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ABSTRACT
Information system developers and administrators often over-
look critical security requirements and best practices. This
may be due to lack of tools and techniques that allow prac-
titioners to tailor security knowledge to their particular con-
text. In order to explore the impact of new security methods,
we must improve our ability to study the impact of security
tools and methods on software and system development. In
this paper, we present early findings of an experiment to as-
sess the extent to which the number and type of examples
used in security training stimuli can impact security problem
solving. To motivate this research, we formulate hypotheses
from analogical transfer theory in psychology. The inde-
pendent variables include number of problem surfaces and
schemas, and the dependent variable is the answer accuracy.
Our study results do not show a statistically significant dif-
ference in performance when the number and types of ex-
amples are varied. We discuss the limitations, threats to
validity and opportunities for future studies in this area.

Categories and Subject Descriptors
H.1.2 [Information Systems]: User/Machine Systems—
human factors; D.2 [Software Engineering]: Miscella-
neous

General Terms
Security

Keywords
Security; Human Factors; Psychology; Analogical Transfer

1. INTRODUCTION
Security research often aims to evaluate whether a partic-

ular stimulus improves security. Examples of stimuli include
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context-appropriate messages such as pop-ups and warn-
ings, displays, and user training to identify phishing and site
spoofing. Researchers use experiments to evaluate the effec-
tiveness of stimuli and they may use a training phase during
the experiment to prepare participants for the study before
testing participant performance in a later phase of the ex-
periment. During the training phase, participants are shown
examples that describe the stimulus, e.g., participants may
be shown examples of e-mails from prior phishing attacks
to later test the effectiveness of training on reducing their
vulnerability to phishing [37].

Selecting examples is challenging as the choice of exam-
ples can influence participants in ways that skew the study
results. While choosing examples, investigators have to con-
sider the number of examples to use for training. Increas-
ing the number of examples used in training provides more
learning opportunities. However, using more examples may
increase cognitive load and participants may abandon the
study due to fatigue. Further, increasing the number of
examples may increase time required for training, which re-
duces the time available for the subsequent study.

In addition, investigators must decide how to choose ex-
amples to show participants. When selecting fake URLs
for a phishing study, an investigator may consider URLs
containing the domain names “www.mycitibank.com” and
“www.chase.c.com.” Both the URLs use fake subdomain
names, that is, “mycitibank” and “c”. Citibank is a well-
known bank and prefixing “my” to the domain name fits
an existing user expectation for personalization in software.
However, the domain suffix “c” may be difficult for users to
visually recognize. The training implication of choosing one
of these examples may limit a participants’ ability to detect
phishing e-mails.

To investigate the effect that number and types of ex-
amples play in security studies, we designed an experiment
using the theory of analogical transfer from cognitive psy-
chology. Analogical transfer is a problem solving strategy
where a person applies knowledge gained from past exam-
ples to solve a problem [32]. In our experiment, we consider
examples from the domain of secure coding to test several
hypotheses based on analogical transfer.

Our approach and results inform the science behind choos-
ing examples for stimulus training in security studies. In ad-
dition to the number and types of examples, factors such as
individual performance (subject-to-subject variability) [22],
experience [16, 26], motivation [7] and cognitive load [40]



may affect problem solving. It is difficult to account for the
impact of all these factors. As we explain in Section 3 on
methodology, we consider some of these factors, for example
experience, in our experimental design.

The rest of the paper is organized as follows: in Section 2,
we review the theory of learning by analogy, and formu-
late hypotheses to test the effect of training examples; in
Section 3, we present our research method and experimen-
tal design; in Section 4, we present our study results with
threats to validity and limitations in Section 5; related work
in Section 6; and we conclude in Section 7.

2. PSYCHOLOGY AND HYPOTHESES
When training users in experimental studies, the objec-

tive is to facilitate learning and problem solving through
the application of previously acquired knowledge. In an ex-
perimental context, the user is shown examples to help him
or her learn a given concept, for example, by showing exam-
ples of secure and insecure coding patterns. After learning
the concept, the investigator tests the user’s ability to ap-
ply the concept to solve similar and different problems. In
Section 2.1, we briefly review theories from psychology that
aim to explain learning and problem solving using examples.
In Section 2.2, we present hypotheses based on analogical
transfer theory to test the effect of examples in stimulus
training.

2.1 Analogy, Learning and Problem Solving
Problem solving using analogies involves applying knowl-

edge gained from previously encountered problems to solve a
new problem of the same kind; this problem solving strategy
is called analogical transfer [32]. The previously encountered
or familiar problem is called the base analogue and the new
problem is called the target analogue. Mathematician Polya
has argued in his seminal work, “How to solve it,” that prob-
lem solving by analogy is a dominant method for solving new
problems [28].
Problems can be decomposed into the surface elements and
the abstract or structural details [32]. Surface elements are
the superficial features of how we describe the problem. The
structural details, also called the schema, refer to the solu-
tion principle. For example, given a computer program in
a programming language, the surface elements include the
syntax of the language and structural details include the al-
gorithm that the program implements. Problems from two
different domains may have different surface elements, but
the same structure for solving a problem. For example, the
divide and conquer principle can be used to solve problems
in programming or in politics. Research in domains such
as physics has shown that experts more often than novices
use structural details to represent problems [8]. The theory
of analogical transfer includes multiple stages in cognition,
including retrieval of the base analogue and mapping the
base analogue’s schema and/or surface elements to the tar-
get analogue. Theories of analogical transfer differ in how
they consider the relative importance of surface and schema.
For example, theories may state that mapping involves only
the schema, only the surface, or a combination of both [32,
15, 20, 19, 24]. In other words, analogical transfer may be
applied to two problems that overlap in schema, surface or
both. During the mapping stage, with increase in domain
experience, the use of schema information increases and use
of surface information decreases [16]. Further, research in

domains such as mathematics shows that experience im-
proves the effectiveness of problem solving by analogy [26].
Empirical study results on analogical transfer agree that
schema induction, which is the process of abstracting struc-
tural details from a set of examples, does occur [32]. Largely,
the study findings agree that schema induction is unlikely
with a single example, however, the findings disagree on the
minimum number of examples required for schema induc-
tion. Schema induction with small number of examples is
not effective unless we employ special strategies, such as
providing sufficient explanation of the schema [1]. Research
in cognitive load theory shows that using worked-out exam-
ples, which are problems presented with complete solutions,
improves schema induction especially in novices [27]. Indi-
vidual differences, such as use of self-explanations in learning
from worked examples can affect schema induction [33]. The
type of problem representation employed may increase cog-
nitive load thereby reducing schema induction [40]. Finally,
if people exert effort to learn the abstract principles present
in the examples, for example by using self-explanations, then
schema induction improves [7].

2.2 Testing the Role of Examples
Based on the theory of learning from analogy, we formu-

late hypotheses to test the effect of the number and types
of examples in stimulus training. Due to the timing lim-
itations that constrain stimulus training in many studies,
we consider training with 2-3 examples. For the type of
examples, we distinguish between the surface elements and
structural details. For example, URLs mychase.com and ez-
trade.com do not have similar surface, but they share the
same schema (fake, misleading subdomain). We hypothe-
size that the number of varieties of surfaces and schemas
within a set of training examples affects user performance
on different training goals as follows:
H1null:Users that train on more surfaces for the given schema
exhibit no difference in performance than users that train on
fewer surfaces for the same schema.
H1alt: Users that train on more surfaces for the given schema
perform differently than users that train on fewer surfaces
for the same schema.

In hypothesis H1, we consider the effect of number of
different surface types for a single type of schema. During
participant training, participants may be able to abstract
out the common schema across these examples. Consider
a scenario where the goal is to train the user to apply the
acquired knowledge to a new example with the same schema
but new type of surface. A sample scenario may be training
the user to use an ATM interface; the user may encounter
an ATM interface that looks different (new surface), but
criteria for using it is the same (same schema). For this goal,
participants who see more examples with different surfaces
for a single schema may perform differently than participants
who see fewer surfaces for the schema. One reason for the
difference could be that participants who see more surfaces
have a better chance of abstracting out the schema. If a
statistically significant difference exists in performance, we
would like to understand if performance is better or worse.

In our second hypothesis H2, we consider the effect of
number of schema types. During participant training, par-
ticipants may be able to perceive the difference between dif-
ferent schemas. For example, consider a training scenario
where the goal is to train the user to identify phishing at-



tacks, which look different (i.e., each with a different new
surface) as well as they vary in the actual strategy used to
compromise the user’s machine (new schema). Given this
goal, participants who see multiple schemas, each with a
different surface type may perform differently than partic-
ipants who see fewer schemas each with a different surface
type. One reason for the difference could be that users who
see more schemas are prepared to encounter new schemas. If
a statistically significant difference exists in performance, we
would like to understand if performance is better or worse.
We state our second null and alternative hypotheses as fol-
lows:
H2null: Users that train on more schemas exhibit no differ-
ence in performance than users that train on fewer schemas.
H2alt: Users that train on more schemas perform differently
than users that train on fewer schemas.

3. METHODOLOGY
We conducted a human-subjects study to evaluate our hy-

potheses regarding the effect of number and type of examples
in security studies. We conducted our study using an online
survey, which we now discuss.

3.1 Targeted Subjects and their Recruitment
We recruited participants who enrolled in at least one

course in computer security or had multiple years of indus-
try experience in computer security. We recruited partici-
pants from three universities using in-class announcements
and private mailing lists for security courses. Our partici-
pant pool consists of undergraduate and graduate students
from the three universities.

Each participant that completed the study received an
Amazon gift card. We informed the participants, before
they started the study, that they would be compensated $10
if they scored 70% or higher, and $5 otherwise. We based
the compensation on performance to motivate the partici-
pants to think carefully about their answers. However, for
the actual compensation, we paid participants who provided
thoughtful responses to at least two out of the three test
problems, regardless of the correctness of their responses.

3.2 Experimental Design
We designed our experiment based on the theory of ana-

logical transfer discussed in Section 2.1. Our experiment
consisted of two phases: the training phase and the test
phase. In the training phase, we used a training stimulus
consisting of a set of problems along with their solutions. In
the testing phase, we tested the effectiveness of our training,
that is, whether participants were able to acquire the rele-
vant knowledge. As we are interested in understanding the
role of examples in security studies, we used problems from
a security domain, specifically, secure coding. Recall that
our hypotheses H1 and H2 from Section 2.2 test whether
the schema and surface types used in the training stimu-
lus cause a statistically significant difference in participant
performance on test problems. We use a between-subjects
design for the study. In our experiment, the independent
variables were the number and types of schemas and sur-
faces used in the training stimulus. The dependent variable
was participant performance. As we discuss in Section 3.8,
we measured performance by counting the number of correct
answers provided by participants for each test problem.

To test our hypothesis H1 and H2, we varied the number
and types of schemas and surfaces used in the training stim-
ulus. To test the effect of number of examples, we assigned
participants to one of the two groups: 3-Example group or
2-Example group. To reduce the effect of confounding vari-
ables, we used a double-blind study design and randomly
assigned participants to groups. In the 3-Example group,
participants trained on three problems. In the 2-Example
group, participants trained on two problems. In the test
phase, all participants had to solve three test problems. Ta-
ble 1 lists the order in which we presented training and test
problems to the participant. Problems are labeled by a let-
ter followed by a number; the letter denotes the schema and
number denotes the surface, e.g., A1 and A2 use the same
schema but with a different surface. During the training
phase, participants in the 3-Example group saw three prob-
lems, A1, A2 and A3, of the same schema A. The 2-Example
group saw two problems A1 and B6 with different schemas
A and B. In the testing phase, participants in both groups
saw three test problems, A4, C7 and A5.

Table 1: Organization of training and test problems

3-Example Group 2-Example Group

Training A1 (C ) A1 (C )

Problems A2 (C ) B6 (C )

A3 (Java)

Test A4 (PHP) A4 (PHP)

Problems C7 (C ) C7 (C )

A5(“text”) A5(“text”)

3.3 Schema and Surface
We chose schemas and surfaces from the secure coding

domain. As listed in Table 1, we used three schemas A, B
and C described below.

A. Error handling: describes a security practice in source
code where the programmer needs to handle a prospec-
tive error or exceptional case to avoid failures

B. Checking input values: describes a security practice
in source code where the programmer needs to check
that values input to a function conform to certain as-
sumptions, e.g., no null values, numbers are within a
prescribed range, etc.

C. Integer security: describes a security practice in source
code where the programmer needs to handle error con-
ditions that can occur due to the finite representation
of integers

In total, we used seven surfaces. Schema A was presented
using five surfaces (A1, A2, A3, A4, A5), schemas B using
one surface (B6), and C using one surface (C7). Surfaces
1-4, 6 and 7 consist of source code expressed in C, PHP, or
Java programming language. Surface 5 consists of natural
language text in English language.

3.4 Evaluating Hypothesis H1 and H2

Recall from Section 2.2 that hypothesis H1 tests the ef-
fect of training participants on multiple surfaces for a single



schema. H1 checks whether there is a statistically signifi-
cant difference in performance when one group trains on ex-
amples with more surfaces as opposed to fewer surfaces. To
evaluateH1, we trained participants in the 3-Example group
with three surfaces (A1, A2, A3) and participants in the 2-
Example group with one surface (A1) for the same schema
A. We measured participant performance in both groups on
test problems A4 and A5 that use the same schema A. Test
problem A4 expresses the surface using source code, while
test problem A5 expresses the surface using natural language
text. By choosing code and text descriptions, we intended
to examine the effect of different surface representations.

Hypothesis H2 tests the effect of training participants on
multiple schemas. H2 tests if there is a statistically signif-
icant difference in performance when one group trains on
more schemas than the other group. To evaluate H2, we
trained participants in the 3-Example group with the single
schema A and participants in the 2-Example group with two
schemas A and B. We measured participant performance us-
ing test problem C7 based on a schema C. We did not show
schema C to participants during the training phase.

3.5 Training and Test Problems
For the training phase, we used worked-out examples.

Worked-out examples can reduce cognitive load and improve
schema induction, and hence improve effectiveness of the
training stimulus [27]. Training problems were based on
the security schemas discussed in Section 3.3. Schema A
concerns error handling, schema B concerns checking input
values, and schema C concerns integer security. Problems
A1, A2 and B6 were in the C programming language, and
A3 was in Java programming language. For each problem,
we showed a code snippet that contained one or more lines
of code that violated the security principle described by the
schema. For example, consider the following code snippet
from problem A1 based on the error handling schema.

1 /* function to copy network data to a file */
2 int copyData(struct connection *c, FILE *fp) {
3 char buf [200];
4 readFromNetwork(c, buf , 100);
5 writeToFile(fp, buf , 100);
6 /* ... */
7 }

Training Problem A1

In line 4, the code does not check if the readFromNetwork

function returned an error. Similarly code snippet in A2 did
not check whether memory allocation function returned an
error, and A3 did not check whether reading from an ob-
ject returned an error. Code snippet in B6 did not properly
validate argument passed to a function. During training,
we explained the schema to the participant using a ques-
tion/answer format. The format consisted of the following
questions: “What is the problem?”, “What are the conse-
quences of the problem?” and “What changes do you make
to prevent the problem?” Details of the training examples
are in Appendix A.

We showed the test problems to the participants using
the same format employed for training, that is, code snip-
pet followed by questions. However, we did not show the
answers. Participants were required to provide open-ended
responses. Test problems were also based on the security
schemas described in Section 3.3. Problem A4 was in PHP

web scripting language, C7 was in the C programming lan-
guage and A5 was in English language. Test problem A4
contained a line of code that did not perform error han-
dling after reading a record from a database. Problem C2
contained code that added the lengths of two integers and
stored the sum in a short integer, which could produce a
truncation error. Problem A5 described a server patching
procedure where the administrator failed to check whether
a new patch was successfully installed. Details of the test
problems are in Appendix A.

3.6 Participant Background
We collected information about participants’ background

at the end of our study to avoid biasing participants and
to reduce the survey non-response rate [34]. The collected
background information includes industry experience in com-
puter programming, experience using specific programming
languages, level of education, and specific computer courses
undertaken (see Appendix A for background questions). In
our analysis, we counted summer jobs and internships as
industry experience. We used background information to
check for possible correlation between experience and par-
ticipant performance on test problems. We did not ask par-
ticipants about their age, gender or race.

3.7 Study Deployment
We implemented our study as an online survey using Sur-

vey Gizmo platform. We configured Survey Gizmo platform
to randomly assign participants to either the 3-Example
group or the 2-Example group. We provided a link to our
survey in the recruitment email. After providing informed
consent, participants completed the training and test phases
of the study. During the training phase, to encourage par-
ticipants to read the solution for a training problem, we
provided a “show solution” link. Participants were required
to click on the link before they could proceed to the next
training problem. Although this feature did not guarantee
that participants read the solution, it provides us informa-
tion about at what point a participant exited each question.
We used this information to analyze incomplete survey re-
sponses. We ran a pilot study on three computer science
graduate students with background in computer security,
and based on their feedback, we added explanatory com-
ments to the training and test problems.

3.8 Grading of Participant Responses
The first and second authors coded and graded participant

answers using an iterative approach, wherein they discussed
disagreements until they reached consensus. Using a prede-
fined answer key for each open-ended answer, the graders
assigned one code [0: unintended answer, 1: intended an-
swer]. Answers not part of the predefined answer key were
considered unintended answers. If a participant identified
the error in a test problem and provided a relevant solution,
then the participant’s answer was coded 1, otherwise it was
coded 0. We used Cohen’s Kappa [9] to compute inter-rater
reliability (κ=0.85 after the first pass).

For unintended answers, the graders performed axial cod-
ing by assigning a second, exclusive code to distinguish types
of unintended answers. This approach is based on grounded
analysis, wherein the codes emerge from the dataset [11].
Because the graders devised new codes as they encounter
new answer types, the second-level coding was performed in



two passes: the first pass was to discover the codes, and the
second pass was to ensure that the complete code set was
consistent across the entire dataset. The second-level codes
assigned by the graders to the unintended answers were as
follows:

• Incorrect: the answer was not a correct solution and
did not address any errors present in the test prob-
lem. Answers were marked as incorrect, if participants
identified errors not present or if they provided incor-
rect solutions. For example, a participant indicated
that problem A5 dealing with patching was download-
ing patches from an insecure site. However, this was
not correct as the problem indicated that patches were
downloaded from a secure, verifiable server.

• Extended-out-of-Context: the answer was correct
based on a participant’s assumption that was outside
the context of the problem description. In other words,
the assumption was not directly supported by explicit
information contained within the training examples or
problem description. For example, in test problem
A5, a participant identified the need to use different
patches for different server operating systems. We con-
sidered this out-of-context as the problem described a
single server scenario.

• Extended-in-Context: the answer was correct based
on a best practice schema that we had not anticipated.
The answer was applicable based on the amount of
information contained within the context of problem
description. For example, a participant identified the
need to use strong access control while accessing database
records in test problem A4.

Our grading resulted in multiple categorical assignments
for a single response: a response could include an intended,
correct answer, as well as an incorrect answer and an ex-
tended answer (in or out-of context). Only intended an-
swers counted toward the correct answers and these ex-
cluded the extended-in-context and extended-out-of-context
answers, which were technically correct but did not match
our intended answers. Our intention was to see if partici-
pants had more extended answers for a certain test problem,
and if the extended answers could distract participants from
providing the intended answers for the given schema/ sur-
face combination. Lastly, as part of grading, we computed
compensation, $5 or $10, for participants.

3.9 Statistical Tests
Hypotheses H1 and H2 were evaluated using categorical

data, that is, graded participant responses. Normally, we
use contingency tables and non-parametric Pearson’s Chi
Square Test of Independence. However, this test requires
at least five responses (frequencies) in each category in the
contingency table[2, 22, 3]. For data sets with less than
five responses in any category, Fisher’s Exact test is rec-
ommended [2, 22, 3]. In our analysis, we applied Fisher’s
Exact test to our 2x2 contingency table: Group Assignment
(2-Example, 3-Example) x Performance (Intended Answer,
Unintended Answer). We also applied the Fisher’s Exact
test to participant experience responses, which is a 2x5 con-
tingency table: Group Assignment (2-Example, 3-Example)
x Experience Level (0, <1, 1, 1-3, >3 years).

To compare the time taken by participants to complete
the testing phase, we used Wilcoxon-Mann-Whitney non-
parametric test. As time is a continuous variable, we can use
Wilcoxon-Mann-Whitney test. Analysis of our data using
histogram and Shapiro-Wilk test [36] showed that the data
was not normally distributed (p − value = 2.505e − 12),
which is a supported assumption under the Wilcoxon-Mann-
Whitney test [38].

4. ANALYSIS AND RESULTS
We had 124 participants in our study, and 80 participants

completed the study. The 3-Example group had 54 par-
ticipants (33 complete, 21 incomplete), and the 2-Example
group had 70 participants (47 complete, 23 incomplete). We
had unequal number of participants in the two groups due
to the random assignment algorithm used by Survey Gizmo
platform. This difference would decrease with increase in
sample size. All participants who completed the survey pro-
vided thoughtful responses to at least two test problems and
were compensated $10. Hence, we did not have participants
that were compensated $5. It appears that participants ei-
ther tried to get the full $10 compensation or decided to
drop-out without completing the study. In the remainder of
this section, we discuss the results from our study based on
the 80 complete responses. We discuss participant dropout
based on the 44 incomplete responses in Section 4.6.

4.1 Participant Experience and Background
Out of the 80 participants who completed the study, 52

students had graduate or doctoral degrees (20 in 3-Example
and 32 in 2-Example). The remaining 28 students in the
sample were undergraduates: 16 had 3-4 years of college
or higher (8 in both 3-Example and 2-Example), and 12
students had 1-2 years of college experience (5 in 3-Example
and 7 in 2-Example).

In Table 2, we list how many of our participants had
completed courses related to programming languages, data
structures, computer security and secure programming. Note
that the percentages in Table 2 do not add up to 100% as
participants could have taken more than one course from the
list.

Table 2: Participant course background

Course 3-Example 2-Example Total

# % # % # %

Programming 30 38% 45 56% 75 94%

languages

Data structures 26 33% 42 53% 68 85%

Computer security 15 19% 25 31% 40 50%

Secure programming 5 6% 6 8% 11 14%

#: number %: percentage

Table 3 lists the participants’ programming experience in
the industry. We included summer jobs and internships as
industry experience. Figure 1 shows participants’ experience
with different programming languages.

Analysis of participants’ background and experience data
from the 3-Example and 2-Example groups showed no statis-
tically significant difference between the two groups (Fisher’s
Exact test, p− value = 0.529). Hence, both the groups had
participants with similar course background and program-



Table 3: Participant programming experience in in-
dustry (years)

Experience 3-Example 2-Example Total

# % # % # %

No experience 3 4% 14 18% 17 21%

Less than 1 7 9% 13 16% 20 25%

One year 2 3% 13 16% 15 19%

Between 1 and 3 3 4% 10 13% 13 16%

Three or more 2 3% 13 16% 15 19%

#: number %: percentage
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Figure 1: Participant programming language expe-
rience

ming experience. We will elaborate on the effect of back-
ground on performance in Section 4.4.

4.2 Completion Time
We recorded the overall completion time participants took

to complete the survey. Completion time includes time spent
on training and testing phases. In online surveys, partici-
pants may carry out additional tasks. Hence, we cannot ac-
curately compute completion time. To estimate completion
time, we start by excluding outliers. The cutoff for out-
liers was chosen by plotting a histogram of the total time
spent by all participants. With a 100-minute cut-off, we
had seven outliers out of 80 values. After removing the out-
liers, the median total time for participants was 23 minutes
for participants in the 3-Example group, and 22 minutes for
participants in the 2-Example group.

As discussed in Section 3.9, our data is not normally dis-
tributed. Hence, we used non-parametric Wilcoxon-Mann-
Whitney test to compare the median completion time of the
participants in the 3-Example and 2-Example groups. We
did not observe statistically significant difference between
the two groups (Wilcoxon-Mann-Whitney test p − value =
0.56).

4.3 Participant Performance
We analyzed participant performance on test problems

A4, C7 and A5 described in Section 3.5. Recall that we use
the test problems to evaluate hypotheses H1 and H2 regard-
ing the effect of number and types of examples in security
studies. We compared performance of participants in the 3-
Example and 2-Example groups to identify any statistically
significant difference that can be attributed to the difference
in the number and types of examples in the two groups. As
we discussed in Section 3.8, we measured performance by

counting the number of intended and unintended answers
provided by participants for each test problem.

4.3.1 Effect of Using More Surfaces per Schema
HypothesisH1 from Section 2.2 aims to determine whether

training using more surfaces per schema causes a change
in participant performance. Recall from Section 3.4 that
we use our first test problem A4, based on schema A, to
evaluate H1. Participants in the 3-Example group trained
on three surfaces for schema A, and participants in the 2-
Example group trained on one surface for schema A. Hence,
participants in the two groups may perform differently in
identifying schema A represented using a new surface. The-
ories of analogical transfer discussed in Section 2.1 indicate
that training with more surfaces may improve schema in-
duction. Hence, we expected that participants in the 3-
Example group may perform better than participants in the
2-Example group. Although participants in the 3-Example
group gave more intended answers (30/33 or 90.9%) than
participants in the 2-Example group (39/47 or 82.9%), the
difference was not statistically significant (Fisher’s Exact
test, p−value = 0.51). As the p-value is large, we cannot re-
ject the null hypothesis H1null. Table 4 lists the numbers of
participants who gave intended answers versus unintended
answers for test problem A4.

Table 4: Participants responses for the three test
problems

3-Example 2-Example

YES NO YES NO

A4 (test effect of more surfaces
per schema)

30 3 39 8

C7 (test effect of more schemas) 18 15 21 26

A5 (test effect of different sur-
face representations)

11 22 14 33

YES:Intended answer NO:Not-intended answer

4.3.2 Effect of Using More Schemas
Hypothesis H2 from Section 2.2 tests whether training

with more schemas causes a change in participant perfor-
mance. Recall from Section 3.4 that we use our second test
problem C7, based on schema C, to evaluate H2. Partici-
pants in the 3-Example group trained on one schema A, and
participants in the 2-Example group trained on two schemas,
A and B. Hence, participants in the two groups may perform
differently in identifying a new schema C. Further, we ex-
pected that participants in the 2-Example group may per-
form better than participants in the 3-Example group as
they trained on more schemas. However, participants in the
3-Example group performed better (18/33 or 54.5%) than
participants in the 2-Example group (21/47 or 44.6%), but
the difference was not statistically significant (Fisher’s Ex-
act test, p − value = 0.50). Because of the large p-value,
we cannot reject the null hypothesis H2null. Table 4 shows
the performance of participants in the two groups on test
problem C7.

4.3.3 Effect of Different Surface Representations
Recall from Section 3.4 that we use natural language text

to represent the surface for our third and last test problem
A5, which is based on schema A. Our intention is to examine



hypothesis H1, but using different surface representations.
The first test problem A4 also tested hypothesis H1, but
used a source code representation instead of a text repre-
sentation. As we discussed in Section 4.3.1, we expected
that participants in the 3-Example group may perform bet-
ter than participants in the 2-Example group as they trained
on more surfaces for schema A. From Table 4, we can see that
participants in the 3-Example group performed only slightly
better (11/33 or 33.3%) than participants in the 2-Example
group (14/47 or 29.7%), but the difference was not statisti-
cally significant (Fisher’s Exact test, p− value = 0.80).

Further, comparing the performance of participants on
problems A4 and A5, we see that participants gave more
unintended answers for problem A5. Compare the number
of unintended answers on the two problems from Table 4.
Participants in the 3-Example group gave three unintended
answer or A4 and 22 unintended answers for A5. Similarly,
participants in the 2-Example group gave 8 unintended an-
swers for A4 and 33 unintended answers for A5. This differ-
ence in performance may be due to the difficulty of reading
natural language text description or the opportunity for in-
ferring additional information from ambiguities present in
text.

Since we did not randomize the order of the test problems,
we cannot rule out fatigue effect. Fatigue may explain the
increase in the number of unintended answers on the last
test problem A5. However, analysis of the unintended an-
swers shows that participants provided more answers that
are extended in context for test problem A5 than test prob-
lem A4. Recall from Section 3.8 that answers extended in
context are unintended, but not incorrect. For test problem
A5 (text representation), 19 participants (6 in 3-Example
group and 13 in 2-Example group) spotted possible security
problems that are extended in context. For test problem
A4 (code representation) 17 participants (7 in 3-Example
group and 10 in 2-Example group) spotted possible security
problems that are extended in context. There is no statis-
tically significant difference between the performance of the
two groups regarding answers extended in context. We need
to further investigate the reasons for the increase in answers
extended in context, which could be considered “out-of-the-
box” thinking from participants.

4.4 Programming Experience and Participant
Performance

We analyzed the correlation between participant perfor-
mance and participant programming experience in the in-
dustry (Table 3). As discussed in Section 2.1, problem solv-
ing by analogy may improve with experience. Table 5 shows
the performance of participants in the 3-Example and 2-
Example groups broken down by their programming expe-
rience. From the table, performance on the three test prob-
lems appears similar. We did not find statistically signifi-
cant difference between the groups for performance on the
three test problems broken down by experience (Fisher’s
Exact test, p-values 0.48, 0.95, and 0.40 for A4, C7, and
A5 respectively). Recall from Section 4.1, participants in
both the groups had similar background in computer secu-
rity. This may explain similar performance by participants
in both groups on test problems from a security domain.
We may expect to see differences in performance when one
group has more experts or novices, however.

4.5 Participant Overall Performance
Table 6 shows the overall performance of the participants

on the three test problems. Overall performance implies
how many test problems, in total, the participants were
able to solve correctly. By correct, we mean that partic-
ipants provided intended answers. For example, Table 6,
“none” implies that they did not provide intended answers
for any test problems. There was no statistically significant
difference between the overall performance of participants in
the 3-Example and 2-Example groups (Fisher’s Exact test,
p − value = 0.13). In future, we intend to investigate the
breakdown of overall performance by experience.

Table 6: Participant overall performance on test
problems

3-Example 2-Example

No correct problem 0 5

One correct problem 11 17

Two correct problems 19 18

Three correct problems 3 7

4.6 Participant Dropout
In an online survey, it is difficult to prevent participants

from dropping out of the study. Our study setup collected
incomplete or partial responses of participants who dropped
out after consenting to take the study. We analyzed the
incomplete responses and determined at what point during
the study a participant dropped out. Total of 49 partici-
pants dropped out from the study: 21 from the 3-Example
group, 23 from the 2-Example group, and 5 who dropped
out before they were assigned to a group. In Table 7, we
show the number of participants in groups 3-Example and
2-Example that dropped out. We also show at what point
in the study they dropped out. We found no statistically
significant difference in drop out between groups 3-Example
and 2-Example (p − value = 0.84, Fisher test). However,
we do note from the table that participants appear to drop
out more during the training phase than after they start the
test phase (19 vs. 2 for group 3-Example and 20 vs. 3 for
group 2-Example).

Table 7: Participant drop out

Dropout position 3-
Example

2-
Example

Total

Before treatment assignment unknown unknown 5

Before seeing examples 7 6 13

After 1st example 4 3 7

After 2nd example and before
3rd

2 N/A 2

After all examples and before
questions

6 11 17

After 1st test problem 1 2 3

After 2nd test problem 1 1 2

5. THREATS TO VALIDITY
We now discuss the threats to validity [35] and the lim-

itations of this study and how they could be addressed in
future studies.



Table 5: Participant performance on test problems and programming experience

Test Problem A4 Test Problem C7 Test Problem A5

Intended Not Intended Intended Not Intended Intended Not Intended

3-Example Group

No Experience 4 0 2 2 0 4

Less than one year 9 0 5 4 3 6

One year 6 1 3 4 2 5

Between 1 and 3 years 6 1 4 3 4 3

Three or more years 4 2 4 2 2 4

2-Example Group

No Experience 12 1 5 8 3 10

Less than one year 9 2 6 5 5 6

One year 6 2 4 4 4 4

Between 1 and 3 years 6 0 3 3 0 6

Three or more years 6 3 3 6 2 7

5.1 Construct Validity
Construct validity is the extent to which what we mea-

sured accurately reflects the construct that we proposed to
study [35]. Surface representations and schemas are difficult
constructs to produce as the space of variation is quite large.
Measuring performance differences based on how humans
perceive these differences also varies. To improve construct
validity, we selected programming languages (C, Java and
PHP) with wide adoption to represent surface structures.
We chose the schemas error handling, checking input val-
ues and integer security from secure coding. These schemas
may be familiar to security experts, but not to novices. We
selected participants who had completed at least one course
in security or had multiple years of industry security expe-
rience. Finally, we measured participant performance using
open-ended answers to three test questions. Open-ended an-
swers are usually more difficult to grade, but are more pre-
dictive of actual performance than other performance mea-
sures such as completion time. During grading, to reduce
performance measurement bias, we used two graders. To
increase confidence in our measurements, we can repeat the
study using different training and test problems, and mea-
sure variance across results from multiple studies. Further,
we can randomize the order of training and test problems to
avoid learning and fatigue effects.

5.2 Internal Validity
Internal validity is the extent to which the findings follow

from the data [35], which is similar to statistical conclusion
validity or the extent to which our statistical inferences are
valid. To reduce the effect of confounding effects, we ran-
domized the assignment of participants to conditions and
used double blinding. As discussed in Section 4.1 there was
no skew in distribution of participants by programming ex-
perience, programming languages and education level. How-
ever, we did not collect information about gender and age,
and must assume that the random assignment ensures even
distribution. Factors such as motivation level of partici-
pants, past exposure to similar training or test problems,
and cognitive load induced by problem representation for-
mat may confound our inferences form the data. In this
study, we evaluated two hypotheses using a single experi-
ment. To isolate the interaction of schema and surface, we
can use a factorial design with two levels for the independent

variables, schema and surface, and select extreme levels (e.g.
1schema-1surface, 3schema-3surface, 1schema-3surface, and
3schema-1surface). We can also introduce a control group
that will receive the testing phase, but no training. To con-
trol the effect of experience, we can screen participants using
a security related questionnaire.

5.3 External Validity
We recruited graduate and undergraduate students with a

computer security background. Hence, we cannot generalize
our results to the general population. We can improve gener-
alizability by recruiting security professionals. It is possible
that students with high motivation, drive or similar charac-
teristics participated in the survey and, if so, this may bias
our results. Students who dropped out due to lack of such
characteristics may also bias our results. Lastly, we used an
online survey tool, and results from an online survey may
differ from a laboratory study.

5.4 Type 1 and Type 2 Errors
Type 1 error occurs when the investigator incorrectly re-

jects the null hypothesis. To decrease the chance of Type
1 error, we chose α ≤ 0.05. As discussed in Section 3 and
Section 4, we chose appropriate statistical tests for the data
based on the assumptions of those tests and our sample data.

Type 2 error occurs when the investigator fails to reject
the null hypothesis when it is false. Low power of an ex-
periment increases the chance of a Type 2 error. Two main
factors that influence power are sample size and effect size,
which, in our study, is the effect of the number of schema
and surfaces on participant performance. Since we did not
find statistically significant results, which implies we cannot
reject the null hypothesis, we did a post-hoc power analy-
sis [14] to compute achieved power. For Fisher’s Exact test,
the achieved power (1-β) for the three test problems was
0.12, 0.11 and 0.04 respectively. For the three test problems,
to achieve a power of 0.8 with the observed effect sizes, we
would need a sample size of 598, 842 and 6342 participants,
respectively.

We can improve power by reducing variability. Because
we are measuring higher cognitive abilities such as problem
solving, individual performances (subject-to-subject variabil-
ity) can be high [22]. This variability affects our results
because we used a between-subjects experimental design.



Decreasing measurement errors, as discussed in Section 5.1
on construct validity, reduces this variability and increases
power. As we administer the tests using an online survey, it
is not possible to control the environment and hence reduce
variability due to environmental factors. For example, par-
ticipants may carry out multiple tasks or take the survey on
different sized screens (e.g. tablet or desktop). Although en-
vironmental factors may cause higher variations in individ-
ual performances, they may be a positive factor toward the
generalizability of our results: in the real world, users may
indeed multi-task or use different form-factors. Lastly, we
can improve power by increasing the strength of the treat-
ment. As discussed in Section 5.2 on internal validity, we
can increase the strength of treatment by using a factorial
design and selecting the extremes.

6. RELATED WORK
We will now discuss related work from human-computer

interaction (HCI) and usable security. Related work ap-
pears in the proceedings of SOUPS, CHI, and security con-
ferences, such as IEEE Security and Privacy and USENIX
Security, among others. Researchers in the field of HCI
have applied theory of learning by analogy to several prob-
lems. Maclean et al. study design rationale of user inter-
faces [23], Douglas and Moran explain how novices learn text
editor semantics [13], Redmiles studies reducing variability
in programmer performance [31], and Siegle implements an
interactive graphical prototyping environment using struc-
ture mapping [39]. Halasz and Moran argue that analogical
models are useful for learning about computer systems, but
they argue they are harmful for reasoning about computer
systems [18].

In general, theories from cognitive psychology have driven
research in the field of human-computer interaction espe-
cially in the formative years [4, 6]. These theories have
helped in the design and evaluation of HCI systems, for
example, Card et al. study how users interact with text
editors [5], Kitajima et al. study how users navigate web-
sites [21], Green et al. analyze usability of visual program-
ming environments [17], and Nielson proposes heuristics to
find usability problems in user interfaces [25].

Research in usable security has applied theories of hu-
man cognition to study problems such as user authentica-
tion and social engineering attacks. For example, Yan et
al. study tradeoffs between usability and memorability of
passwords [43], Witten and Tyger study usability of PGP
encryption [42], Dhamija et al. analyze why phishing is ef-
fective [12], and Conti et al. propose a framework for an-
alyzing attacks on information visualization systems [10].
Researchers have also studied user metal models of secu-
rity. A mental model are thought to resemble how users
think about a problem, and they loosely resemble the def-
inition of a schema. For example, Wash identified security
mental models of home computer users [41] and Rader et
al. studied how users generate security mental models using
informal stories [29].

For improving user training, researchers in HCI and usable
security have employed different types of examples. Sheng
et al. use a conceptual-procedural approach from learning
science to differentiate between phishing examples [37]. Raja
et al. use examples of firewall warnings that contain visual
metaphors in place of semantically equivalent text [30].

7. DISCUSSION AND CONCLUSIONS
As we discussed in Section 4, our study results do not show

statistically significant differences in performance when we
vary the number and types of surfaces and schemas in the
training stimulus. However, as we discussed in Section 5 on
threats to validity, the power of our experiment was low.
Increasing the sample size, using a factorial design, and in-
creasing the number of training examples may allow us to
observe statistically significant differences.

We propose to further investigate several observations from
our study. First, using text representations for describing
surface structure appears to increase the number of unin-
tended answers extended in context. Answers extended in
context are not incorrect answers, and seem to indicate“out-
of-the-box” thinking by the participants. Second, we see
from Table 4 that there is a decrease in participant perfor-
mance from the first to the last test problem. Participants in
general were able to answer the first test problem correctly
(90% of the 3-Example group and 82% of the 2-Example
group). For the second test problem, the percentage of
correct responses in each group fell almost to half (54% of
the 3-Example and 44% of the 2-Example). For the third
test problem that used natural language text representation,
both groups performed poorly (33% of the 3-Example and
29% of the 2-Example). Future studies should rule out the
effect of fatigue and randomize the order of test problems to
understand the effect, if any, of text representation on the
gradual decrease in performance. Lastly, from the overall
performance details listed in Table 6, we observe that all
participants in the 3-Example group answered at least one
test problem correctly, whereas 10% of participants in the
2-Example group answered all test problems incorrectly.

To conclude, we presented details of a study to investigate
the effect of the number and types of examples in computer
security studies. We discussed preliminary results from our
study involving 80 complete, participant responses. In our
research, we sought to study the science of choosing exam-
ples for training stimulus in security studies. We used the
theory of analogical transfer to explain the impact of number
and types of examples used in a training stimulus. Based
on this theory, we selected training examples with varying
schema and surface elements. While our results are not sta-
tistically significant, we believe our experimental design and
approach can be used to inform future study design and
investigation in security training.
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APPENDIX
A. SURVEY DETAILS
Introduction
Background: Security analysts are trained to defeat hackers by think-
ing like a hacker: how would a hacker try to defeat this system and
what techniques can they use to succeed? Similar to other types of
computer science expertise, security analysts require the ability to
learn concepts from security problems and apply these concepts to
new situations. We will train you with a set of security examples,
and then test your ability to solve problems like a security analyst.
Please study the following examples and take all the time that you
need before proceeding.

Training Example 1 (full) for 3-Example Group
Carefully read the code snippet below (including all comments) before
answering any questions. Please describe all issues you can identify.

1 /* function to copy network data to given file */
2 int copyData(struct connection *c, FILE *fp)
3 {
4 char buf [200];
5 readFromNetwork(c, buf , 100);
6 writeToFile(fp , buf , 100);
7 ...
8 }
9 /* read in the given number of bytes count from */

10 /* the given network connection */
11 int readFromNetwork(struct connection *c, char *

buf , int count)
12 {
13 /* wait until count number of bytes become */
14 /* available and return them in buf; */
15 /* return -1 if there is an error reading from

the network; */...
16 }

Question 1: What is the problem?
Question 2: What are the consequences of the problem?
Question 3: What changes do you make to prevent the problem?

When you’re ready, click the radio button below to expand the so-
lutions.*
( ) Show Solutions

When you’re ready, click the radio button below to expand the so-
lutions.*

( ) Show Solutions

Question 1: What is the problem?
In lines 5 and 6 reproduced from above:
readFromNetwork(c, buf, 100);
writeToFile(fp, buf, 100);
The developer does not check the return value from the function read-
FromNetwork. They instead assume that the read function was suc-
cessful and they proceed to write the data buffer out to the file.

Question 2: What are the consequences of the problem?
If the read was not successful, then the function writeToFile will write
100 bytes from buffer to the file that may be incorrect (e.g., garbage
bytes). This action can corrupt the file.

Question 3: What changes do you make to prevent the
problem?
The developer should check the return value from the function read-
FromNetwork to ensure that reading from the network succeeds. The
function readFromNetwork returns -1 on failure.

if (readFromNetwork(c, buf , 100) != -1)
{
writeToFile(fp, buf , 100);
}

/* function to copy network data to given file */

Training Example 2 (code only) for 3-Example
Group

1 /* allocate memory block & initialize it with 0 */
2 char* create_init_mem(int size)
3 {
4 if (size <=0) { return NULL; }
5 /* allocate memory block and initialize to 0 */
6 char *buf = (char*) malloc(size);
7 int i;
8 for (i=0; i<size; i++) { buf[i] = 0;}
9

10 return buf;
11 }

Training Example 3 (code only) for 3-Example
Group

1 // get the OS version name
2 String osVersion = getItem("OS_VERSION");
3 if (osVersion.equals("Windows 7"))
4 { System.out.println("Version Supported"); }
5 else
6 { System.out.println("Version NOT Supported");}
7
8 public String getItem(String itemName)
9 {

10 // sysInfo is a global object that contains system
info.

11 if (sysInfo != null) {
12 String itemValue;
13 // sysInfo.get(String s) will return a:
14 // either String value for item s
15 // or null , if no such description exists
16 itemValue = sysInfo.get(itemName);
17 return itemValue;
18 }
19 return null;
20 }



Training Example A (code only) for 2-Example
Group
1 /* function to copy network data to given file */
2 int copyData(struct connection *c, FILE *fp)
3 {
4 char buf [200];
5 readFromNetwork(c, buf , 100);
6 writeToFile(fp , buf , 100);
7 ...
8 }
9 /* read in the given number of bytes count from */

10 /* the given network connection */
11 int readFromNetwork(struct connection *c, char *

buf , int count)
12 {
13 /* wait until count number of bytes become */
14 /* available and return them in buf; */
15 /* return -1 if there is an error reading from

the network; */...
16 }

Training Example B (code only) for 2-Example
Group
1 int getValueFromArray(int *array , int len , int

index)
2 {
3 int getValueFromArray(int *array , int len , int

index)
4 {
5 int value;
6 /* check that the array index is less than the */
7 /* maximum length of the array */
8 if (index < len) {
9

10 /* get the value at the specified array index */
11 value = array[index];
12 }
13 /* if array index is invalid then output error */
14 /* message and return value indicating error */
15 else {
16 printf("error: index %d invalid .\n", index);
17 value = -1;
18 }
19
20 return value;
21 }

Test Problem 1 (full)
Carefully read the code snippet below (including all comments) before
answering any questions. Please describe all issues you can identify.

1 /* connect to an existing records_db database and
get user records */

2 $connection = mysql_connect("localhost", "user1",
"pass465");

3 mysql_select_db("records_db", $connection);
4 $result = mysql_query("select * from user_table");
5 while ($row = mysql_fetch_assoc($result))
6 { /* print results */... }

Question 1:What is the problem, if any?
Question 2: What are the consequences of the problem, if any?
Question 3: What changes do you make to prevent the problem, if
any?

Test Problem 2 (code only)

1 /* concatenate 2 strings */
2 char* concatenate(char *str1 , char *str2)
3 {
4 short int total;
5 /* compute length of resulting string */

6 /* strlen does not count terminating ’\0’ */
7 total = strlen(str1) + strlen(str2) + 1;
8
9 /* allocate buffer enough to hold str1 & str2 */

10 char *buf = (char *) malloc(total);
11
12 if (buf != NULL) {
13 /* copy the str1 including terminating ’\0’ */
14 strcpy(buf , str1);
15
16 /* concatenate str2 to the end of str1 */
17 /* strcat starts copying at ’\0’ in buf */
18 /* strcat copies terminating ’\0’ of str2 */
19 strcat(buf , str2);
20 }
21
22 return buf;
23 }

Test Problem 3 (description only)
Bob is a system administrator at a datacenter and is responsible for
completing a list of tasks each month. One of these tasks is to run
patches when they become available. Bob has developed a patching
script to install patches on each server. He has scheduled the script
to run periodically. The patching script downloads available patches
from a secure and verified location, executes the patches not already
installed, and reboots the server (if necessary). Bob is confident that
the script has covered all the steps in the patching process, thus Bob
marks the task as completed.

Background Experience
Please answer the following four questions to complete the survey.

What is your current education level?*
( ) High school
( ) 1-2 years of college
( ) 3-4 years of college
( ) Graduate student or higher

How many years experience do you have in the following program-
ming languages?
(Please use decimals to one tenth, e.g., 1.5 years)*
C/C++: .......................
Java:.......................
Perl, PHP, Python, Ruby: .......................
SQL: .......................

Which of the following courses have you completed?
( ) A programming language course
( ) Data Structures
( ) Computer Security
( ) Secure Programming

How many years of industry experience, including summer jobs and
internships, do you have in computer programming?
(Please use decimals to one tenth, e.g., 1.5 years)*
................................................................


