
A Component Model and

Software Architecture for CPS

NASA Cooperative Agreement NNX08AY49A

Abhishek Dubey, Gabor Karsai,

Nagabhushan Mahadevan

ISIS/Vanderbilt University

Outline

 Software components for real-time systems

 ARINC-653 features

 CCM features

 The ARINC Component Model

 Components and interactions

 Modeling and generation

 Application: Software Health Management

 Implementation

 An Example

 Lessons Learned / Summary

Notional Design Flow for

High-Confidence Software Systems

RA

FD

CD

HwA

SY

DPL

Functional
Mod/Sim

Arch Mod/Sim

Alloc./Sched.
Analysis

HW Pwr/
Perf Est

Latency/RT
Analysis

SwA

Requirement Specification

Control Design

Component Design

Software Architecture HW Arch. Design

System Arch. Design

Code Gen.
Verif.

SW Deployment

What is a ‘component’?

Hard Real-time Components?

 Need:

 A Component Model suitable for hard real-time systems that codifies all

component interactions and allows specification of timing requirements

 Real-time CORBA?

 QoS and scheduling attributes on CCM

 MARTE UML Profile?

 Specifications for timing properties in UML models

 AUTOSAR?

 Component execution model? (Only recently added).

ARINC-653/APEX:

Partitioning Kernel API

 Partitions:

 Spatial and Temporal separation of activities – Fault isolation!

 Partition memory size and temporal duration are fixed

 Within a partition (shared address space)

 Multiple processes (static); periodic/aperiodic, with opt deadline

 Primitives for process interactions: buffers and blackboards, semaphores and

events

 Health monitor (to restart processes)

 Across partitions (isolated address spaces)

 Fixed allotment of CPU time

 Message-based interactions via channels connecting sampling and queuing ports

 Multiple processors (‘modules’) – few details standardized

CORBA Component Model

 Components

 Generalized ‘objects’ with state

 Synchronous (call/return) interactions via provided/required interfaces

 Asynchronous (publish/subscribe) interactions via publish/subscribe interfaces

 Component homes

 Lifecycle and resource management for components

ACM:

The ARINC Component Model

 Provide a CCM-like layer on top of ARINC-653 abstractions

 Notional model:

 Terminology:

 Synchronous: call/return

 Asynchronous: publish-return/trigger-process

 Periodic: time-triggered

 Aperiodic: event-triggered

ACM:

The ARINC Component Model

 Each ‘input interface’ has its own process

 Process must obtain read-write/lock on component

 Asynchronous publisher (subscriber) interface:

 Listener (publisher) process

 Pushes (receives) one event (a struct), with a validity flag

 Can be event-triggered or time-triggered (i.e. 4 variations)

 Synchronous provided (required) interface:

 Handles incoming synchronous RMI calls

 Forwards outgoing synchronous RMI calls

 Other interfaces:

 State: to observe component state variables

 Resource: to monitor resource usage

 Trigger: to monitor execution timing

 A component assembly

Components interact via asynchronous/event-triggered and synchronous/call-driven connections.

Example: The Trigger component is released periodically and it publishes an event upon each activation. The GPS

component subscribes to this event and is triggered sporadically to obtain GPS data from the receiver, and

when ready it publishes its own output event. The Display component is triggered sporadically via this

event and it uses a required interface to retrieve the position data from the GPS component.

Partition2

Partition1

Trigger

Component GPS

Component

NAVDisplay

Component

P
S

S

P

S

S

ACM:

The ARINC Component Model

ACM:

The ARINC Component Model
 Mapping the CCM concepts to APEX in ACM

 Observe:
 All component interactions are realized via the framework

 Process (method) execution time has deadline, which is monitored

ACM: APEX Component Model APEX APEX Concept Used

Component method Periodic Periodic process Process start, stop

Semaphores
Sporadic Aperiodic process

Invocation Synchronous

Call-Return

Periodic

Target

Co-located N/A

Non-co-located N/A

Sporadic

Target

Co-located Caller method signals callee to release

then waits for callee until completion.

Event, Blackboard

Non-co-located Caller method sends RMI (via CM) to

release callee then waits for RMI to

complete.

TCP/IP, Semaphore,

Event

Asynchronous

Publish-Subscribe

Periodic

Target

Co-located Callee is periodically triggered and polls

‘event buffer’ – validity flag indicates

whether data is stale or fresh

Blackboard

Non-co-located Sampling port, Channel

Sporadic

Target

Co-located Callee is released when event is available Blackboard,

Semaphore, Event

Non-co-located Caller notifies via TCP/IP, callee is

released upon receipt

Queuing port,

Semaphore, Event

Modeling Language
 Modeling elements:

 Data types: primitive, structs, vectors

 Interfaces: methods with arguments

 Components:

 Publish/Subscribe ports (with data type)

 Provided/Required interfaces (with i/f type)

 Health Manager

 Assemblies

 Deployment

 Modules, Partitions

 Component  Partition

Modeling

 Needs for analysis: component internals + assembly

 Component internal data- and control flows

 Component Assembly Model

Background

 Project on Model-based Software Health Management

 How to build ‘software health management functions’ into

systems that monitor, diagnose, and mitigate software defects

at run-time?

 Concept

 Use model-based fault diagnostics techniques for monitoring and

diagnosis

 Use model-based software development techniques to design, analyze,

and generate the code for the software health management function

Modeling Language: Monitoring

14

 Monitoring on component interfaces

 Subscriber port  ‘Subscriber process’ and

Publisher port  ‘Publisher process’

 Monitor: pre-conditions and post-conditions

 On subscriber: Data validity (‘age’ of data)

 Deadline (hard / soft)

 Provided interface  ‘Provider methods’ and

Required interface  ‘Required methods’

 Monitor: pre-conditions and post-conditions

 Deadline (hard / soft)

 Can be specified on a per-component basis

 Monitoring language:

 Simple, named expressions over input (output)

parameters, component state, delta(var), and

rate(var,dt). The expression yields a Boolean condition.

Modeling Language:

Component Health Manager

15

 Reactive State Machine

 Event trigger:

 Predefined condition (e.g. deadline violation, data validity validation)

 User-defined condition (e.g. pre-condition violation)

 Reaction: mitigation action (start, reset, refuse, ignore, etc.)

 State: current state of the machine

 (Event X State) Action

ACM:

A Prototype Implementation

 ARINC-653 Emulator

 Emulates APEX services using Linux API-s

 Partition  Process, Process Thread

 Module manager: schedules partition set

 Partition level scheduler: schedules threads within partition

 CORBA foundation

 MICO CCM ORB

 No modifications
 CLHM: Component-level Health Manager

ACM:

A Prototype Implementation

 Platform:

 ARINC-653 Emulator on Linux

 MICO (open source CORBA)

 Module manager, infrastructure

 Code generator

 Produces ‘glue code’ for the

component framework

 Compiles monitoring expressions

 Builds code for CHM

Designer supplies functional code

Code Generator

ACM:

Model-based Development

 Graphical models are used the generate ‘infrastructure’ code

Partition2Partition1

Example:
Fault Detection and Mitigation scenarios

Sensor

Component GPS

Component

NAVDisplay

Component

P
S

S

P

S

Fault Detected at Fault source Mitigation

Hard deadline violation GPS Trigger interface GPS Component Stop and restart

Stale data (missing update) NAVDisplay Subscribe port GPS Component Use previous value

Missing sensor event GPS Subscribe port Sensor Component Use previous value

Rate of change is too high NAVDisplay required interface GPS Component Use previous value

S

Lessons Learned / Summary

 Two worlds: The highly dynamic CCM and the strictly
static ARINC do not mesh well

 Allocating a thread to every method is possibly a waste of
resources

 For analyzability a deeper modeling of component
structure and behavior is needed

 ACM: Steps towards a hard real-time component model
 CCM: provides the essential component abstraction

 ARINC: provides the API / platform

 Model-based configuration and code generation helps

 ACM is an experiment – work in progress

