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What are Algebraic Datatypes?
ADTs for short
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Figure 1. Solution (1b, 1c, 1d) to a simple blocks world puzzle. 1a is the 
initial configuration; 1e is the target configuration.
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Algebraic Datatypes Example 1

• Variables of type block can take on one of two values:
• A or B

type block = A | B

ADT Name Constructors
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Algebraic Datatypes Example 2

• Variables of type tower can be one of:
• Empty;
• Stack(A, Empty); Stack(B, Empty);
• Stack(A, Stack(A, Empty)); Stack(B, Stack(A, Empty)); …
• …
• Stack(A, Stack(A, Stack(A, Stack(A, Stack(A, Stack(A, Empty)))))); …
• …

type tower =
 | Empty
 | Stack of {top: block; rest: tower} 

ADT Name
Constructor

Selector
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Running Example: Blocks World

Winograd (1971); Sussman (1973); Gupta and Nau (1992)
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Figure 1. Solution (1b, 1c, 1d) to a simple blocks world puzzle. 1a is the 
initial configuration; 1e is the target configuration.
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Definition: Algebraic Datatypes

Algebraic datatypes consist of 
• constructors (e.g., Stack is a function from block * tower to tower), 

• selectors (e.g., rest is a function from tower to tower), 

• testers (e.g., is_Empty is a function from tower to boolean).

Barrett, Fontaine, and Tinelli (2017) 14 of 34



Definition: Algebraic Datatypes

Algebraic datatypes consist of 
• constructors (e.g., Stack is a function from block * tower to tower), 

• selectors (e.g., rest is a function from tower to tower), 

• testers (e.g., is_Empty is a function from tower to boolean).

The following informal axioms govern their behaviour:
• Selectors and constructors play nicely (e.g., Stack(A, Empty).rest returns Empty)
• Testers behave as expected (e.g., is_Empty(Stack(A, Empty)) returns false).

• Every instance of an algebraic datatype is acyclic.

Barrett, Fontaine, and Tinelli (2017) 15 of 34



What are Satisfiability Modulo 
Theories Solvers? Revisited
(for quantifier-free algebraic datatypes)

16 of 34



Solver Interface (SMT-LIB)

Solvertype 
definitions

quantifier-free 
constraints

answer 
(Sat/Unsat)

variable 
declarations

17 of 34



Solver Interface (SMT-LIB)

Solver
type block = A | B

type tower =
 | Empty
 | Stack of {top: block; 
   rest: tower} 

let x: tower;
let y: tower;

ADT Name; Constructor; Selector; Variable; Constraint

assert x == y.rest;
assert y == x.rest;
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Solver Interface (SMT-LIB)

Solver
type block = A | B

type tower =
 | Empty
 | Stack of {top: block; 
   rest: tower} 

let x: tower;
let y: tower;

Unsat
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Solver Interface (SMT-LIB)
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Hardware:
• We are using ADTs to model 

encryption in trusted enclaves
• encryption with a constructor,
• decryption with a selector, and

• garbled text with a sum type.

Other Applications of ADTs

Distributed Systems:
• We used ADTs to verify 

distributed systems
• node states are records, 
• messages are records, and

• sequences of messages are an 
inductive type (like a list).

Mora, Desai, Polgreen, and Seshia (2023) 21 of 34



Empirical Evaluation
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Implementation and Tool Links

• Try out 
• Algaroba, our prototype solver! 

• https://github.com/uclid-org/algaroba

• UCLID5, our formal modeling and verification engine with (coming) ADT support!
• https://github.com/uclid-org/uclid

• The UPVerifier, our tool for distributed systems verification based on ADTs! 
• https://github.com/uclid-org/upverifier
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Results: Overall Performance
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Our tool (Algaroba) solves more queries in less time (higher left is better)
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Results: Contribution Score
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Algaroba solves many queries that no other solver can (108/900), 
achieves the highest contribution score (rank in legend).
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Lazy Approaches (Axioms as Needed):

• cvc5, SMTInterpol
• Theory solver based on Oppen

• z3 
• (Unpublished but similar)

Eager Approaches (Axioms Upfront):

• Princess
• Reduce to linear integer arithmetic

• Algaroba (our solver)

Related Work

Core 
Solver

Theory 
Solver

Core 
Solver

Theory 
Solver

Sebastiani (2007); Seshia (2005); Oppen (1980); Barbosa et al. (2022); Christ, Hoenicke, and Nutz (2012); Hojjat and Rümmer (2017) 26 of 34



How Do We Do It?
Eager Reduction to Core Solver Explained
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Approach Sketch: Eager Reduction 
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Challenge: Finite Reduction

Well-Foundedness Axiom:

Let 𝑢 and 𝑣 be two ADT values. If 
𝑢 = 𝑣. 𝑠!. 𝑠"…𝑠# ∧ 𝜃 then 𝑢 ≠ 𝑣,

• where 𝑠! are selectors and 

• 𝜃 asserts that all 𝑠! are correctly applied.

let x: tower;
let y: tower;

assert x == y.rest;
assert y == x.rest;

How can we have a finite, quantifier-free reduction if 𝒏 is arbitrary?
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• where 𝑠! are selectors and 
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Figure 3. Visual representation (left) and proof (right) of an 
unsatisfiable query. 𝜃 (≝ 𝑥	𝑖𝑠	𝑆𝑡𝑎𝑐𝑘 ∧ 𝑦	𝑖𝑠	𝑆𝑡𝑎𝑐𝑘) omitted as premise.
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Reflexivity: 𝑥 = 𝑥
Conclusion: ⊥

Get x ≠ 𝑥 from 𝑥. 𝑟𝑒𝑠𝑡. 𝑟𝑒𝑠𝑡 = 𝑥, with 𝑛 = 2
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Approach: Sufficient Encoding 

Let 𝜓 be the input ADT query, 𝑘 gives a bound that we use to compute 
𝜓∗, a finite, quantifier-free UF query.

 1  NNF ( )
 2  Flatten( 1)
k  Number of ADT variables in  2

 3  Apply rewrite rules to  2

�1, ...,�m  Add axioms using k to  3

 ⇤   3 ^ �1 ^ ... ^ �m
return UF-SMT-Solver( ⇤)

Think of 𝑘 as the 
number of unique ADT 

terms in the query

Think of 𝜙! as 
instances of the cycle 
axiom for all 0 < 𝑛 ≤ 𝑘

Burch and Dill (1994) 32 of 34



Approach: Sufficient Encoding 

Figure 3. Visual representation (left) and proof (right) of an 
unsatisfiable query. 𝜃 (≝ 𝑥	𝑖𝑠	𝑆𝑡𝑎𝑐𝑘 ∧ 𝑦	𝑖𝑠	𝑆𝑡𝑎𝑐𝑘) omitted as premise.
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User: y = 𝑥. 𝑟𝑒𝑠𝑡
User: 𝑦. 𝑟𝑒𝑠𝑡 = 𝑥
Equality: 𝑥. 𝑟𝑒𝑠𝑡. 𝑟𝑒𝑠𝑡 = 𝑥
WF Axiom: 𝑥 ≠ 𝑥
Reflexivity: 𝑥 = 𝑥
Conclusion: ⊥

[ 𝑥. 𝑟𝑒𝑠𝑡. 𝑟𝑒𝑠𝑡 = 𝑥 ⇒ (𝑥 ≠ x)]	was one of the 𝜙! 

All of these are equality 
constraints that an off-the-

shelf solver can handle!
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