
Course Wrap-up:

the Past and Future of Objects

Principles of Software System Construction

Jonathan Aldrich and Charlie Garrod

Fall 2012

Outline

• The Beginnings of Objects

– Simulation in Simula

• Pure OO in Smalltalk

– Historical context, demo

• Current research in OO at CMU

Design Patterns
Principles of Software System Construction

© 2011 Jonathan Aldrich
2

How OO Began

• 1957 Kristen Nygaard begins

work on computer simulation

– Observes a challenge

representing heterogeneity

• 1962 Ole-Johan Dahl joins

Nygaard, work on SIMULA I

Design Patterns
Principles of Software System Construction

© 2011 Jonathan Aldrich
3

• 1966 Tony Hoare (of Hoare logic) proposes Record Classes

– Records classes and subclasses, somewhat like Java without methods

• 1967 Nygaard and Dahl present Simula 67 [Dahl, Nygaard 1967]

– First OO language

– Key addition to Hoare’s record calculus: virtual procedures

• Dispatch is the essence of OO [Cook, 2009]

Sample Simula 67 Code
Begin

Class Glyph;

Virtual: Procedure print Is Procedure print;;

Begin End;

Glyph Class Char (c);

Character c;

Begin

Procedure print;

OutChar(c);

End;

Glyph Class Line (elements);

Ref (Glyph) Array elements;

Begin

Procedure print;

Begin

Integer i;

For i:= 1 Step 1 Until UpperBound (elements, 1) Do

elements (i).print;

OutImage;

End;

End;

Design Patterns
Principles of Software System Construction

© 2011 Jonathan Aldrich
4

Ref (Glyph) rg;

Ref (Glyph) Array rgs (1 : 4);

! Main program;

rgs (1):- New Char ('A');

rgs (2):- New Char ('b');

rgs (3):- New Char ('b');

rgs (4):- New Char ('a');

rg:- New Line (rgs);

rg.print;

End;

Smalltalk Context: Personal Computing

• The Dynabook at Xerox PARC:

“A Personal Computer for

Children of All Ages”

• Funded by US Govt (ARPA, the folks

who brought you the internet) to

facilitate portable maintenance

documentation

• Alan Kay’s goal

– Amplify human reach

– Bring new ways of thinking to

civilization

(CMU still pursuing this goal with

computational thinking)

Design Patterns
Principles of Software System Construction

© 2011 Jonathan Aldrich
5

Alan Kay with a Dynabook

prototype

Smalltalk

• The name
– “Children should program in…”

– “Programming should be a matter of…”

• Pure OO language
– Everything is an object (including true, “hello”, and 17)

– All computation is done via sending messages
• 3 + 4 sends the “+” message to 3, with 4 as an argument

• To create a Point, send the “new” message to the Point class
– Naturally, classes are objects too!

• Garbage collected

• Reflective
– Smalltalk is implemented (mostly) in Smalltalk

• A few primitives in C or assembler

– Classes, methods, objects, stack frames, etc. are all objects
• You can look at them in the debugger, which (naturally) is itself implemented

in Smalltalk

Design Patterns
Principles of Software System Construction

© 2011 Jonathan Aldrich
6

Smalltalk Demo

Design Patterns
Principles of Software System Construction

© 2011 Jonathan Aldrich
7

Smalltalk, according to Alan Kay

• “In computer terms, Smalltalk is a recursion on the notion of
computer itself. Instead of dividing “computer stuff” into
things each less strong than the whole—like data structures,
procedures, and functions which are the usual paraphenalia
of programming languages—each Smalltalk object is a

recursion of the entire possibilities of the computer.

• “…everything we describe can be represented by the
recursive composition of a single kind of behavioral building
block that hides its combination of state and process inside
itself and can be dealt with only through the exchange of
messages.

• “Thus [Smalltalk’s] semantics are a bit like having thousands
and thousands of computers all hooked together in a very fast
network.”

Design Patterns
Principles of Software System Construction

© 2011 Jonathan Aldrich
8

Impact of Smalltalk and Simula

• Mac (and later Windows): inspired by Smalltalk GUI

• C++: inspired by Simula 67 concepts

• Objective C: borrows Smalltalk concepts, syntax

• Java: garbage collection, bytecode from Smalltalk

• Ruby: pure OO model almost identical to Smalltalk

– All dynamic OO languages draw from Smalltalk to some extent

Design Patterns
Principles of Software System Construction

© 2011 Jonathan Aldrich
9

Research in Analysis, OO, Concurrency

Design Patterns
Principles of Software System Construction

© 2011 Jonathan Aldrich
10

Analysis Course – Spring 2012

• 15-819 O: Program Analysis

– MW 1:30-2:50pm, GHC 4101

• Topics

– Program representation

– Dataflow analysis and abstract interpretation (e.g. FindBugs)

– Type- and constraint-based analysis (e.g. JSure)

– Interprocedural analysis

– Extended static checking (e.g. ESC/Java)

– Concolic analysis and counterexample-guided abstract refinement

• Assignments

– Mix of theory (reasoning about analyses) and engineering (building
analyses)

Design Patterns
Principles of Software System Construction

© 2011 Jonathan Aldrich
11

Software Architecture

• the set of structures needed to reason about the system, which
comprise software elements, relations among them, and properties
of both – Clements et al.

• the set of principal design decisions made about the system – Taylor
et al.

• Software architecture enables reasoning about a software system
based on its design characteristics.

– Can we leverage architecture to reason about web app security?

– Can we link architecture to application implementation?

12

Configuration Files as Architecture

• Architecture already in industry frameworks

– Framework configuration files describe structure, properties

– Spring: web app framework

• Describes structure, security properties of web site

– Android framework

• Describes event-based communication, UI flow, security properties

• Can we check these for consistency?

– Specific tools for some frameworks—can we do it generally?

• FUSION tool at CMU/Cal Poly Pomona [C. Jaspan thesis, 2011]

XML
config

file extraction

Relatio

n store

Java
source
code

analysis

13

Vision: Mobile/Web App Architecture in Code

• Concept: Executable documentation

– E.g. declaring a protocol defines encoding used in components

– Structure, redundancy, wire protocol, format, interfaces

– Typechecking/analysis tools ensure consistency with code

• Enables analysis capabilities: attack graphs, threat models

• Challenge: making it open

– Nothing “built-in” – implement security protocols as libraries

– Thus libraries must also extend analysis capabilities

• End-to-end guarantee for what you implement “in the system”

– Bridge to external systems via separate analysis tools

App Servers External Data

Scalable Data

Store

Rest/

WSDL

HTTP/

XML

14

Why Ruby on Rails Works

• Flexible language syntax that supports embedded DSLs

– But not much checking!

• Challenge: extensible language with extensible checking

• Approach: type-driven compilation and checking

– Ability to pair a type with

• Code generation

• Semantic checks

– Open source prototype: cl.oquence (OpenCL + C. Elegans)

• Python syntax, C type system, OpenCL code generation for neuroscience
[Cyrus Omar, ongoing

work at CMU]

• Applications

– Prepared SQL statements – best defense against SQL injection

– Communication protocols

15

Plaid / Aeminium

• Typestate support in the object model

• Concurrent execution by default

Design Patterns
Principles of Software System Construction

© 2011 Jonathan Aldrich
16

Typestate-Oriented Programming

state File {

val String filename;

}

state ClosedFile = File with {

method void open() [ClosedFile>>OpenFile];

}

state OpenFile = File with {

private val CFile fileResource;

method int read();

method void close() [OpenFile>>ClosedFile];

}

Plaid: Centering a Language Design around

Resources
17

State

transition

Different

representation
New methods

open closed

close()

read()

open()

Implementing Typestate Changes

method void open() [ClosedFile>>OpenFile] {

this <- OpenFile {

fileResource = fopen(filename);

}

}

Plaid: Centering a Language Design around

Resources
18

Typestate change

primitive – like

Smalltalk become

:

Values must be

specified for

each new field

Why Typestate in the Language?

19

• The world has state – so should programming languages

– egg -> caterpillar -> butterfly; sleep -> work -> eat -> play; hungry <-> full

• Language influences thought [Sapir ‘29, Whorf ‘56, Boroditsky ’09]

– Language support encourages engineers to think about states

• Better designs, better documentation, more effective reuse

• Improved library specification and verification

– Typestates define when you can call read()

– Make constraints that are only implicit today, explicit

• Expressive modeling

– If a field is not needed, it does not exist

– Methods can be overridden for each state

• Simpler reasoning

– Without state: fileResource non-null if File is open, null if closed

– With state: fileResource always non-null

• But only exists in the FileOpen state
Plaid: Centering a Language Design around

Resources

