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Logistics
 Homework 5 due today
 Start on Homework 6 – last homework!
 Today will cover how to do hw6

 Clara will run review session on Sunday at 
1:00pm in NSH 3001 and Zoom (same room)
 See Canvas announcement

 Will be news about final projects next week
© 2020 - Brad Myers 2



Background
 This is a front-end course
 Pretty much all Web and Smartphone apps 

connect to a backend server
 As do many desktop applications

 Modern “Web Services” make creating integrated 
(“full stack”) apps quite easy

 Homework 6 asks you to use 2 different kinds:
1. Web service for getting pictures

 Unsplash – conventional REST interface; free for small tasks
 No need for authentication, security, etc.

2. Networked database for storing user-specific data
 We selected Google’s Firebase: NoSQL, object-oriented so 

easier to learn
 Also handles person authentication in an easy way
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https://unsplash.com/


“Client Server Model”
 Client = smaller computers, phones, devices 

(IoT)
 Server = bigger computer, clusters
 Does the bigger tasks, stores the bigger data
 Manage sharing

 Client-server model
dates from the
1960s

 Many protocols
over the years
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Cloud Computing
 Amorphous cloud of networked elements
 Don’t necessarily address a specific server
 Not necessarily centrally managed
 “Cloud Computing” term started to be used

around 2000
 (Reminder, WWW

dates from 1990; 
“Internet” term from the
1980s, but ARPAnet
from 1960s)
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Important Protocols
 (Assuming have not taken a

networking class!)
 “Protocol” – rules to allow 

communication
 For Internet, are worldwide standards
 Format of the messages

 Multiple levels of protocols – build
higher ones using lower-level ones

 TCP/IP - Transmission Control Protocol
and the Internet Protocol (IP) – how
packets are sent around the internet
 Handles naming of hosts (servers) – like cs.cmu.edu & IP 

numbers, like 128.2.42.95 (CMU)
 Routing of packets with retry if one is lost (not for video) – may 

have many hops
 Headers say where each packet is going
 Examples: Simple Mail Transfer Protocol (SMTP), SSH, 

FTP, Telnet, http
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Web protocols
 Hypertext Transfer Protocol (HTTP) & newer

HTTPS (secure)
 All transfers in plain text

 Others built on top of http
 SOAP - Simple Object Access Protocol
 Started around 1999 by Microsoft
 Data encoded in XML
 Had to describe the format of all messages using the 

on Web Services Description Language (WSDL)
 Specifies what specific fields and values are allowed

 Very complex and hard to use
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XML
 Extensible Markup 

Language (XML)
 Looks like html, but a little 

different
 Yet another syntax

 Used as communication 
and storage format

 Arrays are implicit (like 
html)
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JSON
 JavaScript Object Notation
 Alternative to XML for saving and 

exchanging inurns formation
 Files and web services

 Yet another syntax! 
 Similar, but not identical to

the other ones we have been using
 Note that names must be quoted 

strings
 Like JavaScript objects
 Arrays using [ ]
 Values can be JavaScript types or 

object or array
 See SSUI-hw6/tempResults.json
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REST
 Representational state transfer (REST)
 Created in 2000 by Roy Fielding in his PhD 

dissertation from UC Irvine 
 Very simple protocol, in contrast to SOAP
 Also more efficient
 Everyone uses this today

 Encode commands and parameters in the URL
 Simple commands: Post, Get, Put, Patch, Delete
 Return values as HTML, XML, or JSON
 Stateless so don’t have to worry about keeping 

track of thing – all supplied in each message
 No need to specify what will be in the messages
 RESTful APIs (web services) follow this format
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https://en.wikipedia.org/wiki/Roy_Fielding


Web Services
 Lots of available web services
 Programmableweb.com lists over 24,000 public APIs

 E.g., 476 APIs for “credit cards” (down 3 from last year)
 Lots more available internally for companies

 Companies redoing their proprietary client-
server or “mainframe” APIs to have web-
services so easier to access on their own phone 
& web apps

 Many companies are monetizing their data 
assets as web services
 Sometimes just to “trusted partners”
 E.g., PNC bank + Insurance company adjusters
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https://www.programmableweb.com/


Using a RESTful Web Service
 Example: Unsplash for Developers
 Register as a developer
 Note: DEMO mode is “50 requests per hour”
 Accept the terms
 Make an application
 Scroll down to get your API Keys
 We are using “Access Key” from Unsplash
 Everyone should get their own – do not use mine!

 Will need to put this into every message (since 
stateless)

 How they make sure you are allowed to request 
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https://unsplash.com/developers
https://unsplash.com/documentation#public-authentication


Operations
 Look like html requests
 URL: https://api.unsplash.com/
 Command (looks like a path), e.g: /search/photos
 Then parameters and values for that command
 First one separated by ?, then by &
 Parameter order usually doesn’t matter
 Always have client_id (Access Key) as the API key

 Example query:
https://api.unsplash.com/search/photos/?client_id=YOUR
_ACCESS_KEY&page=1&query=lion&per_page=10

 Return is a JSON file (or error)
 Pull out of it what you need

 Remember: stateless, so have to send the 
information each time

© 2020 - Brad Myers 13

https://unsplash.com/documentation#location
https://api.unsplash.com/


Keeping the API Key safe
 Your app uses the same access key for all users
 Could theoretically just have it as a string in your JavaScript file

 But big security hole
 People can get it from your downloaded build

 Lets people write code that uses your app’s access for free
 One alternative, keep in “environment”: see stackoverflow

 File called “.env” at top level, put in .env:
REACT_APP_UNSPLASH_API_KEY=xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

 Then, your code can say:
const API_KEY = process.env.REACT_APP_UNSPLASH_API_KEY;

 Make sure .env is in .gitignore
 Doc = https://stackoverflow.com/a/57103663

 Can also keep it in your Firebase database:
https://dev.to/remi/firebase-set-and-access-environment-variables-1gh8
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https://stackoverflow.com/questions/48699820/how-do-i-hide-api-key-in-create-react-app/48699914#48699914
https://stackoverflow.com/a/57103663
https://dev.to/remi/firebase-set-and-access-environment-variables-1gh8


Warning from GitGuardian
 “a secret has been exposed in the git history”:
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Environment variables
 To set it up for netlify, under "Site settings" -> 

"Build & deploy" => "Environment" -> 
"Environment variables"
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Sending/receiving the request
 Sending the URL to a remote server and waiting for the results 

will take a noticeable time
 So need to use asynchronous features of JavaScript
 async, await, then

 Built-in call: fetch(apiCall)returns a promise (so can avoid 
needing explicit async) – see documentation
 Call .then on the result to get the response and its data:

fetch('http://example.com/movies.json')
.then(response => response.json())
.then(data => console.log(data));

 Response is a “stream”; .json reads it all, returning another 
promise from which you can get the data as an object – see doc
 data has fields for all of the json fields

 E.g., for tempResults.json: data.total = 2390; data.total_pages
= 239, data.results is an array with 10 elements

 Use .map to create element for each item, can use urls.small as image
 Wrap everything in try-catch if network errors

© 2020 - Brad Myers 17

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
https://developer.mozilla.org/en-US/docs/Web/API/Body/json


Using a Library instead
of Rest Calls
 Most web services provide an SDK that helps 

construct the requests correctly and handle 
the results
 The unsplash JS library
 In this case, it is pretty easy to concatenate up the 

required request, so maybe the library isn’t 
needed?

 But you are welcome to use it
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https://unsplash.com/documentation#libraries--sdks


Use Cloud Storage
 Database on a server (instead of on the 

client)
 Also handles user-login and authentication
 User can switch machines and still get to their 

data
 We will use Firebase database provided by 

Firebase (Google) https://firebase.google.com/
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https://firebase.google.com/


Getting Started with Firebase
 Go to https://firebase.google.com/, hit “Get 

Started” (log in with your typical Google 
account). Then “Create a Project”. Give your 
project a name. I’ll use “ssui-hw6”. BTW, don’t 
use Google Analytics.

 Once a project is created, go ahead and add an 
app (web). I’ll name it “ssui-hw6”, 
 No need for “hosting”
 hit register.

 Will use the code displayed in a minute
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https://firebase.google.com/


Getting Started, cont.
 Docs for web: 

https://firebase.google.com/docs/web/setup?authus
er=0

 Step 3, 
 1. – use Node.js apps

 Follow these instructions 
 No need to do npm init

 npm install --save firebase
 2. – use exactly what there – authentication and firestore

 Make a src/firestore folder, new file index.js there
 Put this code there at the top

 3. – use the config information from other page in that file 
too
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Finishing Setup
 Resulting file will 

look like the 
following:
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Authentication
 “Continue to console”
 Click on authentication
 Set up sign in method
 Select Google  - third one

 Slide to “enable”
 Support email – login one is fine
 Save

 Need to add “Authorized Domains”
 Need to add netlify as trusted domain

 Need the full name of the domain you are using in netlify: 
xxxx.netlify.app

 Should be configured!
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In the code
 Create auth page route to get to from login button

 See: https://firebase.google.com/docs/auth/web/google-signin?authuser=0
 Skip 2,3,4
 Step 5

const handleLogIn = () => {
const provider = new firebase.auth.GoogleAuthProvider();
firebase
.auth()
.signInWithPopup(provider); 

};

 Now, set the user information:
 See:https://firebase.google.com/docs/auth/web/start?authuser=0#set_an_authenticatio

n_state_observer_and_get_user_data
 Put this code into app.js in componentDidMount()
 To set the user state variable: this.setState({ user });

 Also need the this.unsubscribeAuthListener(); in componentWillUnmount()

 Now, in auth.js
 Display login or logout based on whether user variable is set

 Use to logout: firebase.auth().signOut();
 user.displayName = user’s name
 user.photoURL = picture for login button – can do in an <img src=‘xxx’ > in navbar
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https://firebase.google.com/docs/auth/web/start?authuser=0#set_an_authentication_state_observer_and_get_user_data


Database Functions
 Go to console; Click on app
 Cloud Firestore
 Create Database
 Start in Test mode
 Location: default is fine
 Enable

 Now it is ready to go
 Can come back to here to see what is in the 

database
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Using Firestore
 Good documentation: 

https://firebase.google.com/docs/firestore
 A Firestore database is consisted of a series 

of “collections” and “documents”.
 On-line debugging interface
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In the Code
 Should read the documentation first:
 https://firebase.google.com/docs/firestore?authuser=0
 Data model: 

https://firebase.google.com/docs/firestore/data-
model?authuser=0

 Also: Add and Manage Data & Read data
 One collection: e.g., ShoppingCartItems
 (Not supposed to have a bunch of collections)
 Contains a set of items, each with the fields
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https://firebase.google.com/docs/firestore?authuser=0
https://firebase.google.com/docs/firestore/data-model?authuser=0


Adding items
 Disable add to cart buttons based on user not logged in
 Add to cart function will use

 Need user ID since per user: (assuming logged in) this.state.user.uid
 Update to deal with new kind of image shirts

 For adding data: Add a document: 
https://firebase.google.com/docs/firestore/manage-data/add-
data?authuser=0#add_a_document
 Use generated ID

let cartItemRef = firebase
.firestore()
.collection(“ShoppingCartItems”) 
.doc();

cartItemRef.add(cartItem);
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Query list of cart items
for this user
 Need a listener for cart change so will refresh 

automatically
 Read data, listen to multiple items:
 https://firebase.google.com/docs/firestore/query-

data/listen?authuser=0#listen_to_multiple_documents
_in_a_collection

 Foreach: collect the information you need from 
each item, including id
 Sort by created time so newest at top

 Can use array sort after query – lodash.com useful
 Simpler than orderBy in database – first time run, will 

generate an error, use the url of the error to create a 
database index (slow)
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https://firebase.google.com/docs/firestore/query-data/listen?authuser=0#listen_to_multiple_documents_in_a_collection
https://lodash.com/


Updating and Removing items
 Update doc: 

https://firebase.google.com/docs/firestore/ma
nage-data/add-data?authuser=0#update-data
 E.g., for quantity change

 Delete data in doc: 
https://firebase.google.com/docs/firestore/ma
nage-data/delete-data?authuser=0
 Need the id
 .doc(id).delete()
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https://firebase.google.com/docs/firestore/manage-data/delete-data?authuser=0


Debugging the Database
 Can see items come and go from database

 Highlights changed items with orange
 Can also add/edit/remove items interactively

 Available from Console / ssui-hw6 / “Cloud Firestore” (on 
left)
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Creating your own backend
 Doing Server-Side programming
 Building and supplying your own web services
 Sorry, not covered in this course
 Resources: expressjs.com using node.js
 Popular library to support responding to requests

 Jeff Eppinger’s fall course:
17-437/17-637: Web Application Development
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