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Abstract

Many application domains su�er from not
having enough labeled training data for
learning. However, large amounts of un-
labeled examples can often be gathered
cheaply. As a result, there has been a great
deal of work in recent years on how unlabeled
data can be used to aid classi�cation. We
consider an algorithm based on �nding min-
imum cuts in graphs, that uses pairwise re-
lationships among the examples in order to
learn from both labeled and unlabeled data.
Our algorithm uses a similarity measure be-
tween data to construct a graph, and then
outputs a classi�cation corresponding to par-
titioning the graph in a way that minimizes
(roughly) the number of similar pairs of ex-
amples that are given di�erent labels. We
give several theoretical justi�cations for this
approach, and provide experiments on both
synthetic and real datasets. This method is
also seen to be robust to noise on the labeled
examples.

1. Introduction

Learning algorithms often face a lack of suÆcient la-
beled data. Whether the task is to classify text doc-
uments, web pages, or camera images, we often need
a learning algorithm to do well with only a few la-
beled training examples. Luckily, in many cases, large
numbers of unlabeled examples may be readily avail-
able. For instance, in document classi�cation, one
might have easy access to a large database of doc-
uments, only some of which have been classi�ed by
hand. As a result, there has been a good deal of
work in recent years on how unlabeled data can be
usefully employed in order to produce better predic-
tions (Ratsaby & Venkatesh, 1995; Castelli & Cover,
1996; Nigam et al., 1998; Blum & Mitchell, 1998; Ben-
nett & Demiriz, 1998; Hofmann, 1999; Zhang & Oles,
2000; Schuurmans, 1997).

Recently, a method based on graph mincuts has been
proposed in the vision literature for the problem of
cleaning up 3-D pixel images (Greig et al., 1989; Roy
& Cox, 1998; Boykov et al., 1998; Snow et al., 2000).

Given an initial noisy image created from a stereo cam-
era, the goal is to improve the image by minimizing an
appropriate \energy function." This energy function
combines a term for each pair of neighboring pixels
that are at di�erent depths (encouraging the algorithm
to \smooth" the image) and a term for the number of
pixels changed from the original image (encouraging
the algorithm not to change too many pixels). The
insight of Greig et al. (1989) and Boykov et al. (1998)
is that this energy function can be minimized by ap-
plying a graph mincut algorithm.1

In this paper, we show that this method can be ap-
plied to the machine learning problem of combining
labeled and unlabeled data as well. Given a dataset of
labeled and unlabeled examples, we construct a graph
on the examples such that the minimum cut on this
graph yields an \optimal" binary labeling of the unla-
beled data according to certain optimization functions.
Our approach is inspired by the work of Kleinberg and
Tardos (2000) who connect the work in vision to a
more general classi�cation setting they call the \met-
ric labeling problem". In fact, we will be converting
the learning problems into a technically simpler ver-
sion of their setting (a binary rather than multi-way
classi�cation) that can be solved exactly rather than
just approximated. Thus, our focus will be on how to
construct an appropriate graph rather than develop-
ing new algorithms for solving the graph problem as
in Kleinberg and Tardos (2000).

As with most other approaches to combining labeled
and unlabeled data, the high level idea of this method
is to assign values to the unlabeled examples in order
to optimize an associated objective function. For the
mincut approach, the kinds of functions that can be
optimized are limited to depend only on pairwise rela-
tionships among examples. What makes this approach
especially appealing, however, is that for the functions
we can handle, graph mincuts give a polynomial-time
algorithm to �nd the true global optimum. Thus we
trade o� the generality of an approach such as EM or
hill-climbing/gradient-descent (which can be applied
almost anywhere) for con�dence in �nding the exact
optimum. The natural question then is: how inter-

1A similar technique is used by Wu and Leahy (1993)
for image partitioning. Shi and Malik (1997) give a more
sophisticated approach based on normalized cuts.



esting are the objective functions this approach can
represent? Do they make sense theoretically, and do
they help experimentally?

In this paper, we provide results in both of these di-
rections. We describe the mincut approach in detail
and prove a number of theoretical guarantees. We also
show experimentally that this method can indeed use
unlabeled data to substantial advantage, though it is
clear we have not yet found the best way to tune this
approach. We will also see experimentally that the
mincut approach tends to be robust to random noise.
This is not surprising given its use for reduction of
noise in images (Boykov et al., 1998; Snow et al., 2000).

For concreteness, here is an example of a kind of opti-
mization that the mincut algorithm can perform.2

Given a set of (positive and negative) labeled
examples L, and a set of unlabeled examples
U , �nd a labeling of the points in U that
minimizes the leave-one-out cross-validation
error of the nearest-neighbor algorithm, when
applied to the entire dataset L [ U .

Notice that this optimization problem is natural for an
iterative-relabeling style algorithm or for greedy local
optimization. However, by setting it up as a graph
mincut problem, we can �nd the global optimum, and
do so in polynomial time. In a sense, the graph min-
cut approach relates to nearest-neighbor style algo-
rithms much like transductive SVM (Bennett & Demi-
riz, 1998; Hofmann, 1999) relates to the standard SVM
algorithm: its goal is to assign labels to the unlabeled
data in such a way as to make the underlying learn-
ing algorithm \happiest". We explore this further in
Section 3.

One nice feature of having an algorithm that eÆciently
�nds a global optimum is that we can compare it to
a local optimization algorithm for the same objective
function and see how the results di�er. In particu-
lar, we are interested in (a) is the global optimum re-
ally better than a typical local optimum in terms of
the value of the objective function, and (b) does this
translate to a signi�cant di�erence in terms of pre-
diction accuracy. (I.e., does our objective function or
generative model have anything to do with reality?)
We perform experiments of this form as well.

One last point is that assuming the unlabeled train-
ing data comes from the same underlying distribution
as the test data, there is really no di�erence between
\unlabeled data" and \test data". Thus, the problem
of how to use unlabeled data can also be viewed as the
question: \given a large set of (unlabeled) test data,
can properties of the entire test set be used to make
better predictions than via the standard approach of

2This particular criteria may not be the best one in the
world to optimize | in particular, the nearest-neighbor
graph is likely to have isolated pockets | but we give better
criteria in Section 3.

�xing the learned hypothesis before any test data has
been seen?" In particular, in our experiments we will
put both the unlabeled training data and the test data
into the same pot, then run the algorithms, and then
read o� the labels assigned to the test points as our
predictions.

This paper is organized as follows. In section 2, we
describe the Graph Mincut algorithm. In sections 3
and 4, we present some theoretical results to moti-
vate the applicability of this algorithm. Section 5 con-
tains experimental results, on both synthetic data and
datasets from the UCI repository. Finally, in section
6, we present our conclusions.

2. The Graph Mincut Learning
Algorithm

We now describe the Graph Mincut learning algo-
rithm. First, let us introduce some notation. We are
given a set L of labeled examples, and a set U of un-
labeled examples. We assume we are in the setting of
binary classi�cation (labels are positive or negative)
and use L+ to denote the set of positive examples in
L, and L� to denote the set of negative examples in
L. The algorithm is then as follows.

1. We construct a weighted graph G = (V;E), where
V = L[U[fv+; v�g, and E � V �V . Associated
with each edge e 2 E is a weight w(e). We will
call the vertices v+ and v� Classi�cation vertices,
and all other vertices Example vertices.

2. The classi�cation vertices are connected by edges
of in�nite weight to the labeled examples having
the same label as they do. Speci�cally, w(v; v+) =
1 for all v 2 L+ and w(v; v�) =1 for all v 2 L�.

3. The edges between Example vertices are assigned
weights based on some relationship between the
examples, such as the similarity/distance between
them. The speci�c choice of these edge weights
will be discussed later. In the rest of the paper,
the function assigning weights to edges between
Example nodes will be referred to as the Edge
Weighting function w.

4. Now we determine a minimum (v+; v�) cut for the
graph; that is, we �nd the minimum total weight
set of edges whose removal disconnects v+ from
v�. This can be found using a max-ow algorithm
in which v+ is the source, v� is the sink, and the
edge weights are treated as capacities (see, e.g.,
(Cormen et al., 1990)). Removing the edges in
the cut partitions the graph into two sets of ver-
tices which we call V+ and V�, with v+ 2 V+ and
v� 2 V�. For concreteness, if there are multi-
ple minimum cuts, we can set the algorithm to
choose the one such that V+ is smallest (this is
always well-de�ned and easy to obtain from the
ow).



5. We assign a positive label to all unlabeled exam-
ples in the set V+ and a negative label to all un-
labeled examples in the set V�.

The motivation for this algorithm is that if edges be-
tween examples which are similar to each other are
given a high weight, then, two similar examples are
likely to be placed in the same vertex subset obtained
from the mincut. This conforms with the basic as-
sumption of many learning algorithms (like nearest
neighbor) that similar examples should be classi�ed
similarly.

This motivation in fact suggests how we should weight
the edges. If we have a notion of \distance" between
examples such that we expect nearby examples to gen-
erally have the same label (e.g., this might just be L2
distance in the feature space), then a natural weighting
function is to put high-weight edges between nearby
examples, and low-weight edges (or no edges) between
farther-away examples. If we are not initially handed
such a distance function (e.g., we do not expect the
straightforward one based on feature values to be very
helpful) then we may �rst wish to feed the labeled data
into some auxiliary learning algorithm that learns a
distance function for us. For example, we could use the
labeled data to weight the attributes based on infor-
mation gain. Another freedom we have is to scale the
weight of an edge (x; y) for x 2 U based on whether
or not y 2 L: this allows us to interpolate between
putting unlabeled data on similar footing as the la-
beled data and ignoring unlabeled data completely.
We will see later that the choice of edge weighting
function can greatly inuence the quality of output of
the algorithm.

3. Motivation #1: minimizing LOOCV
error

Why might the mincut approach be a reasonable one
to try? In this section, we motivate this approach by
considering the goal of assigning labels to the unla-
beled data in order to maximize the \happiness" of
some given learning algorithm A. We will prove two
related but technically di�erent kinds of results:

1. For certain learning algorithms A, we can de�ne
edge weights so that the mincut algorithm pro-
duces a labeling of the unlabeled data that (out
of all possible such labelings) results in A having
the least leave-one-out cross validation error when
applied to the entire dataset L [ U .

2. For certain (other) learning algorithms A, we can
de�ne edge weights so that the mincut algorithm's
labeling results in A having zero leave-one-out
cross validation error when only examples in U
are held out.

The types of learning algorithms we will be able to
handle are all of the nearest-neighbor style. We begin

with a simple result of type (1) for the basic 1-nearest-
neighbor algorithm.

Theorem 3.1 Suppose we de�ne edge weights be-
tween Example nodes in the following way: for each
pair of nodes x and y, de�ne nnxy = 1 if y is the near-
est neighbor of x, and nnxy = 0 otherwise. Now let
w(x; y) = nnxy + nnyx. Then, for any binary labeling
of the examples x 2 U , the cost of the associated cut is
equal to the number of leave-one-out cross-validation
mistakes made by 1-nearest neighbor on L [ U .

This theorem implies that minimizing the value of the
cut corresponds to minimizing LOOCV error.

Proof: Fix some binary labeling f(x) of the unla-
beled examples x 2 U . The LOOCV error of 1-nearest
neighbor is simply the number of x 2 L[U such that
the label of x is di�erent from the label of x's near-
est neighbor. This is the sum, over all ordered pairs
hx; yi such that x and y have di�erent labels, of nnxy.
But this is exactly the value of the cut produced by
putting the positive examples into V+, and putting the
negative examples into V�.

It would seem natural to extend the above result to
the k-nearest neighbor algorithm, but unfortunately
the majority-vote operation of kNN causes a problem.
What we can do instead is replace the majority-vote
operation with averaging. Speci�cally, let's de�ne av-
eraging kNN to be the algorithm that examines the k
nearest neighbors to a given test example x and pre-
dicts the fraction t=k, where t is the number of positive
examples in that set (we are viewing positive examples
as having label 1 and negative examples as having la-
bel 0). More generally, given a set of labeled examples
S and a test example x, let's de�ne locally-weighted
averaging to be any algorithm that predicts the label
of x to be a weighted average of the labels of the exam-
ples in S. So, we could use the k nearest examples to x
as in averaging kNN, or, for instance, we could weight
examples as some function of their distance from x.

Theorem 3.2 Given a locally-weighted averaging al-
gorithm A, we can de�ne edge weights so that the mini-
mum (v+; v�) cut yields a labeling of the unlabeled data
that (out of all possible labelings of U) minimizes the
L1-norm LOOCV error of A.

Proof: For each ordered pair of examples hx; yi, de�ne
wxy to be the weight given by A to example y when
asked to classify example x. So, for each x,

P
y wxy =

1. De�ne the edge weight w(x; y) = wxy + wyx.

Now, �x some binary labeling f(x) of the unlabeled
examples x 2 U . Let V+ denote the set of positive
examples in L[U , and let V� denote the set of negative
examples. Then, the cost of the (V+; V�) cut is equal
to
X

x2V+;y2V�

w(x; y) =
X

x2V+

X

y2V
�

wxy +
X

y2V
�

X

x2V+

wyx



=
X

x2V+

1�A(x) +
X

y2V
�

A(y):

where A(x) denotes the classi�cation of x by the algo-
rithm A.

This is the LOOCV error of A on the entire dataset in
L1 norm. Therefore, the labeling that minimizes the
value of the cut also minimizes A's LOOCV error.

For some algorithms A that we cannot represent ex-
actly, we can at least achieve zero LOOCV error over
just the unlabeled examples U . In particular, de-
�ne Symmetric Weighted Nearest Neighbor to be any
weighted nearest neighbor algorithm (the prediction
on an example x is made by a weighted majority vote
over the other examples in the dataset) but where
the weights must be symmetric (the weight given to y
when predicting on x is the same as the weight given
to x when predicting on y). For example, the weights
could be based on the distance between the examples.
kNN is not symmetric because it is possible that y is
a nearest neighbor of x but x is not a nearest neighbor
of y.

Theorem 3.3 Let w be the weight function used for
the Symmetric Weighted Nearest Neighbor Algorithm.
Then, if we use the same function w for weighting
edges in Graph Mincut, the classi�cation returned by
Graph Mincut results in the algorithm having zero
Leave-one-out Cross-validation error over U .

The proof follows directly from the following lemma.

Lemma 3.4 If f is the boolean classi�cation returned
by Graph Mincut on dataset S = U [L, where we view
positive as +1 and negative as �1, then for all x 2 U ,
f(x) = Sgn(�u2S�fxgw(x; u)f(u)), where Sgn(z) = 1

if z > 0 and Sgn(z) = �1 otherwise.

Proof: The graph mincut will divide the set of ex-
amples S into a positive set V+ and a negative set V�.
Suppose x 2 V�. Then, since we solved for a minimum
cut, we have,

X

u2V+

w(x; u) �
X

u2V
�

w(x; u);

otherwise moving x from V� to V+ would strictly im-
prove the value of the cut. This implies that

X

u2S�fxg

w(x; u)f(u) � 0

So we have f(x) = Sgn(
P

u2S�fxgw(x; u)f(u)) as

desired. The case of x 2 V+ is the same, ex-
cept we can now make the claim of strict inequal-
ity since V+ is de�ned to be the smallest set such
that (V+; V�) is a minimum cut. So, we again have
f(x) = Sgn(

P
u2S�fxg w(x; u)f(u)) as desired.

Proof of Thm 3.3: Immediate from Lemma 3.4.

3.1 Discussion

The above results state that graph mincut will produce
labelings of the unlabeled data that are in a sense self-
consistent. If we think of a learning algorithm (in par-
ticular, its LOOCV error) as measuring how \nice" a
dataset is, then mincut assigns labels to make the data
nice for nearest-neighbor style algorithms.

This fact also points out a worry. If we have very few
labeled examples and very many unlabeled examples,
then this self-consistency can cause mincut to assign
all the unlabeled examples to one class or the other.
For instance, if we have just one labeled positive exam-
ple and one labeled negative example, and we connect
each example by edges of weight 1 to its three near-
est neighbors, then labeling all the unlabeled points
as negative gives a cut of value 3. This may well be
the minimum cut unless the dataset really does sep-
arate into two distinct \blobs". This could well be a
worse classi�er than if the unlabeled data had been
completely ignored. Shi and Malik (1997) address this
problem in the context of image segmentation by us-
ing a normalized version of the mincut algorithm that
attempts to equalize the sizes of the partitions (it is
NP-hard to �nd the best 50/50 split in a graph, but
their approach at least encourages some balance).

Another potential problem is that if the graph is too
sparse, it could well have a number of disconnected
components. For example, if we use the graph based
on 1-nearest-neighbor, then two unlabeled examples
very near to each other might form their own compo-
nent. The mincut algorithm is then free to label that
component however it likes (and according to our pol-
icy, would label it negative). So, it is important to
use a weighting function that does not allow this to
happen.

4. Motivation #2: a Generative Model

In the vision literature, the mincut approach and var-
ious extensions are motivated through a generative
model known as a Markov Random Field. This model
assumes the points (examples) are picked in advance,
and then the labels are determined probabilistically ac-
cording to a certain distribution (Pietra et al., 1997).
This distribution is such that the probability of any
given global labeling is the product of unary and pair-
wise terms: higher probability if nearby points are
given the same labeling and lower probability when
they have di�erent labeling. When you take the log,
you get the mincut objective function. This model
makes sense in physical systems (e.g., the Ising model
for how spins behave in magnetized iron) and perhaps
for pixel images, but is less satisfying when consider-
ing learning from examples. In particular, it doesn't
address how examples are chosen, and why similar ex-
amples ought to have similar labels.

Instead, we consider here a generative model that
seems (to us, at least) more satisfying. In this model,



we assume that the underlying distribution over ex-
amples is a union of k regions, each of which has a
unique label. E.g., there could be 3 positive regions
and 3 negative regions. The regions are separated by
some minimum distance Æ. An example is picked by
randomly choosing a point inside the union of the re-
gions, then giving it its region's label.3 The idea is
that if we set edge weights appropriately, then weights
between regions will be weak, whereas as we see more
and more unlabeled examples, edges within the regions
will grow stronger. Furthermore, if each region is well-
shaped (e.g., not like a dumbbell) then regions will
become highly connected and a single labeled example
inside a region will allow us to correctly classify all the
points inside it.

We now make this a bit more precise. Say the regions
live in a D-dimensional space, and for normalization,
assume that their total volume is 1.4 De�ne the \Æ-
interior" of some region R to be the set of points in
R whose distance to the boundary of R is at least Æ.
De�ne the \Æ-tendrils" of R to be the set of points
that are not within distance Æ of the Æ-interior. (These
are the points that no ball of radius Æ contained in R
can touch.) We say that a region R is \(�; Æ)-round"
if (a) at most an � fraction of its volume is in the Æ-
tendrils, and (b) the Æ-interior of R is connected and
non-empty.

The following analysis borrows some nice proof ideas
of Tenenbaum et al. (2000). Let Vr denote the volume
of the D-dimensional ball of radius r.

Theorem 4.1 Suppose that data is generated uni-
formly at random in the union of k (�; Æ=4)-round re-
gions, such that the distance between any two regions is
at least Æ and the classi�cation of a point depends solely
on the region to which it belongs. Let the weighting
function for graph mincut be w(x; y) = 1 if d(x; y) < Æ
and w(x; y) = 0 otherwise. Then O((k=�) log k) la-
beled examples and O((1=VÆ=4) log(1=VÆ=8)) unlabeled

examples are suÆcient to correctly classify a 1�O(�)
fraction of the unlabeled examples with high probabil-
ity.

Note: A similar but messier result can be achieved by

using a weighting function such as w(x; y) = e1=d(x;y)

that drops o� suÆciently rapidly with distance.

Proof sketch: We can ignore regions of probability
mass � �=k. The �rst property we need is that each
remaining region has at least one labeled example, and
this example is not in a Æ=4-tendril. O((k=�) log k)
labeled examples are suÆcient for this to occur with
high probability.

3We could add noise in the labels at this point, but for
simplicity we leave that out.

4We could generalize this to assuming regions are D-
dimensional manifolds lying in some higher dimensional
space as in (Tenenbaum et al., 2000; Roweis & Saul, 2000)
without a�ecting the results.

Next, we need enough unlabeled examples in each re-
gion so that in the resulting graph, the Æ=4-interior
essentially becomes a single connected component. To
analyze this, given a regionR, �ll it as much as possible
with balls of radius Æ=4 such that the center of any ball
i is not inside any other ball j. Notice that this will �ll
the entire Æ=4-interior, since if any point p inside it is
uncovered, we could just greedily add a new ball cen-
tered at p. These balls have two important features:
�rst, if we get an unlabeled example in each of them,
then we can get from any point not in the Æ=4-tendrils
to the labeled example, using edges in the graph. Sec-
ond, if we shrink the radii of these balls by a factor of 2,
then they all become disjoint. The second fact means
that over all the regions, the total number of balls used
is at most 1=VÆ=8. Therefore, the number of unlabeled
examples we need is O((1=VÆ=4) log(1=VÆ=8)).

4.1 Discussion

It might seem that under the generative model in theo-
rem 4.1, most nearest neighbor style algorithms would
perform pretty well. However, this is not the case if the
regions are long and thin, and labeled data is sparse.
This is because in that case, examples might easily be
closer to labeled examples in other regions than their
own. Experimental results shown in �gures 2 and 3
corroborate this fact by comparing mincut against 3-
nearest neighbor on a synthetic dataset of this type.
The next section contains more discussion of these �g-
ures.

5. Experimental Analysis

We tested the Graph Mincut Algorithm on standard
datasets, both real and synthetic, as well as on our
own synthetic dataset intended to �t the generative
model of Section 4.

5.1 Standard datasets

We compared the mincut algorithm with two standard
learning algorithms, ID3 and 3-nearest-neighbor, on
datasets obtained from the UC Irvine Machine Learn-
ing Repository (UCI, 2000). The mincut algorithm
has many degrees of freedom in terms of how the edge
weights are de�ned. In order to make the experiments
as clean as possible, we consider weighting functions
speci�cally motivated by the analysis in the previ-
ous sections and the learning algorithms we compare
against. These are as follows:

Mincut-3 For this algorithm, we connect each unla-
beled example by an edge of weight 1 to its three
nearest neighbors. However, to avoid having iso-
lated components (see Section 3.1) we force one of
these to be a labeled example. Speci�cally, each
example is connected to its nearest labeled exam-
ple and the two other nearest examples overall.

Mincut-Æ For this algorithm, we use some metric to



Table 1. Classi�cation accuracies of Graph Mincut and other algorithms on various datasets from the UCI repository.

\Mush" is the mushroom dataset, and MI, MII, and MIII are the (synthetic) Monks problems. Datasets with an asterix

have a small amount of noise in the training set. The best result for each dataset is given in bold. In cases where the best

is Mincut-Æopt (which involves picking Æ after the fact), the second-best is also given in bold.

Dataset jLj&jUj number of Mincut ID3 3-NN

features Mincut-3 Mincut-Æopt Mincut-Æ0 Mincut-Æ1=2

Mush 20+1000 22 82.1 97.7 97.7 97.0 93.3 91.1

Mush* 20+1000 22 74.2 88.7 56.9 87.0 80.8 83.3

Tae 10+100 5 86.0 99.0 96.0 97.0 86.0 80.0

Tae* 10+100 5 76.0 96.0 86.0 94.0 76.0 62.0

Voting 45+390 16 89.1 91.3 66.1 83.3 86.4 89.6

Musk 40+200 166 73.0 92.5 91.0 92.5 83.5 87.0

Pima 50+718 8 63.8 72.3 48.8 72.3 70.0 68.1

Iono 50+300 34 71.0 81.6 78.0 77.6 88.6 69.6

Bupa 45+300 6 53.3 59.3 48.0 41.7 55.3 52.7

MI 124+432 6 70.0 64.4 64.4 64.4 98.6 81.1

MII 169+432 6 68.6 67.2 57.2 67.2 67.9 63.6

MIII* 122+432 6 79.1 80.6 64.8 80.6 94.4 83.6

compute distances between points. If two points
are closer than Æ to each other, they are connected
with an edge. Æ is a parameter that depends on
the dataset.

� For Mincut-Æ0, we choose the maximum Æ
for which the graph has a cut of value 0.

� For Mincut-Æ1=2, we use that value of Æ for
which the size of the largest connected com-
ponent in the graph is half the number of
datapoints.

� For Mincut-Æopt, we choose the value of Æ
that corresponds to the least classi�cation er-
ror in hindsight. The performance of this
algorithm gives us a benchmark to measure
performance of other Mincut-Æ variants by.

In some of the datasets we used, all attributes are cat-
egorical, so we use an L0 (Hamming) notion of dis-
tance. For other datasets, we use L2 (Euclidean) dis-
tance. For datasets with a large number of discrete-
valued attributes, we take a cue from ID3 and de�ne
a distance metric that weights the attributes based on
information gain. Information gain is computed over
the labeled data. Speci�cally, the weighting function
used is:

w(x; y) =
Y

a2attributes;x(a)6=y(a)

c

1 + eb�gaina

where b and c are constants. The speci�c choice of con-
stants b and c does not a�ect algorithm performance,
as it simply leads to convergence at a di�erent value
of Æ.

Experimental results corresponding to the four Mincut
variants described above are shown in Table 1.

As can be seen, Mincut-Æopt outperforms other al-
gorithms on most datasets (the main exceptions are
the monks datasets). However, the best value of Æ is
highly problem dependent. In an attempt to have the

algorithm automatically learn this value, we experi-
mented with several techniques, two of which seemed
reasonable for comparison. One of these is to examine
the mincut value of the resulting graph and select Æ
based on this; for example, the Mincut-Æ0 algorithm
is of this form. However, Mincut-Æ0 fails for inher-
ently noisy datasets (compare for example the Mush
and Mush* datasets and Tae and Tae* datasets). The
other technique which performs better is to observe the
size of the largest connected component in the result-
ing graph. The idea behind this technique is that when
datasets are somewhat noisy, we should allow long dis-
tance dependencies in the graph to smoothen the e�ect
of noise. This is the idea behind the Mincut-Æ1=2 al-
gorithm. This technique works well for most datasets,
and in particular, seems to do well in the presence of
noise. As a future extension to this work, it would be
interesting to explore new methods of �nding a good
value for Æ.

Figure 1. Classi�cation error of graph mincut on Mush-

room dataset as a function of �
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As observed before, graph mincut is very similar
to nearest neighbor style algorithms. While nearest



neighbor bases its classi�cation on only the labeled ex-
amples, graph mincut takes into account the unlabeled
examples as well and treats them similarly. How would
the performance of mincut di�er if di�erential treat-
ment was given to labeled and unlabeled examples?
More precisely, if we scale down edge weights between
two unlabeled examples by a factor of �, a value of
1 for � would result in the regular mincut algorithm,
while a value of 0 would give no weight to unlabeled
examples, making the algorithm resemble the under-
lying supervised learning algorithm. In some sense, �
signi�es our con�dence in the unlabeled examples as
compared to labeled examples. Figure 1 demonstrates
the results of this experiment on the mushroom dataset
for the Mincut-Æ algorithm. Minimum classi�cation
error is achieved at � = 0:4.

Figure 2. Classi�cation errors of graph mincut and 3-NN

on synthetic dataset as a function of number of labeled

examples. Number of unlabeled examples = 5000.
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Figure 3. Classi�cation errors of graph mincut and 3-NN

on synthetic dataset as a function of number of unlabeled

examples. Number of labeled examples = 50.

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0 2000 4000 6000 8000 10000

cl
as

si
fic

at
io

n 
er

ro
r

number of unlabeled examples

K-nearest neighbour (K=3)
Mincut

5.2 Synthetic datasets

In order to study various properties of the graph min-
cut approach more closely, we tested the algorithm on
a synthetic dataset based on the k regions generative
model described in Section 4. This dataset contains
8 regions in 3-dimensional space, which are separated
from each other by a minimum distance Æ. Speci�-
cally, each region is a 2-dimensional plane in yz space,
located at x-coordinates 0; Æ; 2Æ; : : : ; 7Æ respectively.
These regions alternate in sign, so that 4 of them are
positive and 4 are negative. Data is generated uni-
formly at random from the union of these regions. For
this dataset, we use L2 norm for determining distance,
and assign edge weights as an exponentially-decreasing
function of distance. The dependence of classi�cation
error for graph mincut and 3-nearest neighbor on la-
beled and unlabeled examples is shown in Figures 2
& 3.5 Figure 2 plots the performance of Mincut and
3-NN for a �xed number of unlabeled examples as the
amount of labeled data varies. As can be seen in the
�gure, Mincut performs substantially better than 3-
NN when there is very little labeled data, but this gap
shrinks as the number of labeled examples increases,
with both algorithms performing equally well at about
700 labeled examples. Figure 3 �xes the number of la-
beled examples at 50 and then increases the amount of
unlabeled data. As seen in the �gure, Mincut is able to
use this unlabeled data to substantially improve per-
formance. These results indicate that the real advan-
tage of using graph mincut is achieved when there is
a huge amount of unlabeled data, but a paucity of
labeled data.

Figure 4. Classi�cation error of graph mincut and iterative

re-labeling on synthetic dataset as a function of number of

unlabeled examples.
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It is also instructive to compare the performance of
graph mincut with an iterative re-labeling style algo-

5Each experiment involved 100 independent iterations
of randomly selecting data and performing the classi�ca-
tion algorithm. The reported values are means over these
iterations.



rithm, which tries to minimize the same objective func-
tion as mincut, but �nds a local rather than global op-
timum. In particular, one natural iterative approach
is to begin with a random labeling, and then to per-
form hill-climbing, ipping labels so long as this re-
duces the cut value, until we reach a locally-optimal
labeling. We compare the two algorithms on the same
synthetic dataset as used before and �nd that mincut
gives a far better performance (Figure 4). In fact, the
iterative algorithm performs extremely poorly.

6. Conclusions

We describe a new method of utilizing unlabeled data
for classi�cation based on graph cuts. The essence of
the approach is to assign values to the unlabeled exam-
ples in a way that optimizes consistency in a nearest-
neighbor sense (i.e., that similar examples should be
classi�ed similarly). What makes this approach inter-
esting from the theoretical point of view is that this
is an optimization that can be performed in polyno-
mial time. We motivate this approach both through
self-consistency measures (minimizing LOOCV error
of certain algorithms) and through a fairly natural gen-
erative model.

We �nd experimentally that the Graph Mincut al-
gorithm performs reasonably well when compared to
other learning algorithms that do not use the unla-
beled data, especially when there are very few labeled
examples. The underlying algorithm, however, has
many degrees of freedom | in particular in the de-
sign of the edge-weighting function | and it may well
be that we have not yet found the best way to com-
pute a weighting function from the information avail-
able at the time of learning. For example, even for
the simplest case of setting weights to 0 or 1 based
on a single real-valued parameter Æ, the experiments
show that there was a signi�cant gap between our rules
for choosing Æ in advance and the best Æ in hindsight.
Nonetheless, this is an eÆcient algorithm, and adds a
new technique to our algorithm repertoire. We also
�nd experimentally that the mincut approach is ro-
bust to noise. It would be interesting to use a vari-
ation of the method described here for noise reduc-
tion in real world datasets. The noise-robustness also
suggests that the mincut approach could be used in
conjunction with another learning algorithm: �rst the
other learning algorithm would be used to give initial
labels to the unlabeled data, and then the mincut al-
gorithm would \clean up" this labeling by enforcing a
kind of global consistency. We intend to explore this
in future work. We would also like to compare the
performance our algorithm with that of Transductive
SVM.
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