
Architecture and Mechanisms of Etherware for
Cyber-Physical Systems

Kyoung-Dae Kim and P. R. Kumar

Electrical and Computer Engineering and
Coordinated Science Laboratory

University of Illinois at Urbana-Champaign

April 11, 2011

Outline

●  Networked Control Systems

●  Etherware : A Middleware for Networked Control Systems

●  Real-Time Enhancement of the Etherware

●  A Networked Inverted Pendulum Control System

2

Cyber-Physical System

●  Cyber-Physical Systems
○  Systems with computing, communication, and physical entities
○  Networked Control System (NCS)

●  Characteristics of NCS
○  Large scale
○  Openness
○  Time-critical
○  Safety-critical

3

Challenges for NCS Development

●  Challenges for NCS Development
○  Platform heterogeneity
○  Clock offset and skew difference
○  Communication delay and packet loss
○  Support for continuous system evolution
○  ...

●  It is hard to develop a NCS application

●  Need for a well-designed Middleware for rapid, reliable, and evolvable
NCS application development

4

Abstraction: Virtual Collocation

5

Abstraction: Virtual Collocation

6

 Network

Supervisor

VisionServer

Controller

ProfileRegistry

VisionSensor VisionSensor Actuator

Abstraction: Virtual Collocation

7

 Network

Supervisor

VisionServer

Controller

ProfileRegistry

VisionSensor VisionSensor Actuator

Addressing
Clock

Difference

Platform
Heterogeniety

Network
Programming

Unpredictable
Communication

Abstraction: Virtual Collocation

8

Supervisor

VisionServer

Controller

ProfileRegistry

VisionSensor VisionSensor Actuator

Middleware
Supervisor

VisionServer

Controller

ProfileRegistry

VisionSensor VisionSensor Actuator

Outline

●  Networked Control Systems

●  Etherware : A Middleware for Networked Control Systems

●  Real-Time Enhancement of the Etherware

●  A Networked Inverted Pendulum Control System

9

Etherware Architecture

●  Etherware
○  A Middleware for NCS developed at the University of Illinois

[Baliga’05, Kim’10]
○  For rapid implementation of a reliable and evolvable NCS application

●  Microkernel Architecture
○  Etherware Kernel
○  Components

●  Component-based
Application Development

●  Message oriented
Communication

10

Message Delivery

●  Message Class
○  An XML document
○  Profile: Name of the Message Receiver

•  E.g., controller for car 1
○  Content: Interaction semantics
○  Time Stamp: Time when Message is created

●  Etherware Kernel
○  Deliverable address lookup from Profile
○  Receiver Component gets executed when it receives a Message

  Event-driven system

11

KERNEL

Scheduler

Dispatcher

Sender
Component Receiver

Component

Component Model

●  Software Design Patterns
○  Façade, Strategy, Memento

●  Provide Flexibility
○  Runtime replacement of Component Logic
○  Runtime externalization of Component State

12

COMPONENT SHELL
(FAÇADE)

COMPONENT LOGIC
(STRATEGY)

Incoming
Message

COMPONENT STATE
(MEMENTO)

Outgoing
Message

Etherware Services

●  ProfileRegistry
○  Map a profile (semantic name) to a deliverable address

●  NetworkMessenger
○  Maintain network connection between Etherware processes
○  Send/receive Message over network

●  NetworkTime
○  Estimate time differences between computing nodes
○  Translate timestamp in each remote message from remote time to local time

●  Notifier
○  Provide time-driven message, called Notification

13

MessageStream and Filter Mechanisms

●  MessageStream
○  1-to-1 communication channel between components
○  Ordered and unreliable communication

•  Useful for control applications

●  Filter
○  A mechanism for easy data collection
○  A Tap is created in a MessageStream to intercept messages

14

Component 1 Component 2

Component 3

MessageStream and Filter Mechanisms

●  MessageStream
○  1-to-1 communication channel between components
○  Ordered and unreliable communication

•  Useful for control applications

●  Filter
○  A mechanism for easy data collection
○  A Tap is created in a MessageStream to intercept messages

15

Controller 2 Actuator 2

Controller 1 Actuator 1

CA Component

Outline

●  Networked Control Systems

●  Etherware : A Middleware for Networked Control Systems

●  Real-Time Enhancement of Etherware

●  A Networked Inverted Pendulum Control System

16

Design for Temporal Guarantees

●  Message Delivery in Etherware
○  Non-concurrent
○  First In First Out (FIFO) order

●  Design Goal
○  Temporal Predictability
○  Flexibility

●  Hierarchical Scheduling Mechanism
○  Static classification at first stage
○  Dynamic ordering at second stage

17

Quality of Service (QoS) of Message Delivery

●  Quality of Service (QoS)
○  A collection of attribute that is used in scheduling for Message delivery
○  Period, relative deadline, absolute deadline, criticality of a Message

●  QoS Specification
○  QoS XML element in Message class
○  Message is scheduled based on the QoS specification and a scheduling policy

18

Preemptive Concurrent Message Delivery

●  Concurrency
○  Dispatching Module: A set of Dispatchers

●  Preemption
○  Assign a fixed priority to each Dispatcher
○  Each Dispatcher has a prioritized job queue

●  Thread Scheduling Rule (TSR)
○  A policy for Dispatching Module configuration

DISPATCHING MODULE

 Dispatcher 1

 Dispatcher 2

 Dispatcher 3

SCHEDULER COMPONENT

Message
w/ QoS ?

19

Preemptive Concurrent Message Delivery (continued)

●  Job Placement Rule (JPR)
○  A pair of attribute for linear ordering within Dispatching Module

●  Scheduling Policy
○  Map from a QoS specification to a JPR
○  JPR Implementation: An implementation of a specific scheduling policy

●  Interface for JPR Implementation
○  Independent of a specific scheduling policy

20

Message
w/ JPR

DISPATCHING MODULE

 Dispatcher 1

 Dispatcher 2

 Dispatcher 3

SCHEDULER COMPONENT

Message
w/ QoS

Hierarchical Scheduling Mechanism

21

Message
w/ JPR

DISPATCHING MODULE

 Dispatcher 1

 Dispatcher 2

 Dispatcher 3

SCHEDULER COMPONENT

Message
w/ QoS

JPR IMPLEMENTATION

If criticality = high, DISPATCHER 1
If criticality = middle, DISPATCHER 2
If criticality = low, DISPATCHER 3
…
JPR = (DISPATCHER ID, current time + Period)

JPR Interface

QoS JPR

Outline

●  Networked Control Systems

●  Etherware : A Middleware for Networked Control Systems

●  Real-Time Enhancement of the Etherware

●  A Networked Inverted Pendulum Control System

22

An Inverted Pendulum Control System

●  Implementation Platform
○  Sun Java Real-Time System 2.0 with Solaris 10

●  System Configuration
○  DSP Program

•  Return encoder values upon request from Controller
•  Deliver control command upon receive it from Controller

23

Periodic Control under Stress

●  Periodic Controller Component
○  Period: 15ms
○  Execution priority: High

●  Stressing Component
○  Period: 1s
○  Avg. Execution time: 100ms
○  Execution priority: Low

24

A Networked Inverted Pendulum Control System

●  Periodic Controller Component
○  Period: 15ms

●  DSPProxy Component
○  Intermediate interaction between Controller and DSP program

●  Request Component
○  Request runtime system reconfiguration
○  Controller upgrade
○  Controller migration

25

Controller Upgrade

26

Controller Migration

27

28

Thank You !

