Open Analytic Runtime Models for CPS

L)
ILLINOIS

{E Software Engineering Institute | CarnegieMellon

Min-Young Nam
Dionisio de Niz
Lutz Wrage
Lui Sha
Presented at the Workshop on Architectures for CPS

11 April 2011 CPS Week m
University of Illinois at Urbana-Champaign 1

Motivation

= Cyber-Physical Systems (CPS) are complex
software-reliant systems that interact with physical
processes

= Analytic algorithms are used to verify safety critical
properties at a higher level of abstraction and
synthesize the low level behavior of design
decisions

= Model-Based Engineering (MBE) Is a promising
solution for early analysis

= For large complex sPlstems with multiple analysis
support, the general method of implementing
analysis tools Is error prone, costly and limits the
benefits of MBE.

University of Illinois at Urbana-Champaign m 2

Motivation Scenario

Analysis 1 Analysis 2 Analysis 3

N

University of Illinois at Urbana-Champaign m 3

Analysis 1

Motivation Scenario

L Analysis 2

Tool A from developer A

Analysis 3

N

Output
Analysis 1

Output
Analysis 2

Tool B from developer B

\

Output
Analysis 3

University of Illinois at Urbana-Champaign 4

Motivation Scenario 1

Update

Input
Analysis 2 Analysis 3
Tool A from developer A Tool B from developer B

User would have to very familiar for
multiple analysis
Gets more difficult to add new analysis

Output Output Output
Analysis 1 Analysis 2 Analysis 3

University of Illinois at Urbana-Champaign 5

Motivation Scenario 2

From
supplier
Analysis 1 L Analysis 2 Analysis 3
Tool A from developer A Tool B from developer B
Output Output Output
Analysis 1 Analysis 2 Analysis 3

University of Illinois at Urbana-Champaign 6

Motivation Scenario 2

Analysis 1 L Analysis 2 Analysis 3

ot o dsopa vt |

Tool B from developer B

University of Illinois at Urbana-Champaign 7

Problem: Users are In the Dark

Analysis 1 y Analysis 2

Tool A from developer A

Analysis 3

NS

-
Tool B from developer B

User would have to very familiar for

multiple analysis

Gets more difficult to add new analysis

Output Output
Analysis 1 Analysis 2

Output
Analysis 3

University of Illinois at Urbana-Champaign m 8

Our Solution: OAR models

Shared functions

Function overloading
1

: Output
Anal I H .
ysis Solver neilyeTs 2

—

Output > Output
Analysis 1 Analysis 3

University of Illinois at Urbana-Champaign m 9

Our Solution: OAR models

New Analysis

: Output
Anal I)—9 .
y5|s Solver neilyeTs 2

Output Output Output
Analysis 1 New Analysis Analysis 3
University of Illinois at Urbana-Champaign m 10

Our Solution: OAR models

~ Updated
~ Analysis 3

_ Output
Anal I "9 i
nalysis Solver Analysis 2

—

Output > Output
Analysis 1 Analysis 3

University of Illinois at Urbana-Champaign m 11

Our Solution: OAR models

AADL + Analysis Annex

A,

University of Illinois at Urbana-Champaign m 12

Contents

= Problem Statement
= Features of OAR models
= OAR models in AADL - Analysis Annex

= Type system for Model Reuse
= Example model and analysis
= Performing Analyses

= Conclusion

University of Illinois at Urbana-Champaign m 13

Problem Statement

= Hidden Semantics of Analysis Algorithms

- Hides complex behavior that the algorithm explores
implicitly

* Interpretation of the model
» What units are used for execution time

« Assumptions of the behavior of other parts of the model

= These difficulties makes the model-based
engineering benefits limited for models

University of Illinois at Urbana-Champaign m 14

Features of OAR models

= Models embed the executable analytic
algorithms used to verify properties of the
system.

= Have complete declaration of the parts of the
model they read and write.

= Functional decomposition of the algorithm that
follows the decomposition in the model.

= Type system for safe analysis reuse.

University of Illinois at Urbana-Champaign m 15

OAR Models in AADL

SAE AADL (Architecture Analysis & Design Language)

*Notation for specification of runtime architecture of real-time,
embedded, fault-tolerant, secure, safety-critical, software-
Intensive systems - designed for Model Based Engineering

Fields of application: Avionics, Aerospace, Automotive,
Autonomous systems, Medical devices — current focus

*Based on 15 years of research & industry input

International Standard approved & published Nov 04, V2 Jan
09

*Industry driven standard

‘www.aadl.info o St

@=esa

T ﬁ\ 7. \
SRk amet \ om g

™ AIRBUS

@ﬂﬂflﬂﬂ P TOYOTA

Slide provided by SEI University of lllinois at Urbana-Champaign m 16

Honeywell

OAR Models in AADL (cont’d)

=Analysis Annex for AADL

-+ Structure
» properties
— AADL properties that queries and functions access
» queries
— Model Query Language (MQL)
» functions
— Represent the analysis algorithm with a set of functions

» updates

— ldentifies the functions that modify the model along with the
part of the model that these functions modify

Slide provided by SEI University of lllinois at Urbana-Champaign m 17

properties and updates

= properties
- AADL properties that queries and functions
access

* List property names separated by commas

= updates

+ <element type>.<property access> <—
IDENTIFIER()

» EX) processor:p.ACE::CurrentFrequency <-
minFrequencyPairs();

Slide provided by SEI University of lllinois at Urbana-Champaign m 18

queries: Model Query Language

=Used to traverse the model

* IDENTIFIER <- <type specification>:IDENTIFIER [in
IDENTIFIER] | <filter condition>

» EX 1) higherPriorityThreads <- thread:Xx |
X.Actual_Processor_Binding =this.Actual _Processor_Binding
and x.Deadline(ms) <= this.Deadline(ms);

» Ex 2) AllSubProcessors <- processor:p in this;
» Ex 3) BPAIIProcesses <- process:p in this;
» BPAIlIThreads <- thread:t in BPAIIProcesses;

- IDENTIFIER <—(<type specification>:<var name>[in
IDENTIFIER] | <filter condition>).<property access>

Slide provided by SEI University of lllinois at Urbana-Champaign m 19

functions: Analysis Functions

=Contains the set of functions that comprise the
analysis algorithm

- <return value type> <function_name> (<list of
argument definition>)

 Calling local function
» this.<function_name>(<list of arguments>)

» Accessing local AADL property
» this.<property access>

- Calling functions of query result
» <query_result name>.<function_name>(<list of arguments>)

« Accessing AADL property of query result
» <query_result_name>.<property access>

Slide provided by SEI University of lllinois at Urbana-Champaign m 20

functions: Example

thread FowecrEfficientThread
ammex analysis {+=+
cueries —
higherPrioThrds (thread:x | Query reSUIt name
®x.hotual Processor_Binding =
this.Actual Procezzor_Binding and
¥.02adline(ma) <= this.Deadline(ms);
functions
double EnergyMinFredq(int maxClockFreq){

double omega; —= USing local AADL property

d = this.Deadline (mz): €

omega = this.
Compute_Execution Time [max] (ma) /
maxClockFred;

subomega = higherPrioThrds. / Calling functions of query results

getiubinega {omega, maxClockFred);
subIdleDuratlion = higherPFrioThrds.
getsubIdleDuration (omega, d);

double getSubdnega (double omega,
int maxClockFred)
this. Conpute_Execution_Time [max] (ma) /
maxClockFreq = (Floor[(omega / ; :
this.boriodime))] 1)) — Decomposing of functions
double gets3ubIdleDuration (double omega,
double deadline){ ... }

x% |

Slide provided by SEI University of lllinois at Urbana-Champaign 21

Type System for Model Reuse

Similar to Object-Oriented programming

« Code -> Analysis algorithm
« Data structure -> Model

Analysis annex Type System
» For data, already implemented in AADL

* Inheritance

» Analysis annex generally follow the inheritance of AADL components
» Queries are not inherited for avoiding confusion about query conditions

function fL €omponent

defined Type A
- Component Component
function f2 _ |
duer;fnfdn Type B < — = = |mplementation Contains f1, f2
extends A Type B

University of lllinois at Urbana-Champaign m 22

Type System for Model Reuse

Analysis Libraries can be defined

Inheriting Multiple Annexes

For a system that supports more than
two analysis of different types each
type would have to extend one another
for the system to inherit all analysis

This is due to the single-parent
inheritance of AADL

Library functions Component
for Analysis A Type A
Library functions CO_Ir_nponBent
for Analysis A ype
extends A
Library functions COTmponCc:ant
for Analysis A ype
extends B

University of lllinois at Urbana-Champaign m 23

Contents

= Example model and analysis
= Performing Analyses
= Conclusion

University of Illinois at Urbana-Champaign m 24

Example Model

= Seven applications on a battle ship

- RadarTracking: interfaces with the radar device and creates tracks of the objects
in the sky

- UAVTracking: consolidates the tracking information received from UAVs
(Unmanned Aerial Vehicles)

« EngagementPlanning: processes the tracking information received from the
RadarTracking and UAVTracking threads and develops engagement strategies

- AssetControl: receives the engagement strategies from the EngagementPlanning
threads and coordinates the assets in an engagement

* RequestPressRelease: receives press release requests from news agencies

- PressReleaseClearance: sanitizes the engagement information received from
the engagement planning module and generates responses to the press release
request forwarded by the RequestPressRelease thread

* PressReleaseDissemination; transmits the sanitized information to the news
agencies

= Four processors available to use

University of Illinois at Urbana-Champaign m 25

Example Analysis

= Confidentiality assurance algorithm (Security package)

« Using the security level of applications, determines which threads should not
executed by the same processor for security

= Bin packing algorithm (RealTime package)
- Assigns tasks to processors

= Frequency scaling algorithm (PowerEfficiency package)

* Reduces the frequency of processors while ensuring deadlines of real-time tasks
are met

University of lllinois at Urbana-Champaign m 26

Example Analysis

= Confidentiality assurance

algorithm (Security package) E;g}’gircy
= Bin packing algorithm 1

(RealTime package) Security
= Frequency scaling algorithm RealTime

(PowerEfficiency package)

University of lllinois at Urbana-Champaign m 27

Example Analysis

Listing 2 Example Model for Confidentiality Assurance

= Confidentiality assurance package security
algorithm (Security package) thresd Securemhread extends oemurosd
annex analysis {+=
functions

String getBecurityClazs () {
this.Security Attributes::Class }

. . . ~x);
= Bin packing algorithm end SecureThread;
(RealTime package) R mwerBfficioncy: oot BEFicisntsysten

annex analysis {+=
functions
int Security(){

classes = AllThreads,
getSecurityClass () ;

. . PN

= Frequency scaling algorithm updates

thread:t.Wot_Collocated <- Security():

(PowerEfficiency package) 7

end SecureSystenm
end Securlty;

University of lllinois at Urbana-Champaign m 28

Example Analysis

= Confidentiality assurance
algorithm (Security package)

= Bin packing algorithm
(RealTime package)

= Frequency scaling algorithm
(PowerEfficiency package)

Listing 3 Example Model for Bin packing

package RealTime
public
thread RealTimeThread extends
Security::3ecureThread
annex analysis {+=
functioens
double getUtilization(){

p=this.Feriodims);
c=this.Compute_Executicon_Time [max] (ms);

int getWotCollocated(){
this.Not_Collocated } xx};
end EcalTimethread;

system FealTimesystem extends
Securlity::SecuresSysten
annex analysis {+x
queries
BFAl1lProcesses <— procesz:p in this;
EPL]11Threads <- thread:t in
BEPAllProceszes;
L11Processors <— processor:pr in this;
functions

BinPack(i{ ... }
updates
thread:t .Actual_ Processor_Binding <-
BinFack ();
ey
end EealTimeSyatom:
end RealTime;

University of lllinois at Urbana-Champaign 29

Example Analysis

= Confidentiality assurance
algorithm (Security package)

system PowerEfficientSyatem
ammex analysis {x=

gueries
All5ubFrocesaora <— proceazor:p in this;
' T H functions
[
Bin paCklng algorlthm int minFrequencyPairs (){

(RealTime package)

minfreq = All5ubProcessorsa,
MaxEnergyMinFreg() ;

allprocs = AllSubFrocezsora;

R

upclates
procegsor:p ACE: i CurrentFrequency <—
minFrequencyPalrs(); +=*};

u Frequency Scaling algorithm end PowerEff:lcientSystem;
(PowerEfficiency package) end PowerEfficiency;

University of Illinois at Urbana-Champaign m 30

Integrated System

Listing 4 Example Integration System

thread RadarTrackingThread extends
RealTime: :RealTimeThread
properties
SBecurity_Attributes:iClaszs => top_gecret;
Feriod =» 100 ms;
Deadline == 100 ms;
Compute_Execution_time => 25 ma .. 30 mg;
end RadarTrackingThread;

process implementation RadarTrackingProcess.i
subcomponent s
t: thread RadarTrackingThread;
end RadarTrackingProcess.i;

system AnalyticCompSystem
extends EealTime::RealTimesyvstem
end Analyt icCompsSystem;

system iEElementation AnalvticCompSvst@g‘i
subcomponent s

Pl: processor
RealTime: :kRealTimeProces 230r;

pd: processor
RealTime: :kRealTimeProces 230r;
radarTracking: process
EadarTrackingProcess. i;
engagenentPlanning: process
EngagementPlanningProcessz.i;
canme ctions
cl: ewent data port radarTracking.tracks —>»
engagementPlanning.tracksa;

end RnalyticCompsSystem.i;

University of Illinois at Urbana-Champaign 31

Performing Analyses

= Scheduling Analysis

CIA P Status Mame
[+] ! ReadyMotExecuted =gystern> AnalyticCompositionExample_AnalyticCompaositionSystem_i_Instance_SecureSystem_analysis
>] iJ NotReady <systemn> AnalyticCompositionExample_AnalyticCompositionSystem_i_Instance_RealTimeSystern_analysis
>] iJ NotReady <systern> AnalyticCompositionExample_AnalyticCompositionSystem_i_Instance_PowerEfficientSystern_analysis

= Executing Updates through solver

Function AADL Component Name m
getScaledUtilization t Build Databace
indexOf AnalyticCompositionEBxample_AnalyticCon Solve and Undate
getMotCollocatedLists AnalyticCompositionExample_AnalyticCon L
BinPack AnalyticCompositionExample_AnalyticCon Run Equation (i)
orderDecreasing AnalyticCompositionEBample_AnalyticCon

orderIncreasing AnalyticCompositionExample_AnalyticCon Schedule QA Analyses
getProcUtilizations Ana\y‘t!cCmmpn;\tmnExample_Ana\y‘t!chn e o
AnalyticCompositionExample_AnalyticCon

getProcUtilization

checkAlll AnalyticCompositionExample_AnalyticCon Check Assumptions (i)

checkAll2 AnalyticCompositionExample_AnalyticCon
checkAll3 AnalyticCompositionExample_AnalyticCon
Security AnalyticCompositionExample_AnalyticCon
CheckAllProcessors AnalyticCompositionExample_AnalyticCon
CheckAllProcessorsTestProperty AnalyticCompositionExample_AnalyticCon
CheckAllSubProcessorsMaxEnergyMinFreq AnalyticCompositionExample_AnalyticCon
ey ph o posbent plemienaiyl =
UPDATE (thread.Actual_Processor_Binding, }=BinPack AnalyticCompositionExample_AnalyticCon
UPDATE (thread.Mot_Collocated,)=Security AnalyticCompositionExample_AnalyticCon 1

UPDATE (processor. ACE:CurrentFrequency, J=minFrequencyPairs AnalyticCompositionbample_AnalyticCon _

< [C

University of Illinois at Urbana-Champaign 32

Analysis Result

Analysis || Updated components Property type | Property value
assetControl (secret) Not_Collocatad engage, clearance, dissemination, radar,
req_Release, vavTracking
engagementPlanning (top_secret) Not Collocated asset, dissemmation, req Release
Confidentiality pressReleaseClearance (top_secret) Not_Collocated asset, dissemination, req Release
Assurance pressReleaseDissemmation (unclassified) Not_Collocated asset, engage, clearance, radar, uavTracking
radarTracking (top_secret) Not_Collocated asset, dissemination, req Release
requestForPressRelease (unclassified) Not_Collocated asset, engage, clearance, radar, navTracking
vavTracking (top_secret) Not_Collocated asset, dissemination, req_Release
assetControl Actnal_Processor_Binding | processor pl
engagementPlanning Actual_Processor_Binding | processor p2
pressReleaseClearance Actual_Processor Binding | processor p2
Bin Packing pressReleaseDissemination Actual_Processor Binding | processor p3
radarTracking Actual Processor Binding | processor p2
requestForPressRelease Actual_Processor_Bmding | processor p3
vavTracking Actual_Processor_Binding | processor p2
processor pl ACE::Currentbrequency 0.3
Frequency processor p2 ACE::CurrentErequency Lo
Scaling processor p3 ACE::CurrentFrequency 0.6
processor pd ACE::CurrentFrequency 0.0

{Security class is described inside parenthesis)

University of lllinois at Urbana-Champaign m 33

Conclusion

= We present a new modeling approach called,
Open Analytic Runtime models where analysis
and their interface with the model is no longer
hidden in tool implementation

= Analysis Annex Is presented as an
Implementation of OAR models for AADL

= OAR models enables the definition of standard
analysis libraries with a standardized
Implementation that avoids diverting
Interpretations by different parties

University of Illinois at Urbana-Champaign m 34

Questions?

University of Illinois at Urbana-Champaign 35

