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Expansion and eigenvalue gap (remark)
In [1] it is shown that the second largest eigenvalue of any d regular expander is bounded away from
d. Here is a short proof of the main point in the somewhat easier fact that edge expansion implies an
eigenvalue gap. This clearly supplies a certain estimate for vertex expansion as well.
Let G = (V,E) be a d regular graph on n vertices denoted {1, 2, . . . , n}, let x1 ≥ x2 ≥ . . . ≥ xn be
nonnegative reals, and assume at least half of them are 0. Assume also that for every set U of at most
half the vertices of G there are at least c|U | edges between U and its complement, where c is some
positive constant. Since xj = 0 for all j ≥ n/2,
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Therefore, by Cauchy Schwartz (twice)
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implying (with a slight extra effort) that the second largest eigenvalue of G is at most d − c2

2d .
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