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A fundamental problem in statistics is the estimation of dependence between random variables.
While information theory provides standard measures of dependence (e.g. Shannon-, Rényi-,
Tsallis-mutual information (MI)), it is still unknown how to estimate these quantities from i.i.d.
samples in the most efficient way. Dependence estimators have numerous applications in real-world
problems. Among others, they have been used in feature selection [1], clustering [2], causality
detection [3], optimal experimental design [4, 5], fMRI data processing [6], prediction of protein
structures [7], boosting, facial expression recognition [8], independent component and subspace
analysis [9, 10, 11, 12], and image registration [13, 14, 15].

Density estimation over a high-dimensional domain is known to suffer from the curse of dimension-
ality. Therefore, it is of great importance to know which functionals of densities can be estimated
efficiently in a direct way, without estimating the density. It has been shown that copula methods
provide a natural framework to estimate MI in a consistent way. They completely avoid density
estimation and only use rank statistics. This is an important property, which leads to remarkable
robustness to outliers [16]. Upper bounds on the convergence rates have also been derived for these
MI estimators [17]. It is somewhat surprising that MI can be consistently estimated using rank
statistics only, since the same does not hold for the less informative Pearson correlation coefficient.
Furthermore, with copula methods we can also define and estimate other dependence measures such
as the Schweizer-Wolff σ measure (SW) [18]. Below we review these estimators [16, 17, 19, 20].

MI Estimators The Rényi MI of d real-valued random variables1 X = (X1, X2, . . . , Xd) with
joint density f : Rd → R and marginal densities fi : R → R, 1 ≤ i ≤ d, is defined for any real
parameter α using

Iα(X)
.
= Iα(f) =

1

α− 1
log

∫
Rd

fα(x1, x2, . . . , xd)

(
d∏
i=1

fi(x
i)

)1−α
d(x1, x2, . . . , xd),

assuming the underlying integrals exist. By definition, I1 = limα→1 Iα, which is the well-known
Shannon MI. Given an i.i.d. sample X1:n = (X1,X2, . . . ,Xn) from a distribution with density
f , our goal is to estimate Iα(X). The main idea we are going to use is that by means of a copula
transformation we can reduce the MI estimation problem to estimating entropies, a problem that has
been studied previously. The main observation is that

Iα(X) = Iα(F1(X1), F2(X2), . . . , Fd(X
d)) = −Hα(F1(X1), F2(X2), . . . , Fd(X

d)),

1We use superscript for indexing dimension coordinates.
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where Hα stands for the Rényi entropy, and Fi is the cumulative distribution function (c.d.f.) of
Xi. The problem is, of course, that Fi is not known and need to be estimated from the sample.
To this end, we will use the empirical c.d.f.’s: F̂j(x)

.
= 1

n |{i : 1 ≤ i ≤ n, x ≤ Xj
i }|, for x ∈

R, 1 ≤ j ≤ d. Let F(x1, x2, . . . , xd)
.
= (F1(x1), F2(x2), . . . , Fd(x

d)) and F̂(x1, x2, . . . , xd)
.
=

(F̂1(x1), F̂2(x2), . . . , F̂d(x
d)). The joint distribution of F(X) = (F1(X1), F2(X2), . . . , Fd(X

d))

and the sample (Ẑ1, Ẑ2, . . . , Ẑn) = (F̂(X1), F̂(X2), . . . , F̂(Xn)) are called the copula and em-
pirical copula, respectively [21]. We estimate the Rényi mutual information Iα by Îα(X1:n)

.
=

−Ĥα(Ẑ1, Ẑ2, . . . , Ẑn), where Ĥα is a Rényi entropy estimator, for which there are efficient meth-
ods available, for example k nearest-neighbor-graph based estimators [22], and Euclidean graph
optimization algorithms [14, 23, 24]. The following theorem states that Îα is strongly consistent.
Upper bounds on the rate of convergence can also be derived [19].

Theorem 1 (Consistency of Îα). Let d ≥ 3 and α = 1 − p/d ∈ (1/2, 1). Let µ be an absolutely
continuous distribution over Rd with density f . If X1:n = (X1,X2, . . . ,Xn) is an i.i.d. sample
from µ then

lim
n→∞

Îα(X1:n) = Iα(f) a.s.

Robustness Inspired by Tukey’s finite-sample influence curve [25], define ∆n(x)
.
=

|Îα(X1:n,x) − Îα(X1:n)|, the amount of change caused in the estimate by adding a single ob-
servation x to the sample X1:n. We would like ∆n(x) = o(1) to hold a.s. independently of x
as this indicates that the effect of a single sample becomes negligible as n → ∞. We have the
following result on the robustness of Îα.
Theorem 2 (Robustness). When we use Euclidean graphs with the so-called smoothness property
[23] (e.g. minimum spanning trees) for the entropy estimation after the empirical copula transfor-
mation, then ∆n(x) = O(n−α) holds a.s., uniformly in x.

SW Estimators Here we show how the so-called “Schweizer-Wolff σ” can be estimated using
empirical copulas. For simplicity, we present the estimator only for two variables; the extension
to several random variables is straightforward. Let a pair of random variables

(
X1, X2

)
∈ R2 be

distributed according to a probability distribution with copula distribution C(u, v) = P(F1(X1) <
u ∧ F2(X2) < v). The Schweizer-Wolff σ is defined as the L1 distance between the copula C and
the product copula Π(u, v)

.
= uv:

σ
.
= 12

∫
I2
|C (u, v)− uv|dudv.

The measure σ has a range of [0, 1], with an important property that σ = 0 if and only if the
corresponding variables are mutually independent. Assume now that we are given N i.i.d. samples,
X1:n = (X1,X2, . . . ,Xn), where Xi = (X1

i , X
2
i ). Our goal is to estimate σ using the sample

X1:n.

Since the true copula C is not known, we estimate it again from the empirical copula CN ,
i.e., the empirical c.d.f of (F̂(X1), F̂(X2), . . . , F̂(Xn)). This is given by CN

(
i
N ,

j
N

)
=

1
N {# of

(
X1
k , X

2
k

)
s.t. X1

k ≤ X1
i and X2

k ≤ X2
j }. Using the empirical copula, a natural way to esti-

mate σ is as follows:

s =
12

N2 − 1

N∑
i=1

N∑
j=1

∣∣∣∣CN ( i

N
,
j

N

)
− i

N
× j

N

∣∣∣∣ . (1)

In [20], this estimator was used for independent component analysis (ICA). To the best of our knowl-
edge, this is currently the most robust ICA algorithm [20].

Numerical results In our presentation we will show applications on image registration, and inde-
pendent subspace analysis. We will empirically demonstrate the robustness properties of the copula
based estimators, and will compare them to other standard methods.

Finally, we note that there are other interesting dependence measures, such as the kernel mutual
information [26] and the Székely’s distance based correlation [27]. It would be important to know
whether these dependence measures could be related to copula methods, as well.
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