
Lecture 19:
Connecting to the Backend –
Web Services and Databases

05-431/631 Software Structures for User
Interfaces (SSUI)
Fall, 2021

© 2020 - Brad Myers 1

Logistics
 Homework 5 due today
 Start on Homework 6 – last homework!
 Today will cover how to do hw6

 Clara will run review session on Sunday at
1:00pm in NSH 3001 and Zoom (same room)
 See Canvas announcement

 Will be news about final projects next week
© 2020 - Brad Myers 2

Background
 This is a front-end course
 Pretty much all Web and Smartphone apps

connect to a backend server
 As do many desktop applications

 Modern “Web Services” make creating integrated
(“full stack”) apps quite easy

 Homework 6 asks you to use 2 different kinds:
1. Web service for getting pictures

 Unsplash – conventional REST interface; free for small tasks
 No need for authentication, security, etc.

2. Networked database for storing user-specific data
 We selected Google’s Firebase: NoSQL, object-oriented so

easier to learn
 Also handles person authentication in an easy way

© 2020 - Brad Myers 3

https://unsplash.com/

“Client Server Model”
 Client = smaller computers, phones, devices

(IoT)
 Server = bigger computer, clusters
 Does the bigger tasks, stores the bigger data
 Manage sharing

 Client-server model
dates from the
1960s

 Many protocols
over the years

© 2020 - Brad Myers 4

Cloud Computing
 Amorphous cloud of networked elements
 Don’t necessarily address a specific server
 Not necessarily centrally managed
 “Cloud Computing” term started to be used

around 2000
 (Reminder, WWW

dates from 1990;
“Internet” term from the
1980s, but ARPAnet
from 1960s)

© 2020 - Brad Myers 5

Important Protocols
 (Assuming have not taken a

networking class!)
 “Protocol” – rules to allow

communication
 For Internet, are worldwide standards
 Format of the messages

 Multiple levels of protocols – build
higher ones using lower-level ones

 TCP/IP - Transmission Control Protocol
and the Internet Protocol (IP) – how
packets are sent around the internet
 Handles naming of hosts (servers) – like cs.cmu.edu & IP

numbers, like 128.2.42.95 (CMU)
 Routing of packets with retry if one is lost (not for video) – may

have many hops
 Headers say where each packet is going
 Examples: Simple Mail Transfer Protocol (SMTP), SSH,

FTP, Telnet, http
© 2020 - Brad Myers 6

https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://en.wikipedia.org/wiki/Internet_Protocol

Web protocols
 Hypertext Transfer Protocol (HTTP) & newer

HTTPS (secure)
 All transfers in plain text

 Others built on top of http
 SOAP - Simple Object Access Protocol
 Started around 1999 by Microsoft
 Data encoded in XML
 Had to describe the format of all messages using the

on Web Services Description Language (WSDL)
 Specifies what specific fields and values are allowed

 Very complex and hard to use
© 2020 - Brad Myers 7

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Web_Services_Description_Language

XML
 Extensible Markup

Language (XML)
 Looks like html, but a little

different
 Yet another syntax

 Used as communication
and storage format

 Arrays are implicit (like
html)

© 2020 - Brad Myers 8

JSON
 JavaScript Object Notation
 Alternative to XML for saving and

exchanging inurns formation
 Files and web services

 Yet another syntax!
 Similar, but not identical to

the other ones we have been using
 Note that names must be quoted

strings
 Like JavaScript objects
 Arrays using []
 Values can be JavaScript types or

object or array
 See SSUI-hw6/tempResults.json

© 2020 - Brad Myers 9

REST
 Representational state transfer (REST)
 Created in 2000 by Roy Fielding in his PhD

dissertation from UC Irvine
 Very simple protocol, in contrast to SOAP
 Also more efficient
 Everyone uses this today

 Encode commands and parameters in the URL
 Simple commands: Post, Get, Put, Patch, Delete
 Return values as HTML, XML, or JSON
 Stateless so don’t have to worry about keeping

track of thing – all supplied in each message
 No need to specify what will be in the messages
 RESTful APIs (web services) follow this format

© 2020 - Brad Myers 10

https://en.wikipedia.org/wiki/Roy_Fielding

Web Services
 Lots of available web services
 Programmableweb.com lists over 24,000 public APIs

 E.g., 476 APIs for “credit cards” (down 3 from last year)
 Lots more available internally for companies

 Companies redoing their proprietary client-
server or “mainframe” APIs to have web-
services so easier to access on their own phone
& web apps

 Many companies are monetizing their data
assets as web services
 Sometimes just to “trusted partners”
 E.g., PNC bank + Insurance company adjusters

© 2020 - Brad Myers 11

https://www.programmableweb.com/

Using a RESTful Web Service
 Example: Unsplash for Developers
 Register as a developer
 Note: DEMO mode is “50 requests per hour”
 Accept the terms
 Make an application
 Scroll down to get your API Keys
 We are using “Access Key” from Unsplash
 Everyone should get their own – do not use mine!

 Will need to put this into every message (since
stateless)

 How they make sure you are allowed to request
pictures © 2020 - Brad Myers 12

https://unsplash.com/developers
https://unsplash.com/documentation#public-authentication

Operations
 Look like html requests
 URL: https://api.unsplash.com/
 Command (looks like a path), e.g: /search/photos
 Then parameters and values for that command
 First one separated by ?, then by &
 Parameter order usually doesn’t matter
 Always have client_id (Access Key) as the API key

 Example query:
https://api.unsplash.com/search/photos/?client_id=YOUR
_ACCESS_KEY&page=1&query=lion&per_page=10

 Return is a JSON file (or error)
 Pull out of it what you need

 Remember: stateless, so have to send the
information each time

© 2020 - Brad Myers 13

https://unsplash.com/documentation#location
https://api.unsplash.com/

Keeping the API Key safe
 Your app uses the same access key for all users
 Could theoretically just have it as a string in your JavaScript file

 But big security hole
 People can get it from your downloaded build

 Lets people write code that uses your app’s access for free
 One alternative, keep in “environment”: see stackoverflow

 File called “.env” at top level, put in .env:
REACT_APP_UNSPLASH_API_KEY=xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

 Then, your code can say:
const API_KEY = process.env.REACT_APP_UNSPLASH_API_KEY;

 Make sure .env is in .gitignore
 Doc = https://stackoverflow.com/a/57103663

 Can also keep it in your Firebase database:
https://dev.to/remi/firebase-set-and-access-environment-variables-1gh8

© 2020 - Brad Myers 14

https://stackoverflow.com/questions/48699820/how-do-i-hide-api-key-in-create-react-app/48699914#48699914
https://stackoverflow.com/a/57103663
https://dev.to/remi/firebase-set-and-access-environment-variables-1gh8

Warning from GitGuardian
 “a secret has been exposed in the git history”:

© 2020 - Brad Myers 15

Environment variables
 To set it up for netlify, under "Site settings" ->

"Build & deploy" => "Environment" ->
"Environment variables"

© 2020 - Brad Myers 16

Sending/receiving the request
 Sending the URL to a remote server and waiting for the results

will take a noticeable time
 So need to use asynchronous features of JavaScript
 async, await, then

 Built-in call: fetch(apiCall)returns a promise (so can avoid
needing explicit async) – see documentation
 Call .then on the result to get the response and its data:

fetch('http://example.com/movies.json')
.then(response => response.json())
.then(data => console.log(data));

 Response is a “stream”; .json reads it all, returning another
promise from which you can get the data as an object – see doc
 data has fields for all of the json fields

 E.g., for tempResults.json: data.total = 2390; data.total_pages
= 239, data.results is an array with 10 elements

 Use .map to create element for each item, can use urls.small as image
 Wrap everything in try-catch if network errors

© 2020 - Brad Myers 17

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
https://developer.mozilla.org/en-US/docs/Web/API/Body/json

Using a Library instead
of Rest Calls
 Most web services provide an SDK that helps

construct the requests correctly and handle
the results
 The unsplash JS library
 In this case, it is pretty easy to concatenate up the

required request, so maybe the library isn’t
needed?

 But you are welcome to use it

© 2020 - Brad Myers 18

https://unsplash.com/documentation#libraries--sdks

Use Cloud Storage
 Database on a server (instead of on the

client)
 Also handles user-login and authentication
 User can switch machines and still get to their

data
 We will use Firebase database provided by

Firebase (Google) https://firebase.google.com/

© 2020 - Brad Myers 19

https://firebase.google.com/

Getting Started with Firebase
 Go to https://firebase.google.com/, hit “Get

Started” (log in with your typical Google
account). Then “Create a Project”. Give your
project a name. I’ll use “ssui-hw6”. BTW, don’t
use Google Analytics.

 Once a project is created, go ahead and add an
app (web). I’ll name it “ssui-hw6”,
 No need for “hosting”
 hit register.

 Will use the code displayed in a minute

© 2020 - Brad Myers 20

https://firebase.google.com/

Getting Started, cont.
 Docs for web:

https://firebase.google.com/docs/web/setup?authus
er=0

 Step 3,
 1. – use Node.js apps

 Follow these instructions
 No need to do npm init

 npm install --save firebase
 2. – use exactly what there – authentication and firestore

 Make a src/firestore folder, new file index.js there
 Put this code there at the top

 3. – use the config information from other page in that file
too

© 2020 - Brad Myers 21

https://firebase.google.com/docs/web/setup?authuser=0

Finishing Setup
 Resulting file will

look like the
following:

© 2020 - Brad Myers 22

Authentication
 “Continue to console”
 Click on authentication
 Set up sign in method
 Select Google - third one

 Slide to “enable”
 Support email – login one is fine
 Save

 Need to add “Authorized Domains”
 Need to add netlify as trusted domain

 Need the full name of the domain you are using in netlify:
xxxx.netlify.app

 Should be configured!

© 2020 - Brad Myers 23

In the code
 Create auth page route to get to from login button

 See: https://firebase.google.com/docs/auth/web/google-signin?authuser=0
 Skip 2,3,4
 Step 5

const handleLogIn = () => {
const provider = new firebase.auth.GoogleAuthProvider();
firebase
.auth()
.signInWithPopup(provider);

};

 Now, set the user information:
 See:https://firebase.google.com/docs/auth/web/start?authuser=0#set_an_authenticatio

n_state_observer_and_get_user_data
 Put this code into app.js in componentDidMount()
 To set the user state variable: this.setState({ user });

 Also need the this.unsubscribeAuthListener(); in componentWillUnmount()

 Now, in auth.js
 Display login or logout based on whether user variable is set

 Use to logout: firebase.auth().signOut();
 user.displayName = user’s name
 user.photoURL = picture for login button – can do in an in navbar

© 2020 - Brad Myers 24

https://firebase.google.com/docs/auth/web/google-signin?authuser=0
https://firebase.google.com/docs/auth/web/start?authuser=0#set_an_authentication_state_observer_and_get_user_data

Database Functions
 Go to console; Click on app
 Cloud Firestore
 Create Database
 Start in Test mode
 Location: default is fine
 Enable

 Now it is ready to go
 Can come back to here to see what is in the

database
© 2020 - Brad Myers 25

Using Firestore
 Good documentation:

https://firebase.google.com/docs/firestore
 A Firestore database is consisted of a series

of “collections” and “documents”.
 On-line debugging interface

© 2020 - Brad Myers 26

https://firebase.google.com/docs/firestore

In the Code
 Should read the documentation first:
 https://firebase.google.com/docs/firestore?authuser=0
 Data model:

https://firebase.google.com/docs/firestore/data-
model?authuser=0

 Also: Add and Manage Data & Read data
 One collection: e.g., ShoppingCartItems
 (Not supposed to have a bunch of collections)
 Contains a set of items, each with the fields

© 2020 - Brad Myers 27

https://firebase.google.com/docs/firestore?authuser=0
https://firebase.google.com/docs/firestore/data-model?authuser=0

Adding items
 Disable add to cart buttons based on user not logged in
 Add to cart function will use

 Need user ID since per user: (assuming logged in) this.state.user.uid
 Update to deal with new kind of image shirts

 For adding data: Add a document:
https://firebase.google.com/docs/firestore/manage-data/add-
data?authuser=0#add_a_document
 Use generated ID

let cartItemRef = firebase
.firestore()
.collection(“ShoppingCartItems”)
.doc();

cartItemRef.add(cartItem);

© 2020 - Brad Myers 28

https://firebase.google.com/docs/firestore/manage-data/add-data?authuser=0#add_a_document

Query list of cart items
for this user
 Need a listener for cart change so will refresh

automatically
 Read data, listen to multiple items:
 https://firebase.google.com/docs/firestore/query-

data/listen?authuser=0#listen_to_multiple_documents
_in_a_collection

 Foreach: collect the information you need from
each item, including id
 Sort by created time so newest at top

 Can use array sort after query – lodash.com useful
 Simpler than orderBy in database – first time run, will

generate an error, use the url of the error to create a
database index (slow)

© 2020 - Brad Myers 29

https://firebase.google.com/docs/firestore/query-data/listen?authuser=0#listen_to_multiple_documents_in_a_collection
https://lodash.com/

Updating and Removing items
 Update doc:

https://firebase.google.com/docs/firestore/ma
nage-data/add-data?authuser=0#update-data
 E.g., for quantity change

 Delete data in doc:
https://firebase.google.com/docs/firestore/ma
nage-data/delete-data?authuser=0
 Need the id
 .doc(id).delete()

© 2020 - Brad Myers 30

https://firebase.google.com/docs/firestore/manage-data/add-data?authuser=0#update-data
https://firebase.google.com/docs/firestore/manage-data/delete-data?authuser=0

Debugging the Database
 Can see items come and go from database

 Highlights changed items with orange
 Can also add/edit/remove items interactively

 Available from Console / ssui-hw6 / “Cloud Firestore” (on
left)

© 2020 - Brad Myers 31

Creating your own backend
 Doing Server-Side programming
 Building and supplying your own web services
 Sorry, not covered in this course
 Resources: expressjs.com using node.js
 Popular library to support responding to requests

 Jeff Eppinger’s fall course:
17-437/17-637: Web Application Development

© 2020 - Brad Myers 32

	Lecture 19:�Connecting to the Backend –�Web Services and Databases
	Logistics
	Background
	“Client Server Model”
	Cloud Computing
	Important Protocols
	Web protocols
	XML
	JSON
	REST
	Web Services
	Using a RESTful Web Service
	Operations
	Keeping the API Key safe
	Warning from GitGuardian
	Environment variables
	Sending/receiving the request
	Using a Library instead�of Rest Calls
	Use Cloud Storage
	Getting Started with Firebase
	Getting Started, cont.
	Finishing Setup
	Authentication
	In the code
	Database Functions
	Using Firestore
	In the Code
	Adding items
	Query list of cart items�for this user
	Updating and Removing items
	Debugging the Database
	Creating your own backend

