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Online Learning, Regret Minimization, 

and Minimax Optimality 

Avrim Blum 

Your guide: 

CMU 15-896    Algorithms, Games, & Networks     Spring 2013 

[Readings: Ch. 4.1-4.3 of AGT book] 

High level 
Last time we discussed notion of Nash equilibrium. 

 Static concept: set of prob. Distributions (p,q,…) such that 
nobody has any incentive to deviate. 

 But doesn’t talk about how system would get there.  
Troubling that even finding one can be hard in large games. 

 

What if agents adapt (learn) in ways that are well-motivated 
in terms of their own rewards?  What can we say about the 
system then? 

High level 
Today: 

 Fairly strong guarantees that are achievable when acting 
in a changing and unpredictable environment. 

 What happens when two players in a zero-sum game both 
use such strategies? 

 Approach minimax optimality. 

 Gives alternative proof of minimax theorem. 

Consider the following setting… 
 Each morning, you need to pick 

one of N possible routes to drive 
to work. 

 But traffic is different each day. 
 Not clear a priori which will be best. 

 When you get there you find out how 
long your route took.  (And maybe 
others too or maybe not.) 

Robots 
R Us 

32 min 

 Is there a strategy for picking routes so that in the 
long run, whatever the sequence of traffic patterns 
has been, you’ve done nearly as well as the best fixed 
route in hindsight? (In expectation, over internal 
randomness in the algorithm) 

 Yes. 

“No-regret” algorithms for repeated decisions 

A bit more generally: 

 Algorithm has N options.  World chooses cost vector.  
Can view as matrix like this (maybe infinite # cols) 

 

 

 

 At each time step, algorithm picks row, life picks column. 

 Alg pays cost for action chosen. 

 Alg gets column as feedback (or just its own cost in 
the “bandit” model). 

 Need to assume some bound on max cost.  Let’s say all 
costs between 0 and 1. 
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“No-regret” algorithms for repeated decisions 

  
 

 

 

 

 

 At each time step, algorithm picks row, life picks column. 

 Alg pays cost for action chosen. 

 Alg gets column as feedback (or just its own cost in 
the “bandit” model). 

 Need to assume some bound on max cost.  Let’s say all 
costs between 0 and 1. 

Define average regret in T time steps as: 
     (avg per-day cost of alg) – (avg per-day cost of best  
     fixed row in hindsight).  
We want this to go to 0 or better as T gets large. 
          
               [called a “no-regret” algorithm] 
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Some intuition & properties of no-regret algs. 

 Let’s look at a small example: 

 

 
 Note: Not trying to compete with best 

adaptive strategy – just best fixed 
path in hindsight. 

 No-regret algorithms can do much 
better than playing minimax optimal, 
and never much worse. 

 Existence of no-regret algs yields 
immediate proof of minimax thm (will 
see in a bit) 
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Some intuition & properties of no-regret algs. 

 Let’s look at a small example: 

 

 
 

 View of world/life/fate: unknown sequence LRLLRLRR... 

 Goal: do well (in expectation) no matter what the 
sequence is. 

 Algorithms must be randomized or else it’s hopeless. 
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History and development (abridged) 
 [Hannan’57, Blackwell’56]:  Alg. with regret O((N/T)1/2). 

 Re-phrasing, need only T = O(N/2) steps to get time-
average regret down to .  (will call this quantity T) 

 Optimal dependence on T (or ).  Game-theorists viewed 
#rows N as constant, not so important as T, so pretty 
much done. 

Why optimal in T? 
 

 
• Say world flips fair coin each day. 
• Any alg, in T days, has expected cost T/2. 
• But E[min(# heads,#tails)] = T/2 – O(T1/2). 
• So, per-day gap is O(1/T1/2). 
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 [Hannan’57, Blackwell’56]:  Alg. with regret O((N/T)1/2). 
 Re-phrasing, need only T = O(N/2) steps to get time-

average regret down to .  (will call this quantity T) 
 Optimal dependence on T (or ).  Game-theorists viewed 

#rows N as constant, not so important as T, so pretty 
much done. 

 Learning-theory 80s-90s: “combining expert advice”.  
Imagine large class C of N prediction rules. 
 Perform (nearly) as well as best f2C. 
 [LittlestoneWarmuth’89]: Weighted-majority algorithm 

 E[cost] · OPT(1+) + (log N)/. 
 Regret O((log N)/T)1/2.  T = O((log N)/2). 

 Optimal as fn of N too, plus lots of work on exact 
constants, 2nd order terms, etc. [CFHHSW93]… 

 Extensions to bandit model (adds extra factor of N). 

History and development (abridged) 

To think about this, let’s look at 
the problem of “combining expert 

advice”. 

Using “expert” advice 

• We solicit n “experts” for their advice. (Will the 
market go up or down?) 

• We then want to use their advice somehow to 
make our prediction.  E.g., 

Say we want to predict the stock market. 

Basic question: Is there a strategy that allows us to do 
nearly as well as best of these in hindsight? 

[“expert” = someone with an opinion.  Not necessarily 
someone who knows anything.] 



3 

Simpler question 
• We have n “experts”. 

• One of these is perfect (never makes a mistake).  
We just don’t know which one. 

• Can we find a strategy that makes no more than 
lg(n) mistakes? 

Answer: sure.  Just take majority vote over all 
experts that have been correct so far. 

Each mistake cuts # available by factor of 2. 

Note: this means ok for n to be very large. 

“halving algorithm” 

What if no expert is perfect? 

One idea: just run above protocol until all 
experts are crossed off, then repeat. 

 

Makes at most log(n) mistakes per mistake of 
the best expert (plus initial log(n)). 

 
Seems wasteful. Constantly forgetting what we've 

“learned”.  Can we do better? 

Weighted Majority Algorithm 

Intuition: Making a mistake doesn't completely 
disqualify an expert. So, instead of crossing 
off, just lower its weight. 

 

Weighted Majority Alg: 
–  Start with all experts having weight 1. 

–  Predict based on weighted majority vote. 

–  Penalize mistakes by cutting weight in half. 

Analysis: do nearly as well as best 
expert in hindsight 

•  M = # mistakes we've made so far. 

•  m = # mistakes best expert has made so far. 

•  W = total weight (starts at n). 
 

•  After each mistake, W drops by at least 25%. 

    So, after M mistakes, W is at most n(3/4)M. 

•  Weight of best expert is (1/2)m. So, 

So, if m is small, then M is pretty small too. 

constant  
ratio 

Randomized Weighted Majority 
2.4(m + lg n) not so good if the best expert makes a 

mistake 20% of the time. Can we do better? Yes. 

• Instead of taking majority vote, use weights as 
probabilities. (e.g., if 70% on up, 30% on down, then pick 

70:30)  Idea: smooth out the worst case. 

• Also, generalize ½ to 1- .  

unlike most 
worst-case 

bounds, numbers 
are pretty good. 

M = expected 
#mistakes 

Analysis 
• Say at time t we have fraction Ft of weight on 

experts that made mistake. 

• So, we have probability Ft of making a mistake, and 
we remove an Ft fraction of the total weight. 
– Wfinal = n(1- F1)(1 -  F2)... 

– ln(Wfinal) = ln(n) + t [ln(1 -  Ft)] · ln(n) -  t Ft 

      (using ln(1-x) < -x) 

                       = ln(n) -  M.             ( Ft = E[# mistakes]) 

• If best expert makes m mistakes, then ln(Wfinal) > ln((1-)m). 

• Now solve: ln(n) -  M > m ln(1-). 
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Summarizing 
• E[# mistakes] · (1+)m + -1log(n). 

 

• If set =(log(n)/m)1/2 to balance the two terms out 
(or use guess-and-double), get bound of 

 E[mistakes] · m + 2(m¢log n)1/2 

 

• Since m · T, this is at most m + 2(Tlog n)1/2. 

 

• So, avg regret  =  2(Tlog n)1/2/T  !  0. 

What can we use this for? 

• Can use to combine multiple algorithms to 
do nearly as well as best in hindsight. 

 

• But what about cases like choosing paths 
to work, where “experts” are different 
actions, not different predictions? 

Game-theoretic version 

• What if experts are actions? (paths in a 
network, rows in a matrix game,…) 

• At each time t, each has a loss (cost) in {0,1}. 

• Can still run the algorithm 

– Rather than viewing as “pick a prediction with 
prob proportional to its weight” , 

– View as “pick an expert with probability 
proportional to its weight” 

– Choose expert i with probability pi = wi/i wi.  

• Same analysis applies. 

Game-theoretic version 

• What if experts are actions? (paths in a 
network, rows in a matrix game,…) 

• What if losses (costs) in [0,1]?  

• If expert i has cost ci, do: wi Ã wi(1-ci). 

• Our expected cost = i ciwi/W. 

• Amount of weight removed =  i wici. 

• So, fraction removed =  ¢ (our cost). 

• Rest of proof continues as before… 

So, now we can drive to work!  
(assuming full feedback) 

World – life - fate 

Illustration 
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 Guarantee: E[cost] · OPT + 2(OPT¢log n)1/2 

Since OPT · T, this is at most OPT + 2(Tlog n)1/2. 
 

So, regret/time step · 2(Tlog n)1/2/T ! 0. 

Connections to Minimax 
Optimality 
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(1,-1)  (0,0) 

 Left 
 

Right 

 Left   Right 

Minimax-optimal strategies 
• Can solve for minimax-optimal strategies using 

Linear programming 

• Claim: no-regret strategies will do nearly as well or 
better against any sequence of opponent plays. 
– Do nearly as well as best fixed choice in hindsight. 

– Implies do nearly as well as best distrib in hindsight 

– Implies do nearly as well as minimax optimal! 

Proof of minimax thm using RWM 

• Suppose for contradiction it was false. 

• This means some game G has VC > VR: 
– If Column player commits first, there exists 

a row that gets the Row player at least VC. 

– But if Row player has to commit first, the 
Column player can make him get only VR. 

• Scale matrix so payoffs to row are         
in [-1,0].  Say VR = VC - . 

VC 

VR 

Proof contd 
• Now, consider playing randomized weighted-

majority alg as Row, against Col who plays 
optimally against Row’s distrib. 

• In T steps, 
– Alg gets ¸ [best row in hindsight] – 2(Tlog n)1/2    

– BRiH ¸ T¢VC  [Best against opponent’s empirical 
distribution] 

– Alg · T¢VR   [Each time, opponent knows your 
randomized strategy] 

– Gap is T. Contradicts assumption once T > 
2(Tlog n)1/2 , or T > 4log(n)/2. 

Proof contd 
• Now, consider playing randomized weighted-

majority alg as Row, against Col who plays 
optimally against Row’s distrib. 

 

• Note that our procedure gives a fast way to 
compute apx minimax-optimal strategies, if 
we can simulate Col (best-response) quickly. 

What if two RWMs play each other? 

• Can anyone see the argument that their 
time-average strategies must be approaching 
minimax optimality? 

Interesting game 
“Smuggler vs border guard” 
• Graph G, source s, sink t.  Smuggler chooses path.  

Border guard chooses edge to watch.  

• If edge is in path, guard wins, else smuggler wins. 

s t 

• What are the minimax optimal strategies? 
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Interesting game 
“Smuggler vs border guard” 
• Border guard: find min cut, pick random edge in it. 

• Smuggler: find max flow, scale to unit flow, induces 
prob dist on paths. 

s t 

• What are the minimax optimal strategies? 

Interesting game 
Latest fast approximate max-flow algorithms based 
on applying RWM to variations on this game. 

– Run RWM for border guard (experts = edges) 

– Best-response = shortest path or linear system solve. 

s t 

• What are the minimax optimal strategies? 


