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Principles of Software Construction: 
Objects, Design, and Concurrency

Hoare Logic, Part 2



Side Note: Why Weakest Preconditions?

• 15-122 teaches a (somewhat less formal) approach 
based on fresh variables
• Increment x in a loop � x’ = x + 1

• This approach has limitations
• Sequences

x := x * 2; // x’
x := x + 1; // x’’

• Conditionals
if (…)

x := x * 2; // x’
else

y := y + 1; // y’ – but we must also assume x’ = x here

• Weakest preconditions scales better
• No extra variables, no virtual assignments in branches
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Review: Hoare Logic Rules

• wp(x := E, P) = [E/x] P
• wp(S;T, Q) = wp(S, wp(T, Q))
• wp(if B then S else T, Q)

= B ⇒ wp(S,Q) && ¬B ⇒wp(T,Q)
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Hoare Logic Rules

• Loops
• { P } while (i < x) f=f*i; i := i + 1 { f = x! }
• What is the weakest precondition P?

• Intuition
• Must prove by induction

• Only way to generalize across number of times 
loop executes

• Need to guess induction hypothesis
• Base case: precondition P
• Inductive case: should be preserved by 

executing loop body
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Proving loops correct

• Partial correctness
• The loop may not terminate, but if it does, 

the postcondition will hold

• {P} while B do S {Q}
• Find an invariant Inv such that:

• P ⇒ Inv
• The invariant is initially true

• { Inv && B } S {Inv}
• Each execution of the loop preserves the invariant

• (Inv && ¬B) ⇒ Q
• The invariant and the loop exit condition imply the 

postcondition
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Quick Quiz
Consider the following program:

{ N >= 0 }
i := 0;
while (i < N) do

i := N
{ i = N }

Which of the following conditions are loop invariants that are 
sufficient to prove the postcondition?

For those that are incorrect, explain why.
A) i = 0
B) i = N
C) N >= 0
D) i <= N

Correctness Conditions
P ⇒ Inv

The invariant is initially true
{ Inv && B } S {Inv}

Loop preserves the invariant
(Inv && ¬B) ⇒ Q

Invariant and exit implies postcondition
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Quick Quiz
Consider the following program:

{ N >= 0 }
i := 0;
while (i < N) do

i := N
{ i = N }

Which of the following conditions are loop invariants that are 
sufficient to prove the postcondition?

For those that are incorrect, explain why.
A) i = 0 // not an invariant; not preserved by loop execution

B) i = N // not an invariant; not initially true

C) N >= 0 // a loop invariant, but insufficient to prove postcondition

D) i <= N // correct loop invariant, sufficient to prove postcondition

Correctness Conditions
P ⇒ Inv

The invariant is initially true
{ Inv && B } S {Inv}

Loop preserves the invariant
(Inv && ¬B) ⇒ Q

Invariant and exit implies postcondition
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Loop Example
• Prove array sum correct
{ N ≥ 0 }
j := 0;
s := 0;

while (j < N) do

j := j + 1;
s := s + a[j];

end
{ s = (Σi | 0≤i<N • a[i]) }

How can we find a loop invariant?
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Loop Example
• Prove array sum correct
{ N ≥ 0 }
j := 0;
s := 0;

while (j < N) do

j := j + 1;
s := s + a[j];

end
{ s = (Σi | 0≤i<N • a[i]) }

Replace N with j
Add information on range of j
Result: 0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) 

How can we find a loop invariant?
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Loop Example
• Prove array sum correct
{ N ≥ 0 }
j := 0;
s := 0;
{ 0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }
while (j < N) do

j := j + 1;
s := s + a[j];

end
{ s = (Σi | 0≤i<N • a[i]) }
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Loop Example
• Prove array sum correct
{ N ≥ 0 }
j := 0;
s := 0;
{ 0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }
while (j < N) do

j := j + 1;
s := s + a[j];
{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

end
{ s = (Σi | 0≤i<N • a[i]) }
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Loop Example
• Prove array sum correct
{ N ≥ 0 }
j := 0;
s := 0;
{ 0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }
while (j < N) do

{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N}
j := j + 1;
s := s + a[j];
{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

end
{ s = (Σi | 0≤i<N • a[i]) }



Specification and 
Correctness

14Principles of Software Construction        
© 2012 Jonathan Aldrich

Loop Example
• Prove array sum correct
{ N ≥ 0 }
j := 0;
s := 0;
{ 0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }
while (j < N) do

{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N}
j := j + 1;
s := s + a[j];
{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

end
{ s = (Σi | 0≤i<N • a[i]) }

Proof obligation #1

Proof obligation #2

Proof obligation #3
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Proof Obligations
• Invariant is initially true

{ N ≥ 0 }
j := 0;
s := 0;
{ 0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }
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Proof Obligations
• Invariant is initially true

{ N ≥ 0 }
j := 0;
s := 0;
{ 0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

• Invariant is maintained
{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N}
j := j + 1;
s := s + a[j];
{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }
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Proof Obligations
• Invariant is initially true

{ N ≥ 0 }
j := 0;
s := 0;
{ 0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

• Invariant is maintained
{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N}
j := j + 1;
s := s + a[j];
{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

• Invariant and exit condition imply postcondition
0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j ≥ N

⇒ s = (Σi | 0≤i<N • a[i])
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Proof Obligations
• Invariant is initially true

{ N ≥ 0 }

j := 0;

s := 0;
{ 0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }
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Proof Obligations
• Invariant is initially true

{ N ≥ 0 }

j := 0;
{ 0 ≤ j ≤ N && 0 = (Σi | 0≤i<j • a[i]) } // by assignment rule
s := 0;
{ 0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }
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Proof Obligations
• Invariant is initially true

{ N ≥ 0 }
{ 0 ≤ 0 ≤ N && 0 = (Σi | 0≤i<0 • a[i]) } // by assignment rule
j := 0;
{ 0 ≤ j ≤ N && 0 = (Σi | 0≤i<j • a[i]) } // by assignment rule
s := 0;
{ 0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }
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Proof Obligations
• Invariant is initially true

{ N ≥ 0 }
{ 0 ≤ 0 ≤ N && 0 = (Σi | 0≤i<0 • a[i]) } // by assignment rule
j := 0;
{ 0 ≤ j ≤ N && 0 = (Σi | 0≤i<j • a[i]) } // by assignment rule
s := 0;
{ 0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

• Need to show that:
(N ≥ 0) ⇒ (0 ≤ 0 ≤ N && 0 = (Σi | 0≤i<0 • a[i]))
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Proof Obligations
• Invariant is initially true

{ N ≥ 0 }
{ 0 ≤ 0 ≤ N && 0 = (Σi | 0≤i<0 • a[i]) } // by assignment rule
j := 0;
{ 0 ≤ j ≤ N && 0 = (Σi | 0≤i<j • a[i]) } // by assignment rule
s := 0;
{ 0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

• Need to show that:
(N ≥ 0) ⇒ (0 ≤ 0 ≤ N && 0 = (Σi | 0≤i<0 • a[i]))

= (N ≥ 0) ⇒ (0 ≤ N && 0 = 0) // 0 ≤ 0 is true, empty sum is 0
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Proof Obligations
• Invariant is initially true

{ N ≥ 0 }
{ 0 ≤ 0 ≤ N && 0 = (Σi | 0≤i<0 • a[i]) } // by assignment rule
j := 0;
{ 0 ≤ j ≤ N && 0 = (Σi | 0≤i<j • a[i]) } // by assignment rule
s := 0;
{ 0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

• Need to show that:
(N ≥ 0) ⇒ (0 ≤ 0 ≤ N && 0 = (Σi | 0≤i<0 • a[i]))

= (N ≥ 0) ⇒ (0 ≤ N && 0 = 0) // 0 ≤ 0 is true, empty sum is 0
= (N ≥ 0) ⇒ (0 ≤ N) // 0=0 is true, P && true is P
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Proof Obligations
• Invariant is initially true

{ N ≥ 0 }
{ 0 ≤ 0 ≤ N && 0 = (Σi | 0≤i<0 • a[i]) } // by assignment rule
j := 0;
{ 0 ≤ j ≤ N && 0 = (Σi | 0≤i<j • a[i]) } // by assignment rule
s := 0;
{ 0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

• Need to show that:
(N ≥ 0) ⇒ (0 ≤ 0 ≤ N && 0 = (Σi | 0≤i<0 • a[i]))

= (N ≥ 0) ⇒ (0 ≤ N && 0 = 0) // 0 ≤ 0 is true, empty sum is 0
= (N ≥ 0) ⇒ (0 ≤ N) // 0=0 is true, P && true is P
= true
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Proof Obligations
• Invariant is maintained

{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N}

j := j + 1;

s := s + a[j];
{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }



Specification and 
Correctness

26Principles of Software Construction        
© 2012 Jonathan Aldrich

Proof Obligations
• Invariant is maintained

{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N}

j := j + 1;
{0 ≤ j ≤ N && s+a[j] = (Σi | 0≤i<j • a[i]) } // by assignment rule
s := s + a[j];
{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }
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Proof Obligations
• Invariant is maintained

{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N}
{0 ≤ j +1 ≤ N && s+a[j+1] = (Σi | 0≤i<j+1 • a[i]) } // by assignment rule
j := j + 1;
{0 ≤ j ≤ N && s+a[j] = (Σi | 0≤i<j • a[i]) } // by assignment rule
s := s + a[j];
{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }
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Proof Obligations
• Invariant is maintained

{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N}
{0 ≤ j +1 ≤ N && s+a[j+1] = (Σi | 0≤i<j+1 • a[i]) } // by assignment rule
j := j + 1;
{0 ≤ j ≤ N && s+a[j] = (Σi | 0≤i<j • a[i]) } // by assignment rule
s := s + a[j];
{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

• Need to show that:
(0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N)

⇒ (0 ≤ j +1 ≤ N && s+a[j+1] = (Σi | 0≤i<j+1 • a[i]))
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Proof Obligations
• Invariant is maintained

{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N}
{0 ≤ j +1 ≤ N && s+a[j+1] = (Σi | 0≤i<j+1 • a[i]) } // by assignment rule
j := j + 1;
{0 ≤ j ≤ N && s+a[j] = (Σi | 0≤i<j • a[i]) } // by assignment rule
s := s + a[j];
{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

• Need to show that:
(0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N)

⇒ (0 ≤ j +1 ≤ N && s+a[j+1] = (Σi | 0≤i<j+1 • a[i]))
= (0 ≤ j < N && s = (Σi | 0≤i<j • a[i]))

⇒ (-1 ≤ j < N && s+a[j+1] = (Σi | 0≤i<j+1 • a[i])) // simplify bounds of j
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Proof Obligations
• Invariant is maintained

{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N}
{0 ≤ j +1 ≤ N && s+a[j+1] = (Σi | 0≤i<j+1 • a[i]) } // by assignment rule
j := j + 1;
{0 ≤ j ≤ N && s+a[j] = (Σi | 0≤i<j • a[i]) } // by assignment rule
s := s + a[j];
{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

• Need to show that:
(0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N)

⇒ (0 ≤ j +1 ≤ N && s+a[j+1] = (Σi | 0≤i<j+1 • a[i]))
= (0 ≤ j < N && s = (Σi | 0≤i<j • a[i]))

⇒ (-1 ≤ j < N && s+a[j+1] = (Σi | 0≤i<j+1 • a[i])) // simplify bounds of j
= (0 ≤ j < N && s = (Σi | 0≤i<j • a[i]))

⇒ (-1 ≤ j < N && s+a[j+1]  = (Σi | 0≤i<j • a[i]) + a[j] ) // separate last element
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Proof Obligations
• Invariant is maintained

{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N}
{0 ≤ j +1 ≤ N && s+a[j+1] = (Σi | 0≤i<j+1 • a[i]) } // by assignment rule
j := j + 1;
{0 ≤ j ≤ N && s+a[j] = (Σi | 0≤i<j • a[i]) } // by assignment rule
s := s + a[j];
{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

• Need to show that:
(0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N)

⇒ (0 ≤ j +1 ≤ N && s+a[j+1] = (Σi | 0≤i<j+1 • a[i]))
= (0 ≤ j < N && s = (Σi | 0≤i<j • a[i]))

⇒ (-1 ≤ j < N && s+a[j+1] = (Σi | 0≤i<j+1 • a[i])) // simplify bounds of j
= (0 ≤ j < N && s = (Σi | 0≤i<j • a[i]))

⇒ (-1 ≤ j < N && s+a[j+1]  = (Σi | 0≤i<j • a[i]) + a[j] ) // separate last element
// we have a problem – we need a[j+1] and a[j] to ca ncel out
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Where’s the error?
• Prove array sum correct
{ N ≥ 0 }
j := 0;
s := 0;

while (j < N) do

j := j + 1;
s := s + a[j];

end
{ s = (Σi | 0≤i<N • a[i]) }
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Where’s the error?
• Prove array sum correct
{ N ≥ 0 }
j := 0;
s := 0;

while (j < N) do

j := j + 1;
s := s + a[j];

end
{ s = (Σi | 0≤i<N • a[i]) }

Need to add element
before incrementing j
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Corrected Code
• Prove array sum correct
{ N ≥ 0 }
j := 0;
s := 0;

while (j < N) do

s := s + a[j];
j := j + 1;

end
{ s = (Σi | 0≤i<N • a[i]) }
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Proof Obligations
• Invariant is maintained

{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N}

s := s + a[j];

j := j + 1;
{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }
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Proof Obligations
• Invariant is maintained

{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N}

s := s + a[j];
{0 ≤ j +1 ≤ N && s = (Σi | 0≤i<j+1 • a[i]) } // by assignment rule
j := j + 1;
{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }
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Proof Obligations
• Invariant is maintained

{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N}
{0 ≤ j +1 ≤ N && s+a[j] = (Σi | 0≤i<j+1 • a[i]) } // by assignment rule
s := s + a[j];
{0 ≤ j +1 ≤ N && s = (Σi | 0≤i<j+1 • a[i]) } // by assignment rule
j := j + 1;
{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }
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Proof Obligations
• Invariant is maintained

{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N}
{0 ≤ j +1 ≤ N && s+a[j] = (Σi | 0≤i<j+1 • a[i]) } // by assignment rule
s := s + a[j];
{0 ≤ j +1 ≤ N && s = (Σi | 0≤i<j+1 • a[i]) } // by assignment rule
j := j + 1;
{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

• Need to show that:
(0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N)

⇒ (0 ≤ j +1 ≤ N && s+a[j] = (Σi | 0≤i<j+1 • a[i]))
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Proof Obligations
• Invariant is maintained

{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N}
{0 ≤ j +1 ≤ N && s+a[j] = (Σi | 0≤i<j+1 • a[i]) } // by assignment rule
s := s + a[j];
{0 ≤ j +1 ≤ N && s = (Σi | 0≤i<j+1 • a[i]) } // by assignment rule
j := j + 1;
{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

• Need to show that:
(0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N)

⇒ (0 ≤ j +1 ≤ N && s+a[j] = (Σi | 0≤i<j+1 • a[i]))
= (0 ≤ j < N && s = (Σi | 0≤i<j • a[i]))

⇒ (-1 ≤ j < N && s+a[j] = (Σi | 0≤i<j+1 • a[i])) // simplify bounds of j
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Proof Obligations
• Invariant is maintained

{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N}
{0 ≤ j +1 ≤ N && s+a[j] = (Σi | 0≤i<j+1 • a[i]) } // by assignment rule
s := s + a[j];
{0 ≤ j +1 ≤ N && s = (Σi | 0≤i<j+1 • a[i]) } // by assignment rule
j := j + 1;
{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

• Need to show that:
(0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N)

⇒ (0 ≤ j +1 ≤ N && s+a[j] = (Σi | 0≤i<j+1 • a[i]))
= (0 ≤ j < N && s = (Σi | 0≤i<j • a[i]))

⇒ (-1 ≤ j < N && s+a[j] = (Σi | 0≤i<j+1 • a[i])) // simplify bounds of j
= (0 ≤ j < N && s = (Σi | 0≤i<j • a[i]))

⇒ (-1 ≤ j < N && s+a[j]  = (Σi | 0≤i<j • a[i]) + a[j] ) // separate last part of sum
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Proof Obligations
• Invariant is maintained

{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N}
{0 ≤ j +1 ≤ N && s+a[j] = (Σi | 0≤i<j+1 • a[i]) } // by assignment rule
s := s + a[j];
{0 ≤ j +1 ≤ N && s = (Σi | 0≤i<j+1 • a[i]) } // by assignment rule
j := j + 1;
{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

• Need to show that:
(0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N)

⇒ (0 ≤ j +1 ≤ N && s+a[j] = (Σi | 0≤i<j+1 • a[i]))
= (0 ≤ j < N && s = (Σi | 0≤i<j • a[i]))

⇒ (-1 ≤ j < N && s+a[j] = (Σi | 0≤i<j+1 • a[i])) // simplify bounds of j
= (0 ≤ j < N && s = (Σi | 0≤i<j • a[i]))

⇒ (-1 ≤ j < N && s+a[j]  = (Σi | 0≤i<j • a[i]) + a[j] ) // separate last part of sum
= (0 ≤ j < N && s = (Σi | 0≤i<j • a[i]))

⇒ (-1 ≤ j < N && s = (Σi | 0≤i<j • a[i])) // subtract a[j] from both sides
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Proof Obligations
• Invariant is maintained

{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N}
{0 ≤ j +1 ≤ N && s+a[j] = (Σi | 0≤i<j+1 • a[i]) } // by assignment rule
s := s + a[j];
{0 ≤ j +1 ≤ N && s = (Σi | 0≤i<j+1 • a[i]) } // by assignment rule
j := j + 1;
{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

• Need to show that:
(0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N)

⇒ (0 ≤ j +1 ≤ N && s+a[j] = (Σi | 0≤i<j+1 • a[i]))
= (0 ≤ j < N && s = (Σi | 0≤i<j • a[i]))

⇒ (-1 ≤ j < N && s+a[j] = (Σi | 0≤i<j+1 • a[i])) // simplify bounds of j
= (0 ≤ j < N && s = (Σi | 0≤i<j • a[i]))

⇒ (-1 ≤ j < N && s+a[j]  = (Σi | 0≤i<j • a[i]) + a[j] ) // separate last part of sum
= (0 ≤ j < N && s = (Σi | 0≤i<j • a[i]))

⇒ (-1 ≤ j < N && s = (Σi | 0≤i<j • a[i])) // subtract a[j] from both sides
= true // 0 ≤ j ⇒ -1 ≤ j
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Proof Obligations

• Invariant and exit condition implies postcondition
0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j ≥ N

⇒ s = (Σi | 0≤i<N • a[i])
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Proof Obligations

• Invariant and exit condition implies postcondition
0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j ≥ N

⇒ s = (Σi | 0≤i<N • a[i])
= 0 ≤ j && j = N && s = (Σi | 0≤i<j • a[i])

⇒ s = (Σi | 0≤i<N • a[i])
// because (j ≤ N && j ≥ N) = (j = N)
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Proof Obligations

• Invariant and exit condition implies postcondition
0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j ≥ N

⇒ s = (Σi | 0≤i<N • a[i])
= 0 ≤ j && j = N && s = (Σi | 0≤i<j • a[i])

⇒ s = (Σi | 0≤i<N • a[i])
// because (j ≤ N && j ≥ N) = (j = N)

= 0 ≤ N && s = (Σi | 0≤i<N • a[i]) ⇒ s = (Σi | 0≤i<N • a[i])
// by substituting N for j, since j = N
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Proof Obligations

• Invariant and exit condition implies postcondition
0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j ≥ N

⇒ s = (Σi | 0≤i<N • a[i])
= 0 ≤ j && j = N && s = (Σi | 0≤i<j • a[i])

⇒ s = (Σi | 0≤i<N • a[i])
// because (j ≤ N && j ≥ N) = (j = N)

= 0 ≤ N && s = (Σi | 0≤i<N • a[i]) ⇒ s = (Σi | 0≤i<N • a[i])
// by substituting N for j, since j = N

= true // because P && Q ⇒ Q
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Quick Quiz
• For the program below and the invariant i <= N, write the proof obligations. The 

form of your answer should be three mathematical implications.

{ N >= 0 }

i := 0;

while (i < N) do

i := N

{ i = N }

• Invariant is initially true:

• Invariant is preserved by the loop body:

• Invariant and exit condition imply postcondition:
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Quick Quiz
• For the program below and the invariant i <= N, write the proof obligations. The 

form of your answer should be three mathematical implications.

{ N >= 0 }

i := 0;
{ i <= N }
while (i < N) do

i := N
{ i <= N }

{ i = N }

• Invariant is initially true:

• Invariant is preserved by the loop body:

• Invariant and exit condition imply postcondition:
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Quick Quiz
• For the program below and the invariant i <= N, write the proof obligations. The 

form of your answer should be three mathematical implications.

{ N >= 0 }

i := 0;
{ i <= N }
while (i < N) do

{ i <= N && I < N}

i := N
{ i <= N }

{ i = N }

• Invariant is initially true:

• Invariant is preserved by the loop body:

• Invariant and exit condition imply postcondition:
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Quick Quiz
• For the program below and the invariant i <= N, write the proof obligations. The 

form of your answer should be three mathematical implications.

{ N >= 0 }

i := 0;
{ i <= N }
while (i < N) do

{ i <= N && I < N}

i := N
{ i <= N }

{ i <= N && i >= N }
{ i = N }

• Invariant is initially true:

• Invariant is preserved by the loop body:

• Invariant and exit condition imply postcondition: i <= N && i >= N  ==>  i = N
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Quick Quiz
• For the program below and the invariant i <= N, write the proof obligations. The 

form of your answer should be three mathematical implications.

{ N >= 0 }

i := 0;
{ i <= N }
while (i < N) do

{ i <= N && I < N}
{ N <= N }
i := N
{ i <= N }

{ i <= N && i >= N }
{ i = N }

• Invariant is initially true:

• Invariant is preserved by the loop body:  I <= N && I < N  ==>  N <= N

• Invariant and exit condition imply postcondition: i <= N && i >= N  ==>  i = N
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Quick Quiz
• For the program below and the invariant i <= N, write the proof obligations. The 

form of your answer should be three mathematical implications.

{ N >= 0 }
{ 0 <= N }
i := 0;
{ i <= N }
while (i < N) do

{ i <= N && I < N}
{ N <= N }
i := N
{ i <= N }

{ i <= N && i >= N }
{ i = N }

• Invariant is initially true:

• Invariant is preserved by the loop body:  I <= N && I < N  ==>  N <= N

• Invariant and exit condition imply postcondition: i <= N && i >= N  ==>  i = N
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Quick Quiz
• For the program below and the invariant i <= N, write the proof obligations. The 

form of your answer should be three mathematical implications.

{ N >= 0 }
{ 0 <= N }
i := 0;
{ i <= N }
while (i < N) do

{ i <= N && I < N}
{ N <= N }
i := N
{ i <= N }

{ i <= N && i >= N }
{ i = N }

• Invariant is initially true: N >= 0  ==>  0 <= N

• Invariant is preserved by the loop body:  I <= N && I < N  ==>  N <= N

• Invariant and exit condition imply postcondition:  i <= N && i >= N  ==>  i = N



Specification and 
Correctness

54Principles of Software Construction        
© 2012 Jonathan Aldrich

Invariant Intuition

• For code without loops, we are simulating execution 
directly
• We prove one Hoare Triple for each statement, and each 

statement is executed once

• For code with loops, we are doing one proof of 
correctness for multiple loop iterations
• Proof must cover all iterations

• Don’t know how many there will be
• The invariant must be general yet precise

• general enough to be true for every execution
• precise enough to imply the postcondition we need

• This tension makes inferring loop invariants challenging
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Total Correctness for Loops

• {P} while B do S {Q}
• Partial correctness:

• Find an invariant Inv such that:
• P ⇒ Inv

• The invariant is initially true
• { Inv && B } S {Inv}

• Each execution of the loop preserves the invariant
• (Inv && ¬B) ⇒ Q

• The invariant and the loop exit condition imply the 
postcondition

• Total correctness
• Loop will terminate
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We haven’t proven termination
• Consider the following program:

{ true }
i := 0
while (true) do            { true }

i := i + 1;
{ i == -1 }



Specification and 
Correctness

57Principles of Software Construction        
© 2012 Jonathan Aldrich

We haven’t proven termination
• Consider the following program:

{ true }
i := 0
while (true) do            { true }

i := i + 1;
{ i == -1 }

• This program verifies (as partially correct)
• Loop invariant trivially true initially and trivially preserved
• Postcondition check:

• (not(true) && true) => (i == -1)
• = (false && true) => (i == -1)
• = (false) => (i == -1)
• = true
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We haven’t proven termination
• Consider the following program:

{ true }
i := 0
while (true) do            { true }

i := i + 1;
{ i == -1 }

• This program verifies (as partially correct)
• Loop invariant trivially true initially and trivially preserved
• Postcondition check:

• (not(true) && true) => (i == -1)
• = (false && true) => (i == -1)
• = (false) => (i == -1)
• = true

• Partial correctness: if the program terminates, then the 
postcondition will hold
• Doesn’t say anything about the postcondition if the program does 

not terminate—any postcondition is OK.
• We need a stronger correctness property
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Termination

{ N ≥ 0 }
j := 0;
s := 0;

while (j < N) do

s := s + a[j];
j := j + 1;

end
{ s = (Σi | 0≤i<N • a[i]) }

• How would you prove 
this program 
terminates?
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Termination

{ N ≥ 0 }
j := 0;
s := 0;

while (j < N) do

s := s + a[j];
j := j + 1;

end
{ s = (Σi | 0≤i<N • a[i]) }

• How would you prove 
this program 
terminates?

• Consider the loop
• What is the maximum 

number of times it 
could execute?

• Use induction to prove 
this bound is correct
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Total Correctness for Loops
• {P} while B do S {Q}
• Partial correctness:

• Find an invariant Inv such that:
• P ⇒ Inv

• The invariant is initially true
• { Inv && B } S {Inv}

• Each execution of the loop preserves the invariant
• (Inv && ¬B) ⇒ Q

• The invariant and the loop exit condition imply the postcondition

• Termination bound
• Find a variant function v such that:

• v is an upper bound on the number of loops remaining
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Total Correctness for Loops
• {P} while B do S {Q}
• Partial correctness:

• Find an invariant Inv such that:
• P ⇒ Inv

• The invariant is initially true
• { Inv && B } S {Inv}

• Each execution of the loop preserves the invariant
• (Inv && ¬B) ⇒ Q

• The invariant and the loop exit condition imply the postcondition

• Termination bound
• Find a variant function v such that:

• v is an upper bound on the number of loops remaining

• { Inv && B && v=V } S {v < V}
• The variant function decreases each time the loop body executes
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Total Correctness for Loops
• {P} while B do S {Q}
• Partial correctness:

• Find an invariant Inv such that:
• P ⇒ Inv

• The invariant is initially true
• { Inv && B } S {Inv}

• Each execution of the loop preserves the invariant
• (Inv && ¬B) ⇒ Q

• The invariant and the loop exit condition imply the postcondition

• Termination bound
• Find a variant function v such that:

• v is an upper bound on the number of loops remaining

• { Inv && B && v=V } S {v < V}
• The variant function decreases each time the loop body executes

• (Inv && v ≤ 0) ⇒ ¬B
• If we the variant function reaches zero, we must exit the loop
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Total Correctness Example

while (j < N) do
{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N}
s := s + a[j];
j := j + 1;
{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

end
• Variant function for this loop?
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Total Correctness Example

while (j < N) do
{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N}
s := s + a[j];
j := j + 1;
{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) }

end
• Variant function for this loop?

• N-j
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Guessing Variant Functions

• Loops with an index
• N ± i
• Applies if you always add or always subtract a 

constant, and if you exit the loop when the index 
reaches some constant

• Use N-i if you are incrementing i, N+i if you are 
decrementing i

• Set N such that N ± i ≤ 0 at loop exit

• Other loops
• Find an expression that is an upper bound on the 

number of iterations left in the loop
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Additional Proof Obligations
• Variant function for this loop: N-j
• To show: variant function is decreasing

{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N && N-j = V}
s := s + a[j];
j := j + 1;
{N-j < V}
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Additional Proof Obligations
• Variant function for this loop: N-j
• To show: variant function is decreasing

{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N && N-j = V}
s := s + a[j];
j := j + 1;
{N-j < V}

• To show: exit the loop once variant function reaches 0
(0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && N-j ≤ 0)

⇒ j ≥ N
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Additional Proof Obligations
• To show: variant function is decreasing

{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N && N-j = V}

s := s + a[j];

j := j + 1;
{N-j < V}
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Additional Proof Obligations
• To show: variant function is decreasing

{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N && N-j = V}

s := s + a[j];
{N-(j+1) < V} // by assignment
j := j + 1;
{N-j < V}
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Additional Proof Obligations
• To show: variant function is decreasing

{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N && N-j = V}
{N-(j+1) < V} // by assignment
s := s + a[j];
{N-(j+1) < V} // by assignment
j := j + 1;
{N-j < V}
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Additional Proof Obligations
• To show: variant function is decreasing

{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N && N-j = V}
{N-(j+1) < V} // by assignment
s := s + a[j];
{N-(j+1) < V} // by assignment
j := j + 1;
{N-j < V}

• Need to show:
(0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N && N-j = V)

⇒ (N-(j+1) < V)
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Additional Proof Obligations
• To show: variant function is decreasing

{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N && N-j = V}
{N-(j+1) < V} // by assignment
s := s + a[j];
{N-(j+1) < V} // by assignment
j := j + 1;
{N-j < V}

• Need to show:
(0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N && N-j = V)

⇒ (N-(j+1) < V)
Assume 0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N && N-j = V
By weakening we have N-j = V
Therefore N-j-1 < V
But this is equivalent to N-(j+1) < V, so we are done.
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Additional Proof Obligations
• To show: variant function is decreasing

{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N && N-j = V}
{N-(j+1) < V} // by assignment
s := s + a[j];
{N-(j+1) < V} // by assignment
j := j + 1;
{N-j < V}

• Need to show:
(0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N && N-j = V)

⇒ (N-(j+1) < V)
Assume 0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N && N-j = V
By weakening we have N-j = V
Therefore N-j-1 < V
But this is equivalent to N-(j+1) < V, so we are done.
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Additional Proof Obligations
• To show: variant function is decreasing

{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N && N-j = V}
{N-(j+1) < V} // by assignment
s := s + a[j];
{N-(j+1) < V} // by assignment
j := j + 1;
{N-j < V}

• Need to show:
(0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N && N-j = V)

⇒ (N-(j+1) < V)
Assume 0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N && N-j = V
By weakening we have N-j = V
Therefore N-j-1 < V
But this is equivalent to N-(j+1) < V, so we are done.
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Additional Proof Obligations
• To show: variant function is decreasing

{0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N && N-j = V}
{N-(j+1) < V} // by assignment
s := s + a[j];
{N-(j+1) < V} // by assignment
j := j + 1;
{N-j < V}

• Need to show:
(0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N && N-j = V)

⇒ (N-(j+1) < V)
Assume 0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && j < N && N-j = V
By weakening we have N-j = V
Therefore N-j-1 < V
But this is equivalent to N-(j+1) < V, so we are done.
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Additional Proof Obligations
• To show: exit the loop once variant function reaches 0

(0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && N-j ≤ 0)
⇒ j ≥ N
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Additional Proof Obligations
• To show: exit the loop once variant function reaches 0

(0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && N-j ≤ 0)
⇒ j ≥ N

(0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && N ≤ j)
⇒ j ≥ N // added j to both sides
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Additional Proof Obligations
• To show: exit the loop once variant function reaches 0

(0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && N-j ≤ 0)
⇒ j ≥ N

(0 ≤ j ≤ N && s = (Σi | 0≤i<j • a[i]) && N ≤ j)
⇒ j ≥ N // added j to both sides

= true // (N ≤ j) = (j ≥ N), P && Q ⇒ P
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Quick Quiz
For each of the following loops, is the given variant function correct?  If not, why not?
A) Loop: n := 256;

while (n > 1) do
n := n / 2

Variant Function: log2 n

B) Loop: n := 100;
while (n > 0) do

if (random())
then n := n + 1;
else n := n – 1;

Variant Function: n

C) Loop: n := 0;
while (n < 10) do

n := n + 1;
Variant Function: -n
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Session Summary

• While testing can find bugs, formal 
verification can assure their absence

• Hoare Logic is a mechanical approach 
for verifying software
• Creativity is required in finding loop 

invariants, however
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Further Reading

• C.A.R. Hoare. An Axiomatic Basis for 
Computer Programming. Communications of 
the ACM 12(10):576-580, October 1969.


