usage

 Trigger: to monitor execution timing

 A component assembly

Components interact via asynchronous/event-triggered and synchronous/call-driven connections.

Example: The Trigger component is released periodically and it publishes an event upon each activation. The GPS

component subscribes to this event and is triggered sporadically to obtain GPS data from the receiver, and

when ready it publishes its own output event. The Display component is triggered sporadically via this

event and it uses a required interface to retrieve the position data from the GPS component.

Partition2

Partition1

Trigger

Component GPS

Component

NAVDisplay

Component

P
S

S

P

S

S

ACM:

The ARINC Component Model

ACM:

The ARINC Component Model
 Mapping the CCM concepts to APEX in ACM

 Observe:
 All component interactions are realized via the framework

 Process (method) execution time has deadline, which is monitored

ACM: APEX Component Model APEX APEX Concept Used

Component method Periodic Periodic process Process start, stop

Semaphores
Sporadic Aperiodic process

Invocation Synchronous

Call-Return

Periodic

Target

Co-located N/A

Non-co-located N/A

Sporadic

Target

Co-located Caller method signals callee to release

then waits for callee until completion.

Event, Blackboard

Non-co-located Caller method sends RMI (via CM) to

release callee then waits for RMI to

complete.

TCP/IP, Semaphore,

Event

Asynchronous

Publish-Subscribe

Periodic

Target

Co-located Callee is periodically triggered and polls

‘event buffer’ – validity flag indicates

whether data is stale or fresh

Blackboard

Non-co-located Sampling port, Channel

Sporadic

Target

Co-located Callee is released when event is available Blackboard,

Semaphore, Event

Non-co-located Caller notifies via TCP/IP, callee is

released upon receipt

Queuing port,

Semaphore, Event

Modeling Language
 Modeling elements:

 Data types: primitive, structs, vectors

 Interfaces: methods with arguments

 Components:

 Publish/Subscribe ports (with data type)

 Provided/Required interfaces (with i/f type)

 Health Manager

 Assemblies

 Deployment

 Modules, Partitions

 Component Partition

Modeling

 Needs for analysis: component internals + assembly

 Component internal data- and control flows

 Component Assembly Model

Background

 Project on Model-based Software Health Management

 How to build ‘software health management functions’ into

systems that monitor, diagnose, and mitigate software defects

at run-time?

 Concept

 Use model-based fault diagnostics techniques for monitoring and

diagnosis

 Use model-based software development techniques to design, analyze,

and generate the code for the software health management function

Modeling Language: Monitoring

14

 Monitoring on component interfaces

 Subscriber port ‘Subscriber process’ and

Publisher port ‘Publisher process’

 Monitor: pre-conditions and post-conditions

 On subscriber: Data validity (‘age’ of data)

 Deadline (hard / soft)

 Provided interface ‘Provider methods’ and

Required interface ‘Required methods’

 Monitor: pre-conditions and post-conditions

 Deadline (hard / soft)

 Can be specified on a per-component basis

 Monitoring language:

 Simple, named expressions over input (output)

parameters, component state, delta(var), and

rate(var,dt). The expression yields a Boolean condition.

Modeling Language:

Component Health Manager

15

 Reactive State Machine

 Event trigger:

 Predefined condition (e.g. deadline violation, data validity validation)

 User-defined condition (e.g. pre-condition violation)

 Reaction: mitigation action (start, reset, refuse, ignore, etc.)

 State: current state of the machine

 (Event X State) Action

ACM:

A Prototype Implementation

 ARINC-653 Emulator

 Emulates APEX services using Linux API-s

 Partition Process, Process Thread

 Module manager: schedules partition set

 Partition level scheduler: schedules threads within partition

 CORBA foundation

 MICO CCM ORB

 No modifications
 CLHM: Component-level Health Manager

ACM:

A Prototype Implementation

 Platform:

 ARINC-653 Emulator on Linux

 MICO (open source CORBA)

 Module manager, infrastructure

 Code generator

 Produces ‘glue code’ for the

component framework

 Compiles monitoring expressions

 Builds code for CHM

Designer supplies functional code

Code Generator

ACM:

Model-based Development

 Graphical models are used the generate ‘infrastructure’ code

Partition2Partition1

Example:
Fault Detection and Mitigation scenarios

Sensor

Component GPS

Component

NAVDisplay

Component

P
S

S

P

S

Fault Detected at Fault source Mitigation

Hard deadline violation GPS Trigger interface GPS Component Stop and restart

Stale data (missing update) NAVDisplay Subscribe port GPS Component Use previous value

Missing sensor event GPS Subscribe port Sensor Component Use previous value

Rate of change is too high NAVDisplay required interface GPS Component Use previous value

S

Lessons Learned / Summary

 Two worlds: The highly dynamic CCM and the strictly
static ARINC do not mesh well

 Allocating a thread to every method is possibly a waste of
resources

 For analyzability a deeper modeling of component
structure and behavior is needed

 ACM: Steps towards a hard real-time component model
 CCM: provides the essential component abstraction

 ARINC: provides the API / platform

 Model-based configuration and code generation helps

 ACM is an experiment – work in progress

