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ABSTRACT
Session types are behavioral types that specify protocols of message-

passing concurrent systems. Typing not only delimits the range of

possible messages that can be exchanged but also the order in which

the exchange must happen. Session types enjoy a strong theoret-

ical foundation, established by a Curry-Howard correspondence

between the session-typed 𝜋-calculus and linear logic. Desirable

language properties, such as deadlock freedom and termination,

immediately hold true for languages building on this foundation,

by virtue of cut elimination of the underlying logic. However, these

results only generalize to such languages, if cut reductions are as-

sumed to inform transitions. Yet existing session type languages

typically define transitions explicitly by an operational semantics.

Then termination must be proved by other means, for example by

a logical relations argument.

This paper develops a logical relation for termination for intu-
itionistic linear logic session types (ILLST) and proves that well-typed
ILLST programs are terminating (fundamental theorem). The logical

relation is semantic and does not require terms to be well-typed. All

results have beenmechanized in the Coq proof assistant, amounting

to the first mechanization of a logical relation for termination of

session types. The paper introduces ILLST and the logical relation,

along with a novel rooted tree dynamics.
Keywords: Intuitionistic linear logic session types, semantic

logical relation

1 INTRODUCTION
Message passing is a prevalent concurrency paradigm, studied in

research and employed by practical programming languages. Pro-

grams in this setting amount to a number of concurrently running

processes which exchange messages along channels. To specify not

only the types of messages but also their sequencing (a.k.a., proto-
cols), session types have been invented [4, 16, 17, 33]. Mechanization

of session type metatheory has been receiving increasingly atten-

tion [5–7, 12–15, 18–20, 26, 27, 30]. This paper contributes the first

mechanization for termination for intuitionistic linear logic session
types (ILLST) [4] using the logical relations method [24, 25, 28, 29].

A distinguishing feature of our logical relation is its adoption of a

constructive standpoint, typically referred to as semantic [8, 21, 31],
permitting untyped terms to be inhabitants as long as they behave as

prescribed by the logical relation. The fact that our logical relation

is semantic sets it apart from existing logical relations for linear

logic session types [1, 3, 9, 10, 22, 23]. Moreover, none of these prior

results are mechanized.

Another distinguishing feature of our logical relation is its use of

a novel rooted tree dynamics, exploiting its grounding in intuitionis-

tic linear logic [4]. The rooted tree dynamics simplifies the handling

of higher-order connectives ⊗ and⊸ for the sending and receiving

of channels along channels resp. These connectives induce tree

transformations, where a child node becomes a sibling (⊗) or a
sibling node becomes a child (⊸). Since the dynamics maintains

the tree structure, these operations fall out (almost) for free. The

rooted tree dynamics also facilitates local scoping of channel names

and renders unnecessary the explicit naming of the root channel,

referred to as the “providing” channel in the ILLST literature. Both

aspects simplify the handling of names and reduce the number of

substitutions and renamings.

2 ILLST
Next, we introduce intuitionistic linear logic session types (ILLST).

2.1 Type System
ILLST process terms are typed using the sequent

Δ ⊢ 𝑃 : 𝐶

which reads as “process term 𝑃 provides a session of type𝐶 , given the
typing of sessions provided along channel variables in Δ”. Δ is a linear
context and consists of a finite set of assumptions of the form 𝑥𝑖 : 𝐴𝑖 .

Linearity enforces a treatment of channel variables as resources,

forbidding duplication (contraction) and deletion (weakening). A

crucial characteristic of session-typed processes is that processes

change their type in accordance with the message exchange. As a

result, a process’ type always reflects the current protocol state. An

overview of ILLST types and terms is given in Table 1.

As usual, the typing rules are given in a sequent calculus, where
the conclusion denotes the protocol state before the message ex-

change and the premise the state after the exchange. The rules

are standard [4, 32], so we just give the right and left rules for the

higher-order connective ⊗, allowing us to send a channel:

(⊗𝑅 )

Δ ⊢ 𝑃 : 𝐴2

Δ, 𝑦 : 𝐴1 ⊢ pair(𝑦;𝑃 ) : 𝐴1 ⊗ 𝐴2

(⊗𝐿)

Δ, 𝑥1 : 𝐴1, 𝑥 : 𝐴2 ⊢ 𝑄 : 𝐶

Δ, 𝑥 : 𝐴1 ⊗ 𝐴2 ⊢ split(𝑥 ; 𝑥1 .𝑄 ) : 𝐶

Reading bottom-up, the right rule ⊗𝑅 types a provider of a session

𝐴1 ⊗ 𝐴2, executing the term pair(𝑦; 𝑃) (conclusion), indicating
that the provider sends the channel 𝑦. After the send, the provider

transitions to executing 𝑃 , having lost channel𝑦, and now providing

session 𝐴1 (premise). Conversely, the left rule ⊗𝐿 types a client of

a session 𝐴1 ⊗ 𝐴2 executing the term split(𝑥 ; 𝑥1 . 𝑄) (conclusion),
indicating that the client receives a channel along 𝑥 and binds it
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Table 1: ILLST types and corresponding process terms

Type Term Description
𝑥 :𝐴1 ⊕ 𝐴2 injL(R) ;𝑃 send L(R), continue as 𝑃

case(𝑥 ; (𝑄1, 𝑄2 ) ) receive L(R), continue as𝑄𝑖

𝑥 :𝐴1 ⊗ 𝐴2 pair(𝑦;𝑃 ) send channel 𝑦:𝐴1, continue as 𝑃

split(𝑥 ; 𝑥1 .𝑄 ) receive channel 𝑥1, continue as𝑄

𝑥 :𝐴1 ⊸ 𝐴2 rcv(𝑥. 𝑃 ) receive channel to 𝑥 , continue as 𝑃

send(𝑥 ; 𝑥1; 𝑄 ) send channel 𝑥1:𝐴1, continue as𝑄

𝑥 :𝐴1 &𝐴2 offer(𝑃1 𝑃2 ) receive L(R), continue as 𝑃𝑖

selectL(R) (𝑥 ; 𝑄 ) send L(R), continue as Q

𝑥 :1 close terminate

wait𝑥 ; 𝑄 close channel 𝑥 , continue as Q

Judgmental rules Description
spawn [𝑦 ] (𝑃 ; 𝑥.𝑄 ) spawn provider 𝑃 with children 𝑦, continue as𝑄

fwd (𝑥 ) forward the channel 𝑥

to 𝑥1. After the receive, the client transitions to executing 𝑄 , with

channel 𝑥 at type 𝐴2 and the received channel 𝑥1:𝐴1 (premise).

2.2 Rooted Tree Dynamics
Our development uses a novel dynamics, which makes explicit

that ILLST-typed processes form rooted trees at runtime, unlike

classical linear logic session types, which produce unrooted trees.

The notion of rooted trees is conceptually present in prior work

[2, 9, 11], but manifests in our dynamics, simplifying the handling

of higher-order channels and permitting local scoping of channels.

We denote a rooted tree by the term 𝑃 ◁ 𝜇, where 𝑃 is the root

process and 𝜇 its child forest, defined by the following grammar:

Ω ::= 𝑃 ◁ 𝜇 𝜇 ::= · | 𝜇 ⊗ 𝑎 ↩→ Ω

The root process 𝑃 refers to each of its child trees by a locally-bound

channel name, i.e., 𝜇 = 𝑎1 ↩→ Ω1⊗ . . .⊗𝑎𝑛 ↩→ Ω𝑛 , where ⊗ denotes

concurrent composition.

To provide a flavor of our dynamics, we give the rule for ⊗, using
the judgment 𝑃 ◁ 𝜇 ↦−→ 𝑃 ′ ◁ 𝜇′ for stepping 𝑃 ◁ 𝜇 to

′𝑃 ◁ 𝜇′:

𝑏′ ∉ dom (𝜇 )
split(𝑎; 𝑥1 .𝑄 ) ◁ 𝜇 ⊗ 𝑎 ↩→ (pair(𝑏;𝑃 ) ◁ 𝜇1 ⊗ 𝑏 ↩→ Ω′ )

↦−→ [𝑏′/𝑥1 ]𝑄 ◁ 𝜇 ⊗ 𝑎 ↩→ (𝑃 ◁ 𝜇1 ) ⊗ 𝑏′ ↩→ Ω′

(step-⊗)

The rule captures the scenario where the child process pair(𝑏; 𝑃)
sends the channel 𝑏, along with the sub-tree Ω′

rooted at 𝑏, to its

parent process split(𝑎; 𝑥1 . 𝑄). This sub-tree becomes the child of

the parent [𝑏′/𝑥1]𝑄 after the exchange, where the parent chooses

a locally fresh channel 𝑏′ to refer to it.

3 LOGICAL RELATION
To prove that well-typed ILLST process terms 𝑃 yield terminating

rooted process trees 𝑃 ◁ 𝜇 at runtime, we define a unary logical

relation Ω ∈ EJ𝐴K by structural induction on 𝐴. The index 𝐴 is the

session type provided by the root process 𝑃 .1 As usual, we find it

convenient to define the relation by mutually recursive term and

value interpretations. The term interpretation, Ω ∈ EJ𝐴K, steps the
configuration Ω internally until it cannot take any further internal

1
Restricting observations to the providing channel is sufficient for termination, but

generally insufficient for program equivalence [1, 9].

steps, but its root process needs to communicate with its client, as

prescribed by 𝐴. The value interpretation, Ω ∈ VJ𝐴K, details this
exchange, for each ILLST connective.

Definition 3.1 (Logical relation). Termination of a rooted tree Ω is

defined as a unary logical relation Ω ∈ EJ𝐴K, defined by structural

induction on the providing session type 𝐴 of the root process.

Ω ∈ EJ𝐴K iff ∃Ω′ .Ω ↦→∗ Ω′ ∧ Ω′ done ∧ Ω′ ∈ VJ𝐴K
Ω ∈ VJ1K iff Ω = close ◁ ∅
Ω ∈ VJ𝐴1 ⊕ 𝐴2K iff (Ω = injL; 𝑃 ◁ 𝜇 ∧ 𝑃 ◁ 𝜇 ∈ EJ𝐴1K) ∨

(Ω = injR; 𝑃 ◁ 𝜇 ∧ 𝑃 ◁ 𝜇 ∈ EJ𝐴2K)
Ω ∈ VJ𝐴1&𝐴2K iff Ω = offer(𝑃1 𝑃2) ◁ 𝜇 ∧

∀𝑖 ∈ {1, 2}.𝑃𝑖 ◁ 𝜇 ∈ EJ𝐴𝑖K
Ω ∈ VJ𝐴1 ⊗ 𝐴2K iff Ω = pair(𝑏; 𝑃) ◁ 𝜇 ⊗ (𝑏 ↩→ Ω′) ∧

Ω′ ∈ EJ𝐴1K ∧ 𝑃 ◁ 𝜇 ∈ EJ𝐴2K
Ω ∈ VJ𝐴1 ⊸ 𝐴2K iff Ω = rcv(𝑥 . 𝑃) ◁ 𝜇 ∧

∀Ω′ ∈ EJ𝐴1K, 𝑎 ∉ dom (𝜇) .
[𝑎/𝑥]𝑃 ◁ 𝜇 ⊗ (𝑎 ↩→ Ω′) ∈ EJ𝐴2K

To prove our main result, that well-typed ILLST process terms

terminate (Thm. 3.4), we first need to define a closing substitu-

tion function, 𝛾 , mapping variables to either variables or channel

symbols, and its lifting, 𝛾 , to process terms.

Definition 3.2 (Substitution function). Given an injective substitu-
tion function 𝛾 , a variable context Δ, and a symbol context Σ, we
write ⊨Σ 𝛾 : Δ if for 𝑥 ∉ Δ we have 𝛾 (𝑥) = 𝑥 and for 𝑥 ∈ dom (Δ)
the following conditions are satisfied:

• 𝛾 bijectively maps dom (Δ) to dom (Σ)
• if Δ(𝑥) = 𝐴 then Σ(𝛾 (𝑥)) = 𝐴.

Definition 3.3. Given a symbol context Σ we write 𝜇 ∈ EJΣK if
dom (𝜇) = dom (Σ) and ∀𝑎𝑖 ∈ dom (Σ) . 𝜇 (𝑎𝑖 ) ∈ EJΣ(𝑎𝑖 )K.

We now can state our main result, the fundamental theorem of

the logical relation:

Theorem 3.4 (FTLR). IfΔ ⊢ 𝑃 : 𝐶 , then∀𝛾, Σ, 𝜇 such that ⊨Σ 𝛾 : Δ
and 𝜇 ∈ EJΣK, we have 𝛾 (𝑃) ◁ 𝜇 ∈ EJ𝐶K.

Condition ⊨Σ 𝛾 : Δ guarantees that each variable in Δ is associ-

ated with a unique channel symbol of the same type, and condition

𝜇 ∈ EJΣK guarantees that the trees rooted as these channel symbols

are inhabitants of the logical relation.

Lastly, we prove the following adequacy results:

Corollary 3.5. If ∅ ⊢ 𝑃 : 𝐶 , then there exists Ω such that
𝑃 ◁ ∅ ↦→∗ Ω and Ω done.

Corollary 3.6. If ∅ ⊢ 𝑃 : 1, then 𝑃 ◁ ∅ ↦→∗ close ◁ ∅.
The first corollary states that a well-typed process term of an

arbitrary type yields a “done” configuration, the second corollary

states that a well-typed process term of type 1 yields a configuration

consisting of a single root process without any children, attempting

to close. All these results are mechanized in the Coq proof assistant.
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