Kernel Methods

Barnabas Poczos
University of Alberta

Oct 1, 2009

_ AALBERTA INGENUITY CENTRE FOR

A. I MACHINE LEARNING

Outline

* Quick Introduction
- Feature space
 Perceptron in the feature space

- Kernels
- Mercer'’s theorem

e Finite domain
e Arbitrary domain

« Kernel families

e Constructing new kernels from kernels
« Constructing feature maps from kernels

- Reproducing Kernel Hilbert Spaces (RKHS)
- The Representer Theorem

Ralf Herbrich: Learning Kernel Classifiers
Chapter 2

LEARNING KERNEL EW-R-3-0 0008

RALF HERBRICH THEORY AND

ALGORITHMS

Quick Overview

- AALBERTA INGENUITY CENTRE FOR

A. I MACHINE LEARNING

Hard 1-dimensional Dataset

If the data set is not linearly separable, then adding new
features (mapping the data to a larger feature space) the
data might become linearly separable

[] [] o o () o O o 0 []

x=0)
Positive “plane”

e m general! points in an m-1 dimensional space is always
linearly separable by a hyperspace!
= it is good to map the data to high dimensional spaces

egative "plane”

(For example 4 points in 3D)

taken from Andrew W. More; CMU + Nello Cristianini, Ron Meir, Ron Parr >

Hard 1-dimensional Dataset

" Make up a new feature!

Sort of...
... computed from
original feature(s)

_ 2
z, = (x,x;)

Separable! MAGIC!

Now drop this "augmented” data into our linear SVM.

taken from Andrew W. More; CMU + Nello Cristianini, Ron Meir, Ron Parr 6

Feature mapping

e mgeneral! points in an m-1 dimensional space is always
linearly separable by a hyperspace!
= it is good to map the data to high dimensional spaces

e Having m training data, is it always enough to map the
data into a feature space with dimension m-1?

e Nope... We have to think about the test data as well!
Even if we don’t know how many test data we have...

e We might want to map our data to a huge (oo) dimensional
feature space

e Qverfitting? Generalization error?...
We don’t care now...

Feature mapping, but how???

Let us have m training objects: Z; = [#; 1,%; 2] € R2, i=1,....,m

The possible test objects are denoted by ¥ = [¥1, %] € R2

Let ¢(%) i@n(fz),exp(fz + %1), %1, %5 ,)

N

0.@)

Observation

The Perceptron

Algorithm 2 Perceptron learning algorithm (in dual variables).

Require: A feature mapping ¢ : X' — K C £
Ensure: A linearly separable training sample z = ((x1, y1), ..., (X, Ym))

O!j <— &
end if
end for
until no mistakes have been made within the for loop
return the vector & of expansion coefficients

10

SVM

R R e
Max&lee a, —EZZCYKOQQH Wh@d =V.Y, (X, [X
k=1 k=1 1=1 —

Subject tothese 0= <C [& a =0
constraints: O <o

11

\

/

Inner products

So we need the inner product between

taﬂ(CEZ 1)

¢($f)__lftn(x22) eXp(xz2'+'le) lea 3,2 3. s

and

tan(x)
X; = ¢(ajj) = [Szn(xj 2), exp(a?jz ‘|‘5’7],1)ax3,17 7,2 7

(xu])'—'< >__???

Looks ugly, and needs lots of computation...
Can’t we just say that let

k(T ;) = exp(—||T; — ;%) 777

There might exist a map ¢(&) to this function k...

]

’oo

]

12

Finite example

Given a kernel k: X x X — R

and a FINITE set X = {z1,...,2r} } = construct X and ¢

= G € R"™*", G;; = k(=z;,z;) can be calculated

G is symmetric, PSD = G = UAU? by SVD.
e

Ul = Iy, n= rank(U)’ U = : c RTX™

ul

A=diag(Al,. ., n), ML > Ao > ...> Ay >0
r

A n
r
I n /

/‘

r<

~ 13

Finite example

Lemma:

Let K = span{¢p(x1),...¢(zr)}
= ¢(x;) = AV2u eR?, i=1,...,r
leads back to the Gram matrix G
Proof:
($(x0), $(@))c = (NPu)TA 2uy = u My = Gy

For general X sets
the necessary and sufficient conditions of £k : X x X — R
to be a kernel are given by the Mercer's theorem.
(See later)

14

1.4

1.2F

1.1F

09r

0.8

0.7+

0.6

0.4

0.4

1.3} P

4%

* 7

* 5

1
i

1.0000
0.8131
0.9254
0.9369
0.9630
0.8987
0.9683

1
-1 0.3

1 1
0.6 0.4

1
0.2

1
1l

Gij — eXD(—|£E?; — CU]|

0.8131
1.0000
0.8745
0.9312
0.9102
0.9837
0.9264

0.9254
0.8745
1.0000
0.8806
0.9851
0.9286
0.9440

0.9369
0.9312
0.8806
1.0000
0.9457
0.9714
0.9857

0.4

2/10) can be calculated.

0.9630
0.9102
0.9851
0.9457
1.0000
0.9653
0.9862

0.8987
0.9837
0.9286
0.9714
0.9653
1.0000
0.9779

Choose 7 2D points

Choose a kernel k

0.9683
0.9264
0.9440
0.9857
0.9862
0.9779
1.0000

Finite example

15

[U,D]=svd(G), UDU™=G, UUT=I

U=

-0.3709
-0.3670
-0.3727
-0.3792
-0.3851
-0.3834
-0.3870

.6315

eoloNoNoNoNoele)

0.5499 0.3392 0.6302 0.0992 -0.1844 -0.0633

-0.6596
0.3007
-0.1411
0.2036
-0.3259
0.0673

0
0.2331

OO OoOOo

-0.1679
-0.6704
0.5603
-0.2248
-0.0477
0.2016

1272

OCOoOO0O0O0Oo o

0.5164
-0.2199
-0.4709
-0.1177
-0.0971
-0.2071

O o

.0066

(@ B es B @» i a» I @)

0.1935
0.4635
0.4938
-0.4363
-0.3677
-0.4104

0.2972
-0.1529
0.1029
0.5162
-0.7421

0.0985
0.1862
-0.2148
-0.5377
-0.2217

0.1628 0.7531

.000

16

-0.9551
0.2655
0.1210
0.0511
0.0040
-0.0011
-0.0002

¢(z1)

-0.9451
-0.3184
-0.0599
0.0419
0.0077
0.0018
0.0004

¢(z2)

-0.9597
0.1452
-0.2391
-0.0178
0.0185
-0.0009
0.0007

¢(x3)

-0.9765
-0.0681
0.1998
-0.0382
0.0197/
0.0006
-0.0008

-0.9917

0.0983
-0.0802
-0.0095
-0.0174

0.0032
-0.0020

P(zs) ¢(x5)

You can check now that

(p(21), o)) = d(x)T () = exp(—|z; — j|%/10) Vi, j

-0.9872
-0.1573
-0.0170
-0.0079
-0.0146
-0.0045
-0.0008

Mapped points=sqgrt(D)*UT

Mapped points =

-0.9966
0.0325
0.0719

-0.0168

-0.0163
0.0010
0.0028

¢(ze) ¢(x7)

Roadmap I

We need feature maps

— O\

Explicit (feature maps) Implicit (kernel functions)

¢<f>—[a:1,w1x2,w1 2, . /k(:f) = exp(—[17 ~ %)

Several algorithms need the inner products of features only!

|

It is much easier to use implicit feature maps (kernels)

l

Given a function k(Z,7) = —||Z||*2||7]|*2 + =

Is it a kernel function???

18

RoOa

Given a function k(x,

Is it a kernel function???

l

dmap II

z) = —|lx[|*2)|Z]|** + =

SVD,

eigenvectors, eigenvalues

Finite X

Arbitrary X
We have to think about
the test data as well...

Positive semi def. matrices

Finite dim feature space

/

Mefcer’s theorem,
igenfunctions, eigenvalues

Positive semi def. integral operators

Infinite dim feature space (l,)

/

If the kernel is pos. semi def. & feature map constructilcgm

Mercer’s theorem

(k(,) € Lo(X x X),
k is symmetric: k(x,2) = k(&, x)
b S
() < (TLf)() = [y k(-,z) f(x)dx operator is pos. semi definit

v;, ©=1,2,... are the eigenfunctions of T}
\with eigenvalues \;

[(A, Ao,..) €Ly, N\ >0V

L) $i€Loo(X), Vi=1,2,...

k(x,)

.

27 variables

20

Mercer’s theorem

We like the Mercer's theorem becuase of the expansion:

b(o,3) = 3 Nuy(2)i(3) Va7
=1

It shows the existence of the feature map ¢ : X — K C Io

= (¢(z), #(Z))1,
= (VA1p1(2), Vo (2), ..)T (VA1 (), vVAza (), . .)

= ,i Aii () (%) = k(z,7) e ©

Y(x) = (Y1(x),1o(x),...) is known as Mercer map

21

Roadmap III

We want to know which functions are kernels
e How to make new kernels from old kernels?
e The polynomial kernel: k(u,v) = ({u, v) y)?

For a given kernel k(-,-) we already know how to define feature
space K, and ¢ : X — K feature map (Mercer map):

K =12, and ¢(z) = (VA11(z), vVAzpa(z),..)"

We will show another way using RKHS:
K=2ZF, and ¢(z) = k(z,-) € F
Inner product=72??

22

Ready for the
details? ;)

- AALBERTA INGENUITY CENTRE FOR

MACHINE LEARNING

Hard 1-dimensional Dataset

What would SVMs do with this data?

Not a big surprise

[] O
X=Q
Positive “plane”

Doesn’t look like slack variables will save us this time...

o O o 0 [

egative “plane”

taken from Andrew W. Moore 24

Hard 1-dimensional Dataset

" Make up a new feature!

Sort of...
... computed from
original feature(s)

_ 2
z, = (x,x;)

Separable! MAGIC!

New features are sometimes called basis functions.
Now drop this “augmented” data into our linear SVM.

taken from Andrew W. Moore 25

Hard 2-dimensional Dataset

Let us map this point to the 3 dimension...

26

Kernels and Linear Classifiers

Let # = [#1,Z5] € R? be a vectorial represenation
of object r € X

Let ¢ : X — K C R3 feature map be given by
(Z) = [T1,73, F172]! € K C R3

Def. Feature space: K
We will use linear classifiers in this feature space.

In the original space R? for a given w € R3 the decision surface is:

Xo(w) = {F € R? | w1F1 + woi3 + w317 = 0}

e This is nonlinear in £ € R?

e This is linear in the feature space (%) € K Cc R3
27

0.0

1.0

o(T) = [¥1, 73, F175]T € K C R3 feature map

Picture is taken from R. Herbrich 28

~1.0 —0.5 0.0 0.5 1.0
X1

The Xo(w) = {Z € R2 | wiZ1 + wgfg + w3X1To = 0}
decision surface for different fixed w vectors.

Picture is taken from R. Herbrich 2°

Kernels and Linear Classifiers

P(Z) = [¢1(D), $2(T), ¢3(2)] = 71, T3, T172]T

\/

Feature functions

e We seek for a small set of basis vectors {¢;}
which allows perfect discrimination between
the classes in X (Feature selection)

e If we have too many features = overfitting can happen.

30

Back to the Perceptron Example
S EEX

File Edit Wiew Insert Tools Window Help

Newral Network DESIGHN Perceptron Rule J_
S|
Click Learn] to apply
o the perceptron rule
[to a single vectar.
O Click [Train] to apply
1t G i the rule up to 5 times.
. Click [Fandom] to set
Learn the weights to random
0ot yalues.
. Drag the white and
a0 black dots to define
1t different problems.
R andom :
2 I
o : Contents
" MNoBias -3}, , , E
e o 1 3 Cloge
=[-3.5 -1.8] [] Chapter 4

31

The Perceptron

- The primal algorithm in the feature space

D = {(x;,y;),i=1,...,m} training data set.

x; = ¢(x;) € K C R™ feature map.

1., w=0ecR"
2.,V (x;,y;), 1 =1,...,m, evaluate sign(y;(x;, w))

3., If x; is misclassified (sign(y;(x;,w)) < 0)
then w :=w + y;x;

4. If no mistakes occur = STOP

32

The primal algorithm in the feature space

Algorithm 1 Perceptron learning algorithm (in primal variables).

Require: A feature mapping ¢ : X' — K C (5

Ensure: A linearly separable training sample z = ((x1, y1), .., (Xp, Yim))
wo=0;7=0
repeat If x; is misclassified

for j =1,....,mdo /
if y; (¢ (x;),w) <0 then
Wil =W+ Y (’U)
I <—1+1
end if
end for
until no mistakes have been made within the for loop
return the final weight vector w;

Picture is taken from R. Herbrich 33

The Perceptron

We start at wg =0 K CR"

m=— num of training examples,
n = dim(K),

t= num of mistakes so far

1=

1=

m m
= wiy = > a;d(x;) = Y a;x; € R™ at time step ¢
1 1

Thus instead of tuning n variables
w = (w1,...,wn) (Primal variables)
in the large n-dimensional feautre space K, it is
enough to learn a« = (a1,..., o) values (Dual variables).

34

The Perceptron
The Dual Algorithm in the feature space

D ={(x;,y;),t=1,...,m} training data set.
x;, = ¢(x;) € K C R"” feaure map, i =1,...,m

t= num %‘ mistakes somfar
= wr = > oo(z) = X ax; € R™ at time step ¢

=1 1=1

We update ay € R™ whenever a mistake occurs

1., apg=0eR™
2., V9 =1,...,m evaluate
m m
Yi(X;, W) = y;(X, '21 Q;X;) = Yj '21 (X, X;)
1= 7=
3., If z; is misclassified (yj<Xj,Wt> < 0) then update a; € K

4., If no mistakes occur = STOP 35

The Dual Algorithm in the feature space

Algorithm 2 Perceptron learning algorithm (in dual variables).

Require: A feature mapping ¢ : X' — K C £
Ensure: A linearly separable training sample z = ((x1, y1), ..., (X, Ym))
o =10
repeat
for j=1,...,mdo L
if y; > o (@ (xi), @ (x;)) <0 then
o —aj+y;
end if
end for
until no mistakes have been made within the for loop
return the vector & of expansion coefficients

If T iIs misclassified

Picture is taken from R. Herbrich 3°

The Dual Algorithm in the feature space

For the classification of a new object (x,vy)

we have to evaluate
m

Y Y ai(X,X;)

1=1

We don't have to know the actual values of x = ¢(x)!

It is enough to know the inner products
(xX,%;) Vi=1,...,m

between the object and the training points

37

Kernels

Definition: (kernel)

We are given ¢ : X — K C [5 feautre mapping.

The kernel £ : X x X — R is the corresponding
inner product function:

k(zi, zj) = ($(z4), ¢($g)> = (X, Xj) K

X3 XJ

Kernels

Definition: (Gram matrix, kernel matrix)

Gram matrix G € R™*™ of kernel k at {x1,...,xm}:

Given a kernel £k : X x X — R

and a training set {z1,...,zm} } = Gij = ki, 25) = (X4 X5)

Definition: (Feature space, kernel space)

K = span{¢(x) | r € X} CR"

39

Kernel technique

Definition:

Matrix G € R™*™ jis positive semidefinite (PSD)
& G is symmetric, and 0 < g81'GB vB € R™*™

Given a kernel £k : XA x X —- R

and a training set {z1,...,Tm} } = Gij = k(wj, wj) = (X4, X5) K

Lemma:

The Gram matrix is symmetric, PSD matrix.

Proof:
X = [x1,...,xm] € R"*M = @ = XITX ¢ RmXm

0 < (XB,XB)x =pB1GpB 40

Kernel technique

We already know that several algorithms
use the kernel values only
(...and NOT the feature values)!

Key idea:

41

Kernel technique

We have seen so far how to build a kernel k(-,-)
from a given feature map ¢ : X — R"

Now we want to do the opposite:

A function k(-,-) is kernel & there exists a feature space K and
feature map ¢ : X — K, such that k(x1,z2) = (¢(x1), d(x2))x

42

Finite example

Given a kernel k: X x X — R

and a FINITE set X = {z1,...,2r} } = construct X and ¢

= G € R"™*", G;; = k(=z;,z;) can be calculated

G is symmetric, PSD = G = UAU? by SVD.
e

Ul = Iy, n= rank(U)’ U = : c RTX™

ul

A=diag(Al,. ., n), ML > Ao > ...> Ay >0
r

A n
r
I n /

/‘

r<

~ 43

Finite example

Lemma:

Let K = span{¢p(x1),...¢(zr)}
= ¢(x;) = AV2u eR?, i=1,...,r
leads back to the Gram matrix G
Proof:
($(x0), $(@))c = (NPu)TA 2uy = u My = Gy

For general X sets
the necessary and sufficient conditions of £k : X x X — R
to be a kernel are given by the Mercer's theorem.
(See later)

44

Kernel technique, Finite example

We have seen:

If X ={x1,...,zr} and
Gram matrix GG is a symmetric, PSD matrix

= we can construct feature space IC,
and feature map ¢ : X — K, compatible with G

Lemma:

These conditions are necessary

45

Kernel technique, Finite example

Proof: ... wrong in the Herbrich’s book...

If 3\, < 0 = dv € R" eigenvector s.t. Gv = \pv

= vT'Gv = vT v = My|[v]|2 < O

G is a Gram matrix = 3¢ : X — K, s.t. G5 = (¢(=x;), o(x4))

Consider the w = [¢(x1),...¢o(xr)]v € K vector.

= [Jwllg = (w, w)k

= ([¢(z1), ... ¢(zr)]v, [¢(x1), ... p(@r) W) = v Gu < (j§

46

Kernel technique, Finite example

Summary:

Given a function k: X x X — R,
and a FINITE set X = {z1,...,2r}

k(-,-) is kernel <& G = {k(x;,x;)};; gram matrix is
symmetric, PSD.

47

Integral operators, eigenfunctions

Instead of studying the Gv = \v G € R"*" problem,
we examine its generalization:

num of objects r is countably infinite or continuum,
and X = {z|z € X} is arbitrary.

Definition: Integral operator with kernel k(.,.)

(TN = [K, 0)f(@)da
X

Remark:
(Tv)(i) = (Gv)(i) i =1,...,r is a special case of this,
when the integral is replaced by a finite sum.

48

From Vector domain to Functions

e Observe that each vector v = (v[1], v[2], ..., V[n])
IS @ mapping from the integers {1,2,..., n} to &

e\We can generalize this easily to INFINITE domain

w = (w[1], w[2], ..., w[n], ...)
where w is mapping from {1,2,...} to

12] 00

(Tav) (@) = (Gv) (i) = Z Gij vj

k(m) f(.?)
fx

49

From Vector domain to Functions
From integers we can further extend to

e R or

o M

e Strings

e Graphs

e Sets

e Whatever

50

L, and | spaces

Definition A.33 (Normed space) Suppose X is a vector space. A normed space X
is defined by the tuple (X, ||-||) where ||-|| : X — R™ is called a norm, i.e., for all
X,y € X andc € R,

IX|| = Oand ||X]| =0 x=0,
lex] = lel - lIx]l
Ix+yll =[xl + 1yl - (A.18)
This clearly induces a metric p on X by p (X,y) = ||x — y||. Note that equation

(A.18) is known as the triangle inequality.

Definition A.34 (E}f, and L ,) Given asubset X € X, the space L, (X) is the space
of all functions [: X — R such that
flf(x)lde{'oo if p< o0,

X

sup | f (X)] < o0 [= 0.
xeg f f P Picture is taken from R. Herbrich

L, and | spaces

Endowing this space with the norm

1
TS ([If @7 dx)? if p < o0
g supyey | f (X)) if p= o0

makes L, (X) a normed space (by Minkowski’s inequality). The space s of se-
quences of length n is defined by

Yo P < o0 if0 < p < o0
max;—i,..n» |.l'j| '!fp = 00 ‘

Definition A.35 (¢,-norms) Givenx € £ we define the € ,—norm ||x|| , by

of > it Lo | ifp=0

e _ :

”X”p — (Z;.’:l |JC,'|‘F')) /p {fo <p< 00
max;=i,...n il if p = 00

Picture is taken from R. Herbrich °2

L, and |, special cases

Example A.39 (¢4 and L) Defining an inner product (-, -) in £5 and L, (X) by
(A.23) and

(f, g) = fX f(x) g (x) dx (A.24)

makes these two spaces inner product spaces

Picture is taken from R. Herbrich 3

Kernels

We don’'t need the K C [5 assumption. It is enough if I is a
complete inner product (Hilbert) space.

Definition: inner product, Hilbert spaces

(-,y 1 K XK — R is an inner product in vector space K, iff for all
vectors z,y,z € K and all scalars a € R:

* Symmetry: (z,y) = (y,x).

* Linearity in the first argument:

(az,y) = alz,y), (x +y,2) = (z,2) + (v, 2).

* Positive-definite: (x,z) > 0 with equality only for x = 0.

This is more general than the inner product in R* =15

Examples:
e space of square integrable functions Lo (X),
e space of square summable infinite series [»

54

Integral operators, eigenfunctions

Definition: Eigenvalue, Eigenfunction

e)\ is the eigenvalue,
e W c [>(X) is the eigenfunction
of integral opreator (1.f)(-) = [k(-,z) f(x)dx
X

(){k(m,f)w(f)df = Mi(z) Vx e X

I9IZ, = 2 (2)de =1

The previous Gv = M\v IS a special case of this,
when X = {x1,...,xr} is a finite set.

55

Positive (semi) definite operators

Definition: Positive Definite Operator

k(-,-) is symmetric kernel,
= (L) = [k(,2)f(2)da
X

Ty : Lo(X) — Lo(X) operator is positive semi definit

N //k(fi,x)f(:c)f(&'z)dmdfi >0 Vfe Ly(X)
X X

T he previous v Go > 0 iIs a special case of this,
when X = {z1,...,z,} is a finite set.

56

Mercer’s theorem

(k(,) € Lo(X x X),
k is symmetric: k(x,2) = k(&, x)
b S
() < (TLf)() = [y k(-,z) f(x)dx operator is pos. semi definit

v;, ©=1,2,... are the eigenfunctions of T}
\with eigenvalues \;

[(A, Ao,..) €Ly, N\ >0V

L) $i€Loo(X), Vi=1,2,...

k(x,)

.

27 variables

57

Mercer’s theorem

We like the Mercer's theorem becuase of the expansion:

b(o,3) = 3 Nuy(2)i(3) Va7
=1

It shows the existence of the feature map ¢ : X — K C Io

= (¢(z), #(Z))1,
= (VA1p1(2), Vo (2), ..)T (VA1 (), vVAza (), . .)

= ,i Aii () (%) = k(z,7) e ©

Y(x) = (Y1(x),1o(x),...) is known as Mercer map

58

A nicer characterization

The (*) condition in the Mercer’'s theorem is a bit ugly,
but we have a nicer form that characterizes when
a function k(-,-) : X x X — R is a kernel

(i.e. scalar product in some inner product space)

Theorem: nicer kernel characterization

59

Kernel Families

Kernels have the intuitive meaning of similarity
measure between objects.

So far we have seen two ways for making a linear
classifier nonlinear in the input space:

(explicit) Choosing a mapping ¢
= Mercer kernel k

(implicit) Choosing a Mercer kernel k
= Mercer map ¢

60

Designing new kernels from kernels

k1: XXX =R, ky: X X X - R are kernels =

l. k(x,x) =k (x, X))+ k(x,X),

2. k(x,X) =c-k; (x,X), forallc e RT,

3. k(x,X) =k; (x,X) +c, forall c e RT,

4. k(x,X) =k; (x,X) -k (x,X),

5. k(x,x) = f (x)- f (x), forany function f : X — R

are also kernels.

Picture is taken from R. Herbrich ©!

Designing new kernels from kernels

1. k(x,x) = (k (x,X) —|—91)92,f0r all 0, € RT and 6, € N
2. k(x,X) =exp (%),for all o € RT,

3k (x, §) = exp(b2l D h 1) forallo € RY

4k,) = el

Picture is taken from R. Herbrich ©2

Designing new kernels from kernels
The meaning of

ki(z,)
Vk1(z,)k (2, T)

IS that we can normalize the data in the feature
space without performing the explicit mapping.

k(x,z) =

Use the normailzed kernel knorm:

k(x,x) (x,T) x X

VE(z, 2)k(Z,) N N HEEE N <||cv||2’ HiifH2>

knorm(xy 53') =

63

Kernels on inner product spaces
Note:

If X is a vector space with (-,-)y inner product
= k(-,-) = (-,-)y is a kernel function.

64

dim(X) = N

Name Kernel function dim (/)
pth degree polynomial k(i,v) = ((u, v) y)? (N+;_’:_1)
p e NT
complete polynomial k(u,v) = ({u,v)y +c)’ (N;p)
ceRT, pe Nt
T
RBF kernel k (i, v) = exp (— ””;,_,”X) 00
=
Mahalanobis kernel | & (i1, v) = exp (— (u — v)' X (u — v)) 00
) :diag(al_z,...,aiz) :
Oy ..., oy € RT

Picture is taken from R. Herbrich ©°

Common Kernels

- Polynomials of degree d

K(u,v) = (u-v)?

 Polynomials of degree up to d

K(u,v)=(u-v—+1)¢

- Sigmoid

K(u,v) = tanh(nu-v 4+ v)

- Gaussian kernels

202
Equivalent to ¢(x) of infinite dimensionality!

2
K(u,v) = exp <—||u_v||>

66

The RBF kernel
Note:

The RBF kernel can be used as a density estimator
over X C 15 =RV

Proof:
Let (z1,...,zm) € RYX™ m training examples.
Let 'gl:lai =1, o; >0
=
L — |l — ;|2
1@ = 3 aikam) = 3 agern (17250
1= i—

(This puts a Gaussian on each z;, Mixture of Gaussians)

67

The RBF kernel

Note:
The RBF kernel maps the input space X onto

the surface of an infinite dimensional hypersphere.

Proof:

|o(z)| = \/k(x,aj) = \/eXD(O) —1

Note:

The RBF kernel is shift invariant:

E(u+a,v+a) = k(u,v), Va

68

The Polynomial kernel

69

Reminder: Hard 1-dimensional Dataset

" Make up a new feature!

Sort of...
... computed from
original feature(s)

_ 2
z, = (x,x;)

Separable! MAGIC!

New features are sometimes called basis functions.
Now drop this “augmented” data into our linear SVM.

taken from Andrew W. Moore 70

... New Features from Old ...

» Here: mapped O - 02 by ®: x - [x, x?]
e Found “extra dimensions” 0 linearly separable!

- In general,
e Start with vector x OON
e Wanttoadd in x2, x7? ..

e Probably want other terms —eg x, [, ...

e Which ones to include?
Why not ALL OF THEM???

71

Special Case
* X=(X1/ Xy X3) —
(1, Xy, X5, X3, X2, X2, X352, X X5, X X3, X, X5)

0 03 5 0% N=3, n=10;
In general, the dimension of the quadratic map:
N (N+2)(N+1) N’

2 2 B3

N - 1+ N+ N+

So we map from the N dimensional space X
to an ~ N2/2 dimensional feature space K.

taken from Andrew W. Moore 72

Let ¢ (x)=

U

V2x,
VJ2x,

5
o
=

AN I A I A s I A I I I A Iy Y |

Re
()

[\

= ..
=N

N
N

o o e e e e e e e e e e e e s
&~
\S)

B

2x,xy,

2 V2xx,

] ,
] \/ExlxN
] .

ﬁﬁxzv- XN

} Constant Term
~

> Linear Terms

J\

Pure
> Quadratic
Terms

Quadratic
Cross-Terms

Quadratic Basis

Functions

What about those \/5 ?7?

... stay tuned

taken from Andrew W. Moore 73

74

taken from Andrew W. Moore

=)

b]

S,

- S
N S =L
— +E gLt L~V + PR
A A A AN
(N\ A\ N

AN N N N Iy N N N N N I N Ny N N N N I I N I N N Iy N N Iy B Y

=,
o~ o =, @l =z, 0

QL Q N o« - - — N —
1&& ..ﬁ R b2 . n/.HbN% % . % % . % . bN
N I I

L J
I N I Ny N I N N I N I N Y N N I N N N Y Ny N I N N I |

. 2

5 a?. aN i} a2 a3 aN a2 aN al

o o 2122 2 . 3 e o S S o o !

el g S aﬁaﬁm Mﬁa S S
&

I a1 1 COCCCa o

I
U
I
0
I
0
U
I
_ U
i
U
I
0
U

S1ONpo.d
10Q 21elpenQ

< 0 (a),0 (b)>

Quadratic Dot
Products

<0 (a),0 (b)>=

[E—
<+
(\9)
||'M 2

p—

2a.a.b.b.

Ui

abty @h)+y Y

i=1 j=it1

~

Now consider another fn of @aand b

(al@+1)°

—ab)’ +2a @+

2
:HN .b.H 2N b +1

ik]

N N
=z 2 abab]+2z ab +1
J=

i=1 1 i=1

z (ab,)’ + 2 2 ab.ab, + 2ZN ab. +1
=)

i=1 j=i+1

J They're the same!
r

And this is only O(N) to

compute... not O(N?)
\

75

taken from Andrew W. Moore

Higher Order Polynomials Qi =y (X« X

N =dim(X), m = num of training examples

Poly- X Cost to Cost if . Cost to | Cost if
nomial e build @, |N=100 dim G build Q,, | 100
matrix: inputs matrix; |dim
traditional sneaky |inputs
Quadratic |All %/2 |(W)/4 2500 7 | (quppgy |(VF7/ 2 |50 m?
terms up
to degree
2
Cubic All N5/6 Nom?/12 |83 000 n# (a-b+1) Nm?/2 |50 m?
terms up
to degree
3 g —
Quartic | All N/24 ()2 /48 | 1960000m | rguppgy |WoH/ 2 |50 m?
terms up
to degree
4

o Ja

taken from Andrew W. Moore

7J

The Polynomial kernel, General case
x cly =RV

u=(uy,...uny) € X
v=(v1,...0ny) €EX

N

» We are going to map these to a larger space

We want to show that this kis a kernel function

Let us try to find ¢(uw) and K!

77

The Polynomial kernel, General case
X cly =RN

u=(uy,...uny) € X
v = (v1,...vN) S

(,0) = () = ¢ z wiyoi) - (S g o)

(Zu@vﬁp - \ }_1

P factors
because (3°a;)(3°bj) = >° 3" a;b;

N N
pu— Z Z \(u’qu?/pz\(v’qup)i

n=L =l ¢;Tu> ¢;?U)

= (¢(u),¢(v))x Let us try to find ¢(u) and K!

» We are going to map these to a larger space

The Polynomial kernel, General case

We already know:

k(u,v) = Z Z (uzl uzp (Uzl U’ipz
=t =1 ¢;(u) ¢;(U)

We want to get & in this form:

Z ¢7(u)pr(v)

79

The Polynomial kernel

We already know:

k(u,v) = Z Z Qugy - -ugy,) (v - v,)

n=t =T b0
U — (u]_a"'qu)

One factor in k(u,v) can be written as u? . u"]"\lf\f

where r{ +m+...+ry=p, r, €[0,p], 7= (r1,...7N)

For example

Let p=3, N =4, now u%w = UIUIU4 = UIULUT
"= (2,0,0,1) i=(1,1,4) i=(1,4,1)

80

The Polynomial kernel

N N
k(u,v) = Z Z fui1'°°uip)J§Ui1"'Uip)J
n=Lo =l ¢g(u) ¢;(v)
One factor in k(u,v) can be rewritten as ugl x u?{,\f

N—I—p—l)
p

The number of possible ¥ vectors: (

because ri +r>+...+ry =p, r; € [0, p],
r=1(r1,...7N)

= number of factors = dim(K) = (N TP 1)

p

81

The Polynomial kernel

The 7= (r1,...,ryN) term is calculated by
!
Orq,..rny — b times
7“]_! --'TN!
ri+r+...+ry=p r€l0,p], 7= (r1,...7N)

— k(ua U) — Z aT‘l,...,TNUr']n_l cee u?\jfvvq]a_l s U}nVN

(Tl,...,TN)
or(u)ps(v) = kis really a kernel!

|
™ |

82

Reproducing Kernel Hilbert
Spaces

. RKHS, Motivation

For a given kernel k(-,-) we already know how to define feature
space K, and ¢ : X — K feature map (Mercer map):

K =12, and ¢(z) = (VA11(z), vVAzpa(z),..)"

Now, we show another way using RKHS

2., What objective do we want to optimize?

m

#* = arg %‘2@; lyi — f(x)| + Al fllF

or f —arg%ljrggllyz—f(x@)l + Al f =

m .
or f*=argmin > |y; — f(z;)|* + Nexpexpexp(||f|%)
JEF i=1

or 777

84

RKHS, Motivation

3., How can we minimize the objective over functions???

(nope, we do not like that...)

e Use RKHS, and suddenly the problem will be finite
dimensional optimization only (yummy...)

The Representer theorem will help us here

f*=arg min Ryeglf, 2] = argmin gempl(z;, v, f(wi))ie{l_,_m}]‘l'greg(”f“),

feF w

1st term, empirical loss 2" term, regularizasgion

Reproducing Kernel Hilbert Spaces

For a given kernel k(-,-) we already know how to define feature
space K, and ¢ : X — K feature map (Mercer map):

K =1y, and ¢(z) = (vVA19¥1(x), vVApa(x),...)"

Now, we show another way using RKHS

k:XxX — R given kernel = Fg = {k(x,-)|x € X} function space

We will add inner product to Fgy function space
= Pre-Hilbert space

Completing (closing) a pre-Hilbert space = Hilbert space

86

Reproducing Kernel Hilbert Spaces

k:XxX — R given kernel = Fq = {k(z,-)|z € X} function space

(21,...,2r) given = F() = 3 agk(zs,) € Fo

i=1
(Z1,...,%Ts) given = g(-) = ,Zl Bik(Z;,-) € Fo
J:
The inner product

k(x3, - I r
Zl Z a;Bjk(x;, T ;) (73,) O =Y ak(a,)

1=1 9= 1=1
= Z a;g(x;)
k(aj27)

k , -
Z 51 (21 >)

j=1 87

Reproducing Kernel Hilbert Spaces

Note:

While for calculating (f, g) 7, we use their
representations: o € R", 8 € R%, {z;};_1, {55]-}:;:1
the (f, g)r, is independent of the representation of f,g

Proof:

If we change a € R" or z; = (f,g)F, doesn't change
(because of (*)) The same for 3 € RS

(L) Fy =2 aif(x) =) Bif(&) (%)
11 j=1

88

Reproducing Kernel Hilbert Spaces

Lemma:
(f,g) is an inner product of Fg

= Fo is pre-Hilbert space
F = close(Fq) is a Hilbert space

e Pre-Hilbert space:
Like the Euclidean space with rational scalars only

e Hilbert space:
Like the Euclidean space with real scalars

Proof:

1., (/.9 > = (g, f>.7:o

2., (cf +dg,)5, = clf, h) 7 + dlg Bz, Ve.d € R, Vfg,h € Fo
3., ([, flr7g =0

4., ([, >]—“O =0& f=0

89

Reproducing Kernel Hilbert Spaces
Lemma: (Reproducing property)

Proof: definition of (f, g)r

Lemma: The constructed features match to k

Huhh...

Proof: reproducing property

90

Reproducing Kernel Hilbert Spaces

Proof of property 4.,:
0 < (f(2))* = (f k(z,"))%, Va

/

rep. property

(fsk(x, NF < A{f, P rk(z,), k(z,) F Vo
CBS For CBS we don't need 4.,
we need only that <0,0>=0!
Hence, if (f,f)r=0= (f())?2 =0, Vz € X
= f(x) =0, Ve e X
= /=0

91

Methods to Construct Feature Spaces

We now have two methods to construct feature
maps from kernels

1., Mercer map:

K =lp, and ¢(z) = (VA1v¥1(2), vVIaa(z),...)t €l

2., RKHS map:
K=0F, and ¢(x) = k(z,-) € F

For finite discrete X, |X| = r we already know a 3" method:

3., KCR”, ¢(x;) =AV2u, eR?, i=1,...7

Well, these feature spaces are all isomorph with each
other... © 0

The Representer Theorem

In the perceptron problem we could use the dual
algorithm, because we had this representation:

m™m
fx) = (o), W) = > ak(z,z;)
1=1
and thus we had to update a1,...,am only, and not w € K|

The Representer theorem provides us a big class
of problems, where the solution can be represented by

FO) =Y ak(zi), acR”
1=1

93

The Representer Theorem
Theorem: k(-,-) : X x X — R, Mercer kernel on X
2= (21,91), .., (Tm,ym) € (X x Y)™ training sample
gemp : (X XY XR)™ - RU {oo} ; =

greg - R — [0, 00) strictly increasing function

F . RKHS induced by k(-,-) |

= f* = arg minfE]:Rreg[fa z]
= argminser gempl(zi, i, £(%i))icqa..mp] + greg(|I£11)
~ ——

1st term, empirical loss 2" term, reqgularization

admits the following representation:
m
f*(> — ,Zlaik(xif)a Q@ = (Oél,...,(){m) e R™
1=

94

The Representer Theorem

Message:
Optimizing in general function classes is difficult, but
in RKHS it is only finite! (m) dimensional problem

Proof of Representer Theorem:
¢(z) = k(z,-) = ¢(z)(")

xq1,...,Tm training samples are given

feF=10)= L ap()()+2()
where F 3> v L span{é(x1),...,d(xm)},
thus (v,¢(x;)) F=0 Vi=1l,...,m

95

Proof of the Representer Theorem

Proof of Representer Theorem

f* = arg jranIJ’r-l Rreg[fa z] = arg Jr';neljr—l gemp[(xiv Yis f(xz))ze{lm}]"‘greg(”f“)’

v

1st term, empirical loss 2" term, reqularization

= [(a) = (L kG) r = (X aid(e) +v,6)) 7

o(z;)
= g’jl a;(p(x;), p(x)) r = gjl a;k(zi, ;)

= f(x;) depends only on ay,...,am, but independent from v!

— 15! term depends only on a1, ...,am, but not on v

96

Proof of the Representer Theorem
f = arg ?“jr_l RT@g[fa z] = arg min gemp[(xwyu f(wz))ze{l_,_m}]+€reg(”f“)’

fe fw
1t term, empirical loss 2" term, regularization
Let us examine the 2™ term.

greg (1) = greg(ll 3 cié(as) +])

= greg(| /| £ cis(@)l3 + ol

since F 3 v L span{¢(x1),...,0(xm)}
> greg(| Z o;d(zi)|| 7)

with equality only if v = 0!
= any minimizer f* must have v =0

= 1() = £ aik(z;,)

97

L ater will come

- Supervised Learning
e SVM using kernels

e (Gaussian Processes
e Regression
e Classification
» Heteroscedastic case

- Unsupervised Learning
e Kernel Principal Component Analysis

e Kernel Independent Component Analysis
e Kernel Mutual Information
e Kernel Generalized Variance
e Kernel Canonical Correlation Analysis

98

If we still have time...

- Automatic Relevance Machines
- Bayes Point Machines

- Kernels on other objects
e Kernels on graphs
e Kernels on strings

- Fisher kernels
- ANOVA kernels

 Learning kernels

99

RL
Al

Thanks for the Attention! ©

AALBERTA INGENUITY CENTRE FOR
MACHINE LEARNING

