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Abstract— For purposes of real-time 3D sensing, it is im-
portant to be able to quickly register together incoming point
cloud data. In this paper, we devise a method to quickly
and robustly decompose large point clouds into a relatively
small number of meaningful surface patches from which we
register new data points. The surface patch representation
sidesteps the costly problem of matching points to points since
incoming data only need to be compared with the patches. The
chosen parametrization of the patches (as Gaussians) leads to
a smooth data likelihood function with a well-defined gradient.
This representation thus forms the basis for a robust and
efficient registration algorithm using a parallelized gradient
descent implemented on a GPU using CUDA. We use a
modified Gaussian Mixture Model (GMM) formulation solved
by Expectation Maximization (EM) to segment the point cloud
and an annealing gradient descent method to find the 6-DOF
rigid transformation between the incoming point cloud and the
segmented set of surface patches. We test our algorithm, Robust
EM Segmentation (REM-Seg), against other GPU-accelerated
registration algorithms on simulated and real data and show
that our method scales well to large numbers of points, has
a wide range of convergence, and is suitably accurate for 3D
registration.

I. INTRODUCTION

Establishing and maintaining a consistent world model is
one of the cornerstones of mobile autonomy, functioning as
an intermediary between raw sensor measurements of the
world and high level scene understanding. Spatial maps aid
in the tasks of localization, tracking, and object recognition,
which in turn are necessary for efficient path planning and
higher level perception and intelligence. Today, 3D range
sensing is ubiquitous and many modern sensors can generate
massive amounts of data, making it challenging to apply stan-
dard optimization algorithms over the raw data for purposes
of real-time perception. Parametric or geometric representa-
tions of surfaces allow a more compact representation than
raw point clouds, inducing a more tractable structure to allow
real-time computation. These compact representations also
allow for more efficient and robust techniques to be applied
to the problem of multiple scan registration, a necessary
component of any mapping system.

Two broad categories of point cloud registration algo-
rithms exist: those that do direct point-to-point or point-
to-local-surface matching, and those that first parametrically
transform one or both point clouds into a new object with
better computational properties before calculating the rigid
transformation. The former category includes the widely
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used Iterative Closest Point (ICP) algorithm, and the latter
includes registration algorithms based on planar segmenta-
tion, Gaussian Mixture Models (GMM), or Normal Distance
Transforms (NDT).

Historically, registration has been done using the Iterative
Closest Point (ICP) algorithm, which is a somewhat ad hoc
algorithm that iteratively refines the associations of points
from a reference scan and points from a new scan [1]. ICP
is somewhat ill-posed given the fact that each point cloud
consists of non-uniform point samples and thus a given point
is very unlikely to have an exact corresponding point in the
other point cloud. Furthermore, if outliers are not properly
caught and discarded, then trying to minimize outliers using
the squared distance will not be robust and can cause the
algorithm to diverge. In practice, ICP needs a very good
initial estimate for convergence to be possible.

Many variants of ICP have been proposed and used with
varying degrees of success [2]. Typically, the modifications
center around avoiding the computational expense of having
to find nearest neighbors for every point. Some effective
advancements toward this goal include the use of Octrees
for approximate nearest neighbor calculations or fast pro-
jections [3]. However, many other approaches have tried
to eschew point-to-point matching in favor of registration
methods based on an intermediate parametrized surface rep-
resentation.

For the second category of algorithms that use sur-
face models, many decompose the environment into planes
[4][5][6]. However, assuming the world is planar is possibly
too limiting of a restriction, especially in environments with
clutter or curved surfaces. Other work has used mixtures
of Gaussians [7][8], but many of these more expressive
formulations come at a higher computational expense and
thus cannot be used for real-time perception algorithms.

The methods described in this paper fall into the latter
category. Our goal is to design an algorithm to decompose a
point cloud into a relatively few parameters in a data parallel
fashion, thereby allowing an efficient implementation on a
GPU. We can take advantage of data parallel adaptations
of EM for GMM’s in the Machine Learning community [9]
[10], but modified to be more efficient for the problem of
point cloud segmentation, which contains many more points
than dimensions.

We give an overview of our proposed method in Section
II. The mathematics of the segmentation and registration
are given in Sections III and IV, respectively. We detail
additional extensions in Section V. Our implementation
and algorithm are discussed in Section VI, related work is



mentioned in Section VII, and experiments demonstrating
the segmentation, scaling with size, and convergence are
shown in Section VIII. Finally, we briefly mention future
applications and our conclusions in Section IX.

II. GOALS AND PROPOSED METHOD

Our goals can be divided into two separate, but related,
optimization problems: The first problem is to transform a
point cloud into a set of parametric surface patches so that
the spatial representation of surfaces can be continuous and
parametrically sparse. The second problem involves taking
such a representation and finding the most likely rigid spatial
transformation given a new set of range data representing the
same scene. When the rigid spatial transformation is found,
the scene and new data can then be fused together. If done
in real-time, this process can be iterated as a continuous
registration loop in a mapping system, for example, on a
moving robot.

Past work has mainly focused on segmentation into planar
regions. Many objects, however, do not fit well into this
model, especially for scenes with large amounts of clutter.
We would like to be able to use a more exspressive function
class for our world model. One approach is to model the
environment as a set of three-dimensional Gaussians. This
model is more general than the planar construction since
a Gaussian that is degenerate in one dimension can also
approximate a planar surface. The idea that a point cloud
can be decomposed into a set of 3D Gaussians sets up
the problem as a Gaussian Mixture Model (GMM). In the
general Gaussian Mixture Model formulation, we can re-
interpret the point cloud data (PCD) as a mixture of points
generated from a small number of distinct functions. Given
that the functions have a small number of parameters, we
can compress the possibly millions of raw 3D points into
a collection of easily storable functions that adequately
describe the spatial characteristics of the cloud. In other
words, if we sample enough from the mixture of functions,
we should effectively recreate the PCD.

In our case, we are trying to maximize the overall likeli-
hood of a set of Gaussians having produced the given point
cloud. Each Gaussian has nine free parameters representing
its mean (three) and covariance (six, due to symmetry).
Since both the parameters of the Gaussians and the corre-
spondence variables to the Gaussians per point in the cloud
are unknown, we solve this problem using the well-known
Expectation Maximization (EM) algorithm [11].

Our given GMM formulation serves the basis for our
scene. Given a new set of N 3D points, we can look at
the probability of our scene having generated those points
according to our surface model. In our problem, we wish
to optimize over some spatial transformation in 3D space.
Thus, we can minimize over the negative log-likelihood of
the data with respect to the transformation parameters.

Because the particular problem of point cloud data in-
volves a vast amount of points, we can parallelize the
computation of the gradient by computing as much of the
gradient as possible independently with CUDA threads and

then doing a logarithmic number of reductions to obtain
the final gradient step. Minimizing over the negative log-
likelihood will provide the MLE spatial transformation of
the data to the scene, and will allow us to register together
successive 3D measurements and recover the motion of the
sensor.

III. SEGMENTATION

In our world model, we assume that the PCD has been
generated by a discrete set of 3D Gaussians. Thus, given N
points, Z = {zi = (xi, yi, zi)

T } and a set of J 3D Gaussians
with Θ = {Θj = (πj , µj ,Σj)}, our function describing the
generation of points is a linear combination of Gaussians,

p(zi|Θ) =
∑
j

πjN (zi|Θj) (1)

with
∑

j πj = 1 representing a mixture distribution. Given
that the PCD is a set of iid points, our total likelihood
of seeing the PCD from our world model is p(Z|Θ) =∏

i p(zi|Θ).
To produce a likelihood function, we need to introduce

correspondence variables cij for each measurement that serve
as “soft” labels for the cluster to which the point belongs.
In other words, each point i will have j correspondence
variables with values ranging from 0 to 1, with the intuition
that 1 means “definitely belongs to this cluster” and 0
means “definitely does not belong to this cluster”. Under this
formulation, the likelihood function is simply the product
of the conditional joint conditional probabilities of all the
measurements and their correspondences.

We note that the expression p(zi|Θ) =
∑

j πjN (zi|Θj)
can be seen as a marginalization of a joint distribution
p(zi, ci) where p(cij = 1|Θj) = πj and thus p(zi|Θ) =∑

j p(cij = 1|Θj)p(zi|cij = 1,Θj). Here ci is a binary
vector representing the correspondence of a point with a
given cluster j.

The total joint log likelihood of the data given the model
is therefore,

ln p(Z,C|Θ) =
∑
i

ln{
∑
j

p(cij = 1|Θj)N (zi|Θj)} (2)

Maximizing over the total data log-likelihood under the
parameters Θ and C cannot be done in closed form due
to the sum present inside the logarithm, but if we knew
the correspondence variable for each zi, we could easily
maximize this likelihood by setting Θj to the sample mean
and sample covariance of all points for which cij = 1.
Alternately, if we knew Θ, we could maximize the likelihood
using Bayes’ rule and calculating,

p(cij |zi,Θ) =
p(zi|cij ,Θj)p(cij |Θj)

p(zi|Θ)
(3)

=
πjN (zi|Θj)∑
k πkN (zi|Θk)

(4)



To summarize the above equation, the probability of a cer-
tain point zi belonging to cluster j is the relative likelihood
of cluster membership given the likelihood over the point in
all other clusters.

Since we do not know the correspondence labels cij , nor
do we know the model parameters Θj , we can use the EM
algorithm to iteratively improve both the labels and cluster
parameters alternately. In other words, we iteratively hold C
as a constant and optimize over Θ and then hold Θ as a
constant and optimize over C.

Let’s define

γj(zi)
def
= p(cij = 1|zi) (5)

γ̂j(zi)
def
= p(zi|cij = 1)p(cij = 1) (6)

The gamma function can be viewed as the conditional
expectation E[cij ] over the posterior p(cij |zi,Θ). Gamma
hat is the unnormalized probability p(cij |zi).

A. Parallelization

The point cloud segmentation problem is nicely paralleliz-
able due to the relative lack of non-interactions among points,
low-dimensional parameter space, and relatively many data
points compared to model parameters. Additionally, whereas
many segmentation algorithms must rely on nearest neighbor
calculations at some point (region growing) or operations
over local neighborhoods, each point in the point cloud for
EM segmentation needs to compare itself to one of a few
cluster parameters. Thus, we do not need to impose any
special spatial data structure like octrees to be able to quickly
calculate nearest neighbors. The only interaction among the
points comes during the calculation of the normalization
terms of the M step, which is the sum of the expectations
of the correspondence variable. In the M step on the kth

iteration, we calculate

N̂
(k)
j =

∑
i

γj(zi) (7)

µ
(k)
j =

1

N̂
(k)
j

∑
i

γj(zi)zi (8)

Σ
(k)
j =

1

N̂
(k)
j

∑
i

γj(zi)(zi − µ(k)
j )(zi − µ(k)

j )T (9)

π
(k)
j =

N̂
(k)
j

N
(10)

Each γ̂j(zi) can be found independently and in parallel as
long as Θ is known. Note that we can rewrite our calculation
of γj(zi) as

γj(zi) =
γ̂j(zi)∑
k γ̂k(zi)

(11)

The normalized gammas can be found in a logarithmic
number of steps by doing a sum reduction.

Note that we can remove the dependence on µ
(k)
j when

calculating Σ
(k)
j by rewriting the calculation as

Σ
(k)
j =

∑
i γj(zi)ziz

T
i

N̂
(k)
j

−
(
∑

i γj(zi))(
∑

i γj(zi))
T

N̂
(k)
j

(12)

Given this reformulation, the parameter updates can also
be calculated using a single sum reduction.

Past work from the machine learning community has
looked at data parallel algorithms for EM to find GMM
parameters [9] [10]. Unlike these works, we do not restrict
our covariances to be spherical or axis-aligned elliptical,
allowing non-zeros on the non-diagonal. We can calculate
the full 3D covariance matrix since the problem of point
cloud registration is relatively low dimensional (where the
dimension d � N ). In the previous work in this area, the
authors assumed that inverting a high dimensional matrix for
the expectation calculation would be prohibitively expensive
if the matrix is non-sparse. Since we are dealing with 3D
data, we can afford this luxury. Furthermore, we need the
Gaussians to correspond with real 3D objects that often are
not aligned nicely against the principle axes.

IV. REGISTRATION

Given that we have a world model parameter set Θ, We
can describe the registration problem as follows: Given a set
of 3D points, we can look at the probability of a scene having
generated those points according to some surface model. If
the probability of a point is p(zi|Θ), where Θ is the set of pa-
rameters describing the scene, then the total probability of an
entire scan of data is p(Z|Θ) =

∏
i p(zi|Θ). In our problem,

we wish to optimize over some spatial transformation in 3D
space. Parametrizing our rigid transformation by a 3D vector
t = (tx, ty, tz)T and a unit quaternion q = (u, v, w, s)T , we
can minimize over the negative log-likelihood of the data
with respect to the transformation parameters,

min
q,t
− ln p(T (Z|q, t)|Θ) = −

∑
i

ln p(T (zi|q, t)|Θ)

Using the EM algorithm, our surface model is just the
collection of Gaussians and their respective mixing parame-
ters, Θ = {Θj = (πj , µj ,Σj)}, so our data log-likelihood
becomes

ln p(T (X|q, t)|Θ) =
∑
i

ln{
∑
j

πjN (z̃i|Θj)} (13)

where z̃i = R(q)zi+t and R(q) is the 3x3 rotation matrix
derived from the unit quaternion q. Note the similarity to the
likelihood function given by Equation 2 maximized during
the segmentation step. In this step, however, we have a fixed
Θ and we optimize over q and t. As before, we cannot find a
closed form solution due to the sum inside the logarithm, but
we can easily take the gradient of the negative log likelihood
with respect to each transformation parameter,



∇t =
1

N

∑
i

∑
j γ̂j(z̃i)(z̃i − µj)

TΣ−1
j∑

j γ̂j(z̃i)
(14)

∇q =
1

N

∑
i

∑
j γ̂j(z̃i)(z̃i − µj)

TΣ−1
j Ξz̃i∑

j γ̂j(z̃i)
(15)

where Ξz̃i
is the skew symmetric matrix of z̃i, the

transformed point,

Ξz̃i =

 0 −z̃i ỹi
z̃i 0 −x̃i
−ỹi x̃i 0


The gradient with respect to the quaternion only gives

updates to (u, v, w), with s fixed to 1. For more details,
see [12].

We note that, like the E step of the segmentation algorithm,
the γ̂j values can be calculated in parallel and then summed
as a reduction.

V. EXTENSIONS

As the algorithm has been presented thus far, we have
a few free parameters such as the number of clusters, the
step size to take along the gradient, and possible singularities
when inverting the covariance matrix of a cluster. For noisy
data, outliers should also be handled. We give our extensions
to solve these problems in the next few sections.

A. Oversegmentation

One important parameter to consider when segmenting is
J , the amount of clusters to use. To obviate the need for
model selection or some other type of parameter search, we
simply over-segment and then drop clusters without a lack
of adequate support. This process also prevents singularities
when doing EM for the GMM parameters, since clusters with
low support produce low-rank covariance matrices. Since
the final surface description is the linear superposition of
Gaussians, it is perfectly acceptable in terms of the gradient
calculation, for example, to have overlapping Gaussians
describe the same surface.

B. Robust Boundaries

Unfortunately, range data is often corrupted by several
sources of noise, from spurious readings or discretization
errors in the sensor. Similarly, operations on point cloud data
are often burdened by occlusion and sampling sparsity when
the objects are far away or at bad grazing angles to the sensor.
These aspects make the task of finding and filtering outliers
very important, as they may adversely affect the performance
of the point cloud segmentation and registration algorithm.

To reduce computational costs and enforce hard bound-
aries, some past work has used non-overlapping labels when
doing EM for purely planar decomposition [4]. To achieve
this, during the EM algorithm, all correspondence variables
are set zero if they do not have the maximal expectation over
all clusters. This method closely resembles the elliptical k-
means algorithm, where the Mahalanobis distance from the
center of the cluster is used instead of the Euclidean distance.

We adopt a similar approach, but make some impor-
tant modifications to filter out outliers. Instead of a hard
boundary, or a purely soft boundary as the normal EM
approach makes, we employ robust thresholding, where a
correspondence is zero if its expectation is less than or equal
to ξ times the maximum expected correspondence, where
ξ ∈ [0, 1]. Our approach is a generalization of hard and
soft boundaries. When ξ = 0, this algorithm reduces to soft
boundaries, and when ξ = 1, this corresponds to the hard
boundaries of [4].

C. Annealing and Line Search

The EM algorithm, although it is guaranteed to converge,
will often converge to a local optimum instead of the global
optimum. One problem with running the gradient descent
algorithm over a GMM without annealing is that extremely
planar surfaces will be described by nearly 2D Gaussians.
In other words, the minimum eigenvalue of the covariance
matrix will approach zero. In terms of surface reconstruction,
this effect is desirable, since the surface will be very well-
described by a degenerate Gaussian. In terms of gradient
descent, however, a nearly 2D Gaussian will produce very
steep peaks on the likelihood surface that do not give very
useful gradient information when the current iterated solution
is far away. As a solution gets close to a peak, the gradient
will be nearly zero up until the solution is near the mean,
where the gradient will be an extremely high value and
possibly cause overshooting or instability.

We adopt an annealing function to smooth out local
minima and steep peaks formed by planar Gaussians. In our
case, we add a decaying exponential function that adds a
multiple of the identity matrix to the covariance matrix for
each cluster,

Σ∗
j := Σj + λ(T )I (16)

where, if T is our current iteration

λ(T ) = ε+ k1e
−T/k2 (17)

This provides a “fattening” of the GMM clusters so as
to have shallower gradients in an attempt to not oscillate
between local minima. In our experiments, we found a wide
array of values for k1, k2 to be acceptable. We use k1 = 0.01
and k2 = 20, with ε = 1e− 5.

As an additional protection against taking steps that may
cause oscillations or jumps to non-optimal solutions, we
do a line search over our step size. Note that this search
requires repeated computation of the log likelihood of a given
rigid transformation parameter set, which can be done fully
in parallel for each (zi,Θj) tuple and then summed as a
reduction.

VI. IMPLEMENTATION AND ALGORITHM

As a shorthand, we will refer to our algorithm as REM-
Seg, or Robust Expectation Maximization Segmentation.

At a high level, the REM-Seg algorithm does the follow-
ing:



E step: We measure the probability of each point having
been generated by each cluster, given its current mean and
covariance. We then assign the correspondence for each
point as its expectation or as zero, according to the highest
probability cluster and ξ. At the end of the E step, we have
a new set of correspondence values for each point.

M step: We gather each point weighted by its expectation
and calculate the most likely mean and covariance given all
the points that were assigned to the cluster. At the end of
the M step, we end up with a new set of parameters for the
Gaussians.

Gradient step: We transform each point according to our
current transformation guess and then calculate the annealed
gradient with respect to the unit quaternion and translation
vector representing the 6-DOF spatial transformation. We
then line search to find the step size to increase the overall
data log likelihood.

See Algorithm 1 for pseudocode.

Data: Two sets of PCD to be registered: Z, Z2

Result: q, t
Initialize
Θj = {πj , µj ,Σj} = {1/J, r, I}∀j ∈ {1, ..., J}, where
r is a random vector inside of the unit cube.;
while not converged do

Calculate correspondences γj(zi)∀zi ∈ Z (in
parallel, Equation 11);
Apply robust thresholding to γj(zi) (in parallel);
Update Θ (parallel reduction, Equations 7-10);
Drop unsupported Θj ;

end
Initialize q = (0, 0, 0, 1)T and t = (0, 0, 0)T ;
while not converged do

Apply annealing step to Σj ,∀j = {1, .., J}
(Equations 16,17);
Calculate ∇q,∇t given Z2 and current q, t (in
parallel, Equations 14,15);
Perform line search to find α (parallel
log-likelihood calculations, Equation 13);
q := q + α∇q (parallel reduction);
t := t+ α∇t (parallel reduction);

end
Algorithm 1: Pseudocode for REM-Seg

VII. RELATED WORK

A. ICP

First developed by Besl and McKay [1], ICP works to
iteratively associate points between two point clouds and the
minimize the squared error between the associated points
under rigid transformation parameters. The basic steps are
as follows:

1) Sample points from each cloud (or use entire cloud)
2) For each point in a given cloud, find a corresponding

point (e.g. via Euclidean distance)
3) Assign weights to the correspondences
4) Reject outlier pairs

5) Apply an error metric to the current transform (e.g.
sum of squared error)

6) Use an optimization technique to minimize the error
metric (e.g. SVD, gradient descent, Newton’s method,
etc.)

ICP is the de facto standard for many registration appli-
cations, but can easily succumb to misalignment when point
matching between clouds is inappropriate, for example, if
two surfaces are sampled very differently or there is a large
transformation between clouds.

B. Point Cloud Parametrizations

Many registration algorithms first begin with an explicit
or implicit parametrization of the point cloud into a form
that provides continuous point estimates. Many of the fastest
parametrization are in the form of planar models. The task
of point cloud registration is then reduced to finding the best
transformation of a set of planes [4][5][6]. Given a set of
new points, the corresponding point in the scene can simply
be the closest surface in terms of point-to-plane distance.
In this way, the matching process has better convergence
properties than ICP, since the matching is from points to
corresponding surfaces and not simply to other sampled
points. Furthermore, since many indoor environments are
roughly rectilinear, the planar decomposition of the environ-
ment given a point cloud is somewhat justified. However,
due to clutter, occlusion, and non-uniform sampling density,
it may be inappropriate to rely on planar segmentation when
a richer representation is required.

One may also use distance transforms or Gaussian Mixture
Models over grids to describe the point cloud [7] [8]. These
techniques have the added benefit of being able to capture
a richer set of world models. Normal Distance Transform
methods discretize the point cloud into cubic regions (voxels)
and compute Gaussian distribution parameters for each voxel
[13]. Given that each voxel now contains a probabilistic
interpretation of a point falling into it, the likelihood has
a well-defined gradient and the optimization over the rigid
transformation can be more robust than a method like ICP.
Imposing a grid presents certain technical issues and compu-
tational limitations, however, since the grid boundaries may
lie across objects, and small grid sizes incur large amounts
of GMM parameters.

C. Softassign and EM-ICP

EM-ICP uses annealing with isotropic Gaussian noise
around each point with point correspondences as a hidden
variable solved via EM. Similarly, Softassign also uses
multiply labeled correspondences. Both are similar to ICP
using a Mahalanobis distance metric. The problem is that
the probability of a point matching to another point nearby
depends also on the local surface characteristics. That is,
a point matching to a plane should be more probable if
the translation is not along normal, but along with the two
principal axes of the plane. Also, GMM segmentation is
useful in its own right, allowing for a low-memory represen-
tation of the PCD. Few GMM parameters make the algorithm



Fig. 1: Example surface patches with each point colored by its most likely cluster. Note that since the GMM formulation is
additive with respect to each cluster, over-segmenting serves to more accurately construct a PDF of scene.

more efficient since new points only need to be compared
to J � N . This computational gap can be narrowed with
maximum distance thresholding and k-D trees, except for
the case of EM-ICP, when annealing, since the PCD must
be decimated to avoid the need for a search over all other
points.

D. GMM-Reg

GMM-Reg is another registration algorithm based upon
the idea of using Gaussian Mixture Models as the base
structure for a continuous optimization procedure [14][15].
Given a Gaussian with fixed bandwidth around each point
for both model and scene, GMM-Reg finds the maximum
cross correlation between the two distributions.

VIII. EXPERIMENTS

For the following experiments, we use two datasets: a
cross-section of the Stanford Bunny [16] and a point cloud
generated from a Kinect of a table-top scene with various
geometric shapes on top. A depiction of the table-top scene
is given by the left image in Figure 1. Both datasets are
scaled to fit within the unit cube.

We compare our algorithm, REM-Seg, with ICP, EM-
ICP [17] [18], Softassign [19], and GMM-Reg [14]. Addi-
tionally, we test our method against GPU-accelerated ver-
sions of EM-ICP and Softassign [20]. The CPU versions
of EM-ICP and ICP are accelerated with OpenMP. The
algorithms to which we compared REM-Seg are all freely
available to download. In particular, our implementation of
ICP was taken from work described in [20]. All experiments
were done on a quad-core CPU (Intel Q6600) and Nvidia
GPU (GTX 680).

A. Segmentation

The Kinect table-top scene is shown in Figure 1. The
colorized point cloud is shown on the left and the segmen-
tation is shown on the right. The full scene contains over
50,000 points. We color the points according to the maximal
expected cluster membership. Note that the GMM algorithm
represents an “over-segmentation” in that some homogenous
surfaces are broken up into separate clusters. For purposes
of segmentation for perception tasks, one could trivially join

together like clusters. For instance, clusters representing the
ground plane will all have a very similar normal, and so a
normal space clustering could be used in conjunction with
Euclidean distance to join them. For purposes of registration,
over-segmentation does not have any adverse effects since the
GMM model adds individual cluster probabilities. In fact, in
the limit of one cluster per point, the REM-Seg algorithm
reduces to an algorithm somewhat similar to EM-ICP.

We can see that the sample segmentation of Figure 1 has
some nice properties compared with similar planar decom-
positions. When a facet is large enough, it is described by a
mostly flat Gaussian. Examples of this effect can be seen in
the cube shape and the top of the larger cylinder. However,
when the shape does not have as many supporting points,
it is described by a single 3D Gaussian, as shown by the
smaller shapes, such as the sphere. Describing the sphere by
a 3D Gaussian provides a much better gradient than a planar
segmentation of the same object.

B. Registration Quality

To test the convergence or “goodness-of-fit” properties
of the various algorithms, using the Stanford Bunny, we
randomly and uniformly sampled 100 rigid transformations
from the space of transformations bounded by rotations of
less than 15 degrees around any single axis, and translations
bounded by 2 times the extent of the dataset in each dimen-
sion. Each algorithm was given the same randomly trans-
formed and subsampled cloud and run until convergence.
The squared error (SE) was then calculated. Figure 2 shows
the distribution of the SE for each algorithm. The x-axis is
the SE and the y-axis represents the number of trials that fell
into the particular bin. We also repeated these experiments
with the Kinect table-top scene with similar results, so for
space reasons we have omitted them.

We found that our convergence was much more robust
to random rigid transformations than ICP, Softassign, and
EM-ICP. Even with potentially large transformations, our
algorithm found a solution close to zero SE, whereas the
other algorithms diverged. ICP, especially, succumbed to
many local optima that represented globally non-optimal
solutions. Our method most closely resembles GMM-Reg
in terms of convergence, though 15 of the 100 GMM-Reg



Fig. 2: Goodness of fit using the Bunny dataset. These convergence results are from 100 random rigid transformations.
REM-Seg consistently converges to near-zero error while the other algorithms tend to get stuck at local minima. The bottom
right subfigure shows the two best algorithms with a zoomed x-axis.

(a) Sq. Error ≈ 0.16 (b) Sq. Error ≈ 0.13 (c) Sq. Error ≈ 7.5e-3

Fig. 3: Example Registration Results

trials diverged to a wildly wrong registration result, while
Rem-Seg fell into local minima that were closer to zero.
Figure 3 shows example cases for various squared errors.
Note that Figure 3a and 3b represent cases that are less than
0.20, compared to the local minima encountered by EM-ICP,
ICP, and Softassign, which often were 3.0 or more. Figure
3c represents a correctly converged case.

C. Scaling and Speed

Using the Kinect tabletop dataset, we randomly subsam-
pled from its points and ran our registration algorithm over
varying amounts of points. For each data point, we averaged
the time to convergence over 10 random rigid transformations
of the scene.

The timing results can be seen in Figure 4. The figure on
the left shows the y-axis as a log scale, giving the time to
convergence. As the number of points increases, we can see
that the scaling of all algorithms but EM-ICP and REM-Seg
are poor. Note that regular ICP is the fastest of all algorithms

when the number of points is very small, but the convergence
is typically poorer. The right plot is the same data but on a
linear y-axis to show more clearly the difference between
the two best algorithms. We can clearly see that the scaling
difference grows superlinearly, favoring REM-Seg. Since the
GPU-accelerated EM-ICP relies mainly on accelerated linear
algebra routines, our REM-Seg is faster since it presents
a naturally data parallel solution for the GMM problem.
Though not shown in the Figure, we can run REM-Seg over
much larger point clouds, achieving sub-second registrations
up to just under one million points. In general, the execution
times scale roughly logarithmically until the parallelism limit
is reached on the GPU, after which the scaling is mostly
linear. With our current hardware, this limit is reached at
around 100,000 points.

Though GMM-Reg was comparable to REM-Seg in terms
of the goodness-of-fit of the final registration, the fact that
it does not currently run on parallel hardware is a severe
limitation when processing many points. Furthermore, the



Fig. 4: Timing results as the number of points in the cloud
to be matched to the scene increases for the Kinect dataset.
The top plot shows the time to convergence on a log scale,
while the bottom plot shows the same data on a linear y-axis
among ICP, EM-ICP-GPU, and REM-Seg.

related methods rely on Gaussians around every point in the
cloud, while REM-Seg efficiently compresses the clouds into
a sparse amount of parameters.

IX. FUTURE WORK AND CONCLUSION

Given that the REM-Seg algorithm can segment the data
into spatially consistent chunks, we could potentially extract
surface statistics from these chunks and use them as the basis
for algorithms that rely on surface-based signatures, such as
certain types of landmark-based SLAM or object detection
and recognition.

GPU’s and other many-core architectures offer many ben-
efits when dealing with point cloud processing algorithms
that have been designed to be data parallel. We have shown
one such segmentation and registration algorithm, REM-Seg,
to scale very nicely with the size of a point cloud and to have
a wide range of convergence over rigid transformations. Seg-
menting the point cloud first before applying a registration
algorithm has the nice property of being robust to noise as
well as allowing tractable and very efficient parallel gradient
calculations. Overall, we feel that data parallel algorithms are
a natural choice when coupled with many-core architectures
for large-scale point processing.
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