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Ralf Herbrich: Learning Kernel Classifiers
 Chapter 2



Quick Overview 
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Hard 1-dimensional Dataset

x=0

Positive “plane” Negative “plane”

x=0

taken from Andrew W. More; CMU + Nello Cristianini, Ron Meir, Ron Parr

• If the data set is not linearly separable, then adding new 
features (mapping the data to a larger feature space) the 
data might become linearly separable

• m general! points in an m-1 dimensional space is always 
linearly separable by a hyperspace!
) it is good to map the data to high dimensional spaces

 (For example 4 points in 3D)
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Hard 1-dimensional Dataset
Make up a new feature!

Sort of… 
… computed from 
original feature(s)

x=0

),( 2
kkk xx=z

Separable! MAGIC!

Now drop this “augmented” data into our linear SVM.

taken from Andrew W. More; CMU + Nello Cristianini, Ron Meir, Ron Parr
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Feature mapping
• m general! points in an m-1 dimensional space is always 

linearly separable by a hyperspace!
) it is good to map the data to high dimensional spaces

• Having m training data, is it always enough to map the 
data into a feature space with dimension m-1?

• Nope... We have to think about the test data as well!
Even if we don’t know how many test data we have...

•We might want to map our data to a huge (1) dimensional 
feature space

•Overfitting? Generalization error?... 
We don’t care now...
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Feature mapping, but how???

1
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Observation

Several algorithms use the inner products only, 
but not the feature values!!!
E.g. Perceptron, SVM, Gaussian Processes...
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The Perceptron
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Maximize

€ 

α k

k =1

R

∑ − 1

2
α kα l Q k l

l =1

R

∑
k =1

R

∑ where

€ 

Qkl =ykyl(xk ⋅xl)

Subject to these 
constraints:

€ 

0≤αk ≤C ∀k

€ 

αk y k

k =1

R

∑ = 0

€  

α k

SVM
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Inner products
So we need the inner product between

and

Looks ugly, and needs lots of computation...

Can’t we just say that let
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Finite example

=r

r

r
n

n
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Finite example
Lemma:

Proof:
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Finite example
Choose 7 2D points

Choose a kernel k

1

2 3

4

5
6

7

G =    
1.0000    0.8131    0.9254    0.9369    0.9630    0.8987    0.9683   
0.8131    1.0000    0.8745    0.9312    0.9102    0.9837    0.9264   
0.9254    0.8745    1.0000    0.8806    0.9851    0.9286    0.9440   
0.9369    0.9312    0.8806    1.0000    0.9457    0.9714    0.9857   
0.9630    0.9102    0.9851    0.9457    1.0000    0.9653    0.9862   
0.8987    0.9837    0.9286    0.9714    0.9653    1.0000    0.9779   
0.9683    0.9264    0.9440    0.9857    0.9862    0.9779    1.0000
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[U,D]=svd(G), UDUT=G, UUT=I
U =  
    -0.3709    0.5499    0.3392    0.6302    0.0992   -0.1844   -0.0633  

-0.3670   -0.6596   -0.1679    0.5164    0.1935    0.2972    0.0985 
-0.3727    0.3007   -0.6704   -0.2199    0.4635   -0.1529    0.1862 
-0.3792   -0.1411    0.5603   -0.4709    0.4938    0.1029   -0.2148 
-0.3851    0.2036   -0.2248   -0.1177   -0.4363    0.5162   -0.5377 
-0.3834   -0.3259   -0.0477   -0.0971   -0.3677   -0.7421   -0.2217 
-0.3870    0.0673    0.2016   -0.2071   -0.4104    0.1628    0.7531

D =  
    6.6315    0             0            0            0          0           0   

0       0.2331     0            0            0           0           0   
0            0            0.1272    0            0           0           0   
0            0            0            0.0066    0           0           0   
0            0            0            0            0.0016   0           0   
0            0            0            0            0           0.000     0   
0            0            0            0            0           0           0.000
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Mapped points=sqrt(D)*UT

Mapped points =

    -0.9551   -0.9451   -0.9597   -0.9765   -0.9917   -0.9872   -0.9966       
0.2655    -0.3184    0.1452   -0.0681    0.0983   -0.1573    0.0325    
0.1210    -0.0599   -0.2391    0.1998   -0.0802   -0.0170    0.0719    
0.0511     0.0419   -0.0178   -0.0382   -0.0095   -0.0079   -0.0168      
0.0040     0.0077    0.0185    0.0197   -0.0174   -0.0146   -0.0163
-0.0011    0.0018   -0.0009    0.0006    0.0032   -0.0045    0.0010 
-0.0002    0.0004    0.0007   -0.0008   -0.0020   -0.0008    0.0028
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Roadmap I
We need feature maps

Implicit (kernel functions)Explicit (feature maps)

Several algorithms need the inner products of features only!

It is much easier to use implicit feature maps (kernels)

Is it a kernel function???Is it a kernel function???
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Mercer’s theorem, 

eigenfunctions, eigenvalues

Positive semi def. integral operators

Infinite dim feature space (l2)

Roadmap II

Is it a kernel function??? SVD, 

eigenvectors, eigenvalues

Positive semi def. matrices

Finite dim feature space

We have to think about
the test data as well...

If the kernel is pos. semi def. , feature map construction
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Mercer’s theorem

(*)

2 variables 1 variable
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Mercer’s theorem

...
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Roadmap III

We want to know which functions are kernels
• How to make new kernels from old kernels?
• The polynomial kernel: 

We will show another way using RKHS:

Inner product=???



Ready for the 
details? ;)
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Hard 1-dimensional Dataset

What would SVMs do with this data?

Not a big surprise

x=0

Positive “plane” Negative “plane”

x=0

Doesn’t look like slack variables will save us this time…

taken from Andrew W. Moore
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Hard 1-dimensional Dataset
Make up a new feature!

Sort of… 
… computed from 
original feature(s)

x=0

),( 2
kkk xx=z

New features are sometimes called basis functions.

Separable! MAGIC!

Now drop this “augmented” data into our linear SVM.
taken from Andrew W. Moore
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Hard 2-dimensional Dataset

O

O
X

X

Let us map this point to the 3rd dimension...
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Kernels and Linear Classifiers

We will use linear classifiers in this feature space.



28Picture is taken from R. Herbrich



29Picture is taken from R. Herbrich
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Kernels and Linear Classifiers

Feature functions
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Back to the Perceptron Example
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The Perceptron

• The primal algorithm in the feature space
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The primal algorithm in the feature space

Picture is taken from R. Herbrich
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The Perceptron
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The Perceptron
The Dual Algorithm in the feature space
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The Dual Algorithm in the feature space

Picture is taken from R. Herbrich
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The Dual Algorithm in the feature space
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Kernels
Definition: (kernel)
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Kernels

Definition: (Gram matrix, kernel matrix)

Definition: (Feature space, kernel space)
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Kernel technique

Lemma:
 

The Gram matrix is symmetric, PSD matrix.

Proof:

Definition: 
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Kernel technique

Key idea:
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Kernel technique
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Finite example

=r

r

r
n

n
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Finite example
Lemma:

Proof:
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Kernel technique, Finite example
We have seen:

Lemma: 

These conditions are necessary
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Kernel technique, Finite example

Proof: ... wrong in the Herbrich’s book...
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Kernel technique, Finite example
Summary:

How to generalize this to general sets???
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Integral operators, eigenfunctions

Definition: Integral operator with kernel k(.,.)

Remark:
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From Vector domain to Functions

• Observe that each vector v = (v[1], v[2], ..., v[n]) 
is a mapping from the integers {1,2,..., n} to < 

 
•We can generalize this easily to INFINITE domain 

w = (w[1], w[2], ..., w[n], ...) 
where w is mapping from {1,2,...} to <

1
2

1 2 1

1

G vi

j
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From Vector domain to Functions

From integers we can further extend to 

•  < or 
•  <m

• Strings
• Graphs
• Sets
• Whatever
• …
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Lp and lp spaces

.

Picture is taken from R. Herbrich
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Lp and lp spaces

Picture is taken from R. Herbrich



53

L2 and l2 special cases

Picture is taken from R. Herbrich
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Kernels

Definition: inner product, Hilbert spaces 
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Integral operators, eigenfunctions

Definition: Eigenvalue, Eigenfunction
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Positive (semi) definite operators

Definition: Positive Definite Operator
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Mercer’s theorem

(*)

2 variables 1 variable
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Mercer’s theorem

...
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A nicer characterization

Theorem: nicer kernel characterization
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Kernel Families
• Kernels have the intuitive meaning of similarity 

measure between objects. 

• So far we have seen two ways for making a linear 
classifier nonlinear in the input space:

• (explicit) Choosing a mapping φ 
) Mercer kernel k

• (implicit) Choosing a Mercer kernel k
 ) Mercer map φ
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Designing new kernels from kernels

are also kernels.

Picture is taken from R. Herbrich



62

Designing new kernels from kernels

Picture is taken from R. Herbrich
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Designing new kernels from kernels
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Kernels on inner product spaces
Note:



65Picture is taken from R. Herbrich
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Common Kernels
• Polynomials of degree d

• Polynomials of degree up to d

• Sigmoid

• Gaussian kernels

Equivalent to φ(x) of infinite dimensionality!

2
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The RBF kernel
Note:

Proof:
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The RBF kernel
Note:

Note:

Proof:
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The Polynomial kernel
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Reminder: Hard 1-dimensional Dataset
Make up a new feature!

Sort of… 
… computed from 
original feature(s)

x=0

),( 2
kkk xx=z

New features are sometimes called basis functions.

Separable! MAGIC!

Now drop this “augmented” data into our linear SVM.
taken from Andrew W. Moore
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… New Features from Old …
• Here: mapped  ℜ → ℜ2   by   Φ: x → [x, x2]

• Found “extra dimensions” ⇒ linearly separable!

• In general,
• Start with vector   x ∈ℜN 

• Want to add in    x1
2 ,  x2

2, …

• Probably want other terms – eg  x2 ⋅ x7, …

• Which ones to include?  
Why not ALL OF THEM???
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Special Case
• x=(x1, x2, x3 ) →

  (1, x1, x2, x3, x1
2, x2

2, x3
2, x1x2, x1x3, x2x3 ) 

∀ ℜ3 → ℜ10, N=3, n=10; 

22
)1)(2(

2
1

2NNNN
NNN ≈++=





+++→

In general, the dimension of the quadratic map:

taken from Andrew W. Moore
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Quadratic Basis 
Functions
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Constant Term

Linear Terms

Pure 
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Terms

Quadratic 
Cross-Terms

What about those         ??

… stay tuned 

2

Let

taken from Andrew W. Moore
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They’re the same!

And this is only O(N) to 
compute… not O(N2)

taken from Andrew W. Moore
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Higher Order Polynomials

50 m2N m2 / 2(a∙b+1)41960000m2N4 m2 /48All N4/24 
terms up 
to degree 
4

Quartic

50 m2N m2 / 2(a∙b+1)383 000 m2N3 m2 /12All N3/6 
terms up 
to degree 
3

Cubic

50 R2m R2 / 2(a∙b+1)22 500 R2m2 R2 /4All m2/2 
terms up 
to degree 
2

Quadratic

Cost if 
100 
inputs

Cost to 
build Qkl 
matrix: 
sneaky

φ(a)∙φ(b)Cost if 100 
inputs

Cost to 
build Qkl 
matrix: 
traditional

  φ(x)Poly-
nomial € 

Qkl =ykyl(xk ⋅xl)

50 m2N m2 / 2(a∙b+1)22 500 m2N2 m2 /4All N2/2 
terms up 
to degree 
2

Quadratic

Cost if 
100 
dim 
inputs

Cost to 
build Qkl 
matrix: 
sneaky

φ(a)∙φ(b)Cost if 
N=100 dim 
inputs

Cost to 
build Qkl 
matrix: 
traditional

  φ(x)Poly-
nomial

taken from Andrew W. Moore
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The Polynomial kernel, General case

We are going to map these to a larger space

We want to show that this k is a kernel function
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The Polynomial kernel, General case

P factors

We are going to map these to a larger space



79

The Polynomial kernel, General case
We already know:

We want to get k in this form:
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The Polynomial kernel

For example

We already know:
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The Polynomial kernel



82

The Polynomial kernel

) k is really a kernel!
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Reproducing Kernel Hilbert 
Spaces
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RKHS, Motivation

Now, we show another way using RKHS

What objective do we want to optimize?

1.,

2.,
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RKHS, Motivation

1st term, empirical loss 2nd term, regularization

3., How can we minimize the objective over functions???

• Be PARAMETRIC!!!... 

(nope, we do not like that...)

• Use RKHS, and suddenly the problem will be finite 
dimensional optimization only (yummy...)

The Representer theorem will help us here



86

Reproducing Kernel Hilbert Spaces

Now, we show another way using RKHS

Completing (closing) a pre-Hilbert space ) Hilbert space

Now, we show another way using RKHS
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Reproducing Kernel Hilbert Spaces

The inner product:

(*)
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Reproducing Kernel Hilbert Spaces

Note:

Proof:

(*)
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Reproducing Kernel Hilbert Spaces
Lemma:

• Pre-Hilbert space: 
Like the Euclidean space with rational scalars only

• Hilbert space: 
Like the Euclidean space with real scalars

Proof:
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Reproducing Kernel Hilbert Spaces
Lemma: (Reproducing property)

Lemma: The constructed features match to k

Huhh...
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Reproducing Kernel Hilbert Spaces

Proof of property 4.,:

rep. property

CBS For CBS we don’t need 4.,
we need only that <0,0>=0!
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Methods to Construct Feature Spaces
We now have two methods to construct feature 

maps from kernels

Well, these feature spaces are all isomorph with each 
other... 
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The Representer Theorem
In the perceptron problem we could use the dual 

algorithm, because we had this representation:
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The Representer Theorem
Theorem:

1st term, empirical loss 2nd term, regularization
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The Representer Theorem

Proof of Representer Theorem:

Message: 
Optimizing in general function classes is difficult, but 
in RKHS it is only finite! (m) dimensional problem
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Proof of the Representer Theorem
Proof of Representer Theorem

1st term, empirical loss 2nd term, regularization
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1st term, empirical loss 2nd term, regularization

Proof of the Representer Theorem
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Later will come
• Supervised Learning

• SVM using kernels
• Gaussian Processes

• Regression
• Classification
• Heteroscedastic case

• Unsupervised Learning
• Kernel Principal Component Analysis
• Kernel Independent Component Analysis

• Kernel Mutual Information
• Kernel Generalized Variance
• Kernel Canonical Correlation Analysis
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If we still have time…

• Automatic Relevance Machines
• Bayes Point Machines

• Kernels on other objects
• Kernels on graphs
• Kernels on strings

• Fisher kernels
• ANOVA kernels
• Learning kernels
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Thanks for the Attention! 


