
An Eager SMTSolver for Quantifier-Free Algebraic Data Type Queries
Amar Shah

Algebraic Datatypes Background

Algebraic Data Types (ADTs) are an exciting construct found in mod-

ern programming languages. Consider the following declaration:

1 (declare−datatype List (

2 (Nil)
3 (Cons (Head Int) (Tail List))))

This theory gives us three types of functions:

· Constructors like Cons and Nil which are used to build terms
· Selectors like Head and Tail which are used to deconstruct terms
that are created by constructors

· Testers like is-Nil and is-Conswhich tell us whether a given term
was created by a constructor

ADT objects must be finite (i.e. well-founded). Given the earlier dec-

laration, an example query in the theory ADT:

1 (and (not (= x Nil)) (not (= y Nil)))
2 (and (= x (Tail y)) (= y (Tail x)))

This is clearly UNSAT because it creates an infinite cycle:

x:
y:

Figure 1. The lists x and y from the query will be infinite (and thus our model is not well-founded)

Reduction fromADT to UF

We propose a satisfiability modulo theory (SMT) solver for ADT

queries. Our solver is eager: it reduces quantifier-free ADT queries

to quantifier-free Uninterpreted Functions (UF) queries.

Quantifier Free

Formula ψ
in ADT

Inline,

Flatten

& NNF

Apply

Reduction

Rules

Add axioms

Quantifier Free

Formula ψ∗∧
φ1 ∧ ... ∧ φm
in UF

Any SMT

Solver with

UF support

SAT/UNSAT

Figure 2. Our Reduction Process. We preprocess and apply rules/axioms to get a reduced formula

in UF that can be solved by most out of the box SMT solvers

Using our reduction, we have equipped (almost) every solverwith

ability to solve ADT queries.

Reduction Rules

Once we have ψ in flattened NNF, we can transform it to UF by

applying the following rules to atomic formulas to make ψ∗:

A. f (t1...tl) = t =⇒ f (t1, ...tl) = t ∧ is-f (t) ∧
l∧
i=1
f i(t) = ti

B. f j(t) = tj =⇒ f j(t) = tj ∧ [∃t1...tl[f (t1, ..., tl) = t ∧
l∧

k=1
fk(t) = tk]]

One example from our earlier query is:

(= x (Tail y)) =⇒ (= x (Tail y)) ∧ [∃v(= y (Cons v x))
∧(= v (Head y))]

Reduction Axioms

Once we have ψ∗we add additional axioms φ1 ∧ ... ∧ φm the first two
ensure that testers behave properly. For each term t : σ, we add:

1. For any tester in {is-fi}1≤i≤|Cσ|, we add:

φ :=
|Cσ|∨
i=1

[is-fi(t) ∧
|Cσ|∧

j=1,j 6=i
¬is-fj(t)]

2. For any constant constructor c : σ, we add: is-c(t) ↔ c = t

These axioms and rules ensure constructors, selectors, and testers

behave well with one another.

Well-Foundedness Axiom

We also need to add another axiom to ensurewell-foundedness. Our

example from before can be generalized to more variables so the

cycles can be made of arbritrary length.

Let k be the number of variables that appear in the input query in flat
NNF. Then we add a final axiom:

3. For each t, s ∈ T where we know that s is a subterm of t up to
depth k, we add the axiom s 6= t

We have a finite, quantifier-free reduction that can handle well-

foundedness!

Soundness and Completeness of Reduction

Theorem 1: Say ψ is an ADT-formula that is in flat NNF

form. If we define T as above, then ADT |= ψ ↔ UF |=
ψ∗ ∧ φ1 ∧ ... ∧ φm where we compute ψ

∗ from ψ using Rules A
and B and φ1, ...φm using Axioms 1, 2 and 3.

Results on Synthetic Benchmarks

To test runtime we ran three popular SMT solvers z3, CVC5 and mc2

on 10,000 randomly generated List queries:

Table 1. Runtime with and without Reduction (seconds)

(Vars, Asserts) (2, 4) (4, 4) (4, 8)

Z3 392.26 387.40 394.54

Z3 w/ Reduction 237.28 236.63 240.37

CVC5 178.87 179.06 178.68

CVC5 w/ Reduction 186.08 226.15 230.57

mc2 w/ Reduction 177.21 181.51 186.87

Figure 3. Total time it took each solver to solve 10,000 synthetic queries

mc2with reduction is competitivewith state-of-the-art! Without

our reduction mc2 cannot handle Algebraic Data Types.

Results on SMTComp Benchmarks

We tested our reduction on a suite of benchmarks from SMTComp,

originally from Bouvier ’21.

Figure 4. Percentage of 50 queries solved over time

Z3 and mc2 with our reduction are able to beat the state-of-the-

art on real world benchmarks!

Tool, Abstract, and Citations available at: https://github.com/amarshah1/ADTReduction PLDI SRC 2023 amarshah1000@berkeley.edu

https://github.com
mailto:amar

