
Cascade-Correlation and
Deep Learning

Scott E. Fahlman

Professor Emeritus
Language Technologies Institute

February 27, 2019

CMU/LTI

Two Ancient Papers

● Fahlman, S. E. and C. Lebiere (1990) "The Cascade-Correlation

Learning Architecture”, in NIPS 1990.

● Fahlman, S. E. (1991) "The Recurrent Cascade-Correlation

Architecture" in NIPS 1991.

Both available online at http://www.cs.cmu.edu/~sef/sefPubs.htm

2Scott E. Fahlman <sef@cs.cmu.edu>

CMU/LTI

Deep Learning 28 Years Ago?

● These algorithms routinely built useful feature detectors 15-
30 layers deep.

● Build just as much network structure as they needed – no
need to guess network size before training.

● Solved some problems considered hard at the time, 10x to
100x faster than standard backprop.

● Ran on a single-core, 1988-vintage workstation, no GPU.

● But we never attacked the huge datasets that characterize
today’s “Deep Learning”.

3Scott E. Fahlman <sef@cs.cmu.edu>

CMU/LTI

Why Is Backprop So Slow?

● Moving Targets:

▪ All hidden units are being trained at once, changing the environment
seen by the other units as they train.

● Herd Effect:

▪ Each unit must find a distinct job -- some component of the error to
correct.

▪ All units scramble for the most important jobs. No central authority or
communication.

▪ Once a job is taken, it disappears and units head for the next-best job,
including the unit that took the best job.

▪ A chaotic game of “musical chairs” develops.

▪ This is a very inefficient way to assign a distinct useful job to each unit.

4Scott E. Fahlman <sef@cs.cmu.edu>

CMU/LTI

Cascade Architecture

5

f f

Inputs

Outputs

Units

Trainable
Weights

Scott E. Fahlman <sef@cs.cmu.edu>

CMU/LTI

Cascade Architecture

6

f f

Inputs

Outputs

Units

f

Frozen Weights

Trainable
Weights

First Hidden Unit

Scott E. Fahlman <sef@cs.cmu.edu>

CMU/LTI

Cascade Architecture

7

f f

Inputs

Outputs

Units

f

Frozen Weights

Second Hidden Unit Trainable
Weights

f

Scott E. Fahlman <sef@cs.cmu.edu>

CMU/LTI

The Cascade-Correlation Algorithm

● Start with direct I/O connections only. No hidden units.

● Train output-layer weights using BP or Quickprop.

● If error is now acceptable, quit.

● Else, Create one new hidden unit offline.

▪ Create a pool of candidate units. Each gets all available inputs.
Outputs are not yet connected to anything.

▪ Train the incoming weights to maximize the match (covariance)
between each unit’s output and the residual error:

▪ When all are quiescent, tenure the winner and add it to active net. Kill
all the other candidates.

● Re-train output layer weights and repeat the cycle until done.

8Scott E. Fahlman <sef@cs.cmu.edu>

CMU/LTI

Two-Spirals Problem & Solution

9Scott E. Fahlman <sef@cs.cmu.edu>

CMU/LTI

Cascor Performance on Two-Spirals

Standard BP 2-5-5-5-1: 20K epochs, 1.1G link-X

Quickprop 2-5-5-5-1: 8K epochs, 438M link-X

Cascor: 1700 epochs, 19M link-X

10Scott E. Fahlman <sef@cs.cmu.edu>

CMU/LTI

Cascor-Created Hidden Units 1-6

Scott E. Fahlman <sef@cs.cmu.edu> 11

CMU/LTI

Cascor-Created Hidden Units 7-12

Scott E. Fahlman <sef@cs.cmu.edu> 12

CMU/LTI

Advantages of Cascade Correlation

● No need to guess size and topology of net in advance.

● Can build deep nets with higher-order features.

● Much faster than Backprop or Quickprop.

● Trains just one layer of weights at a time (fast).

● Works on smaller training sets (in some cases, at least).

● Old feature detectors are frozen, not cannibalized, so
good for incremental “curriculum” training.

● Good for parallel implementation.

13Scott E. Fahlman <sef@cs.cmu.edu>

CMU/LTI

Recurrent Cascade Correlation (RCC)

Simplest possible extension to Cascor to handle sequential
inputs:

● Trained just like Cascor units, then added, frozen.

● If Ws is strongly positive, unit is a memory cell for one bit.

● If Ws is strongly negative, unit wants to alternate 0-1.

14

One-Step
DelayΣ

Sigmoid

Inputs

Trainable Wi
Trainable Ws

Scott E. Fahlman <sef@cs.cmu.edu>

CMU/LTI

Reber Grammar Test

The Reber grammar is a simple finite-state grammar that others had
used to benchmark recurrent-net learning.

Typical legal string: “BTSSXXVPSE”.
Task: Tokens presented sequentially. Predict the next Token.

15Scott E. Fahlman <sef@cs.cmu.edu>

CMU/LTI

Reber Grammar Results

State of the art:

● Elman net (fixed topology with recurrent units): 3 hidden units,
learned the grammar after seeing 60K distinct strings, once each.
(Best run, not average.)

● With 15 hidden units, 20K strings suffice. (Best run.)

RCC Results:

● Fixed set of 128 training strings, presented repeatedly.

● Learned the task, building 2-3 hidden units.

● Average: 195.5 epochs, or 25K string presentations.

● All tested perfectly on new, unseen strings.

16Scott E. Fahlman <sef@cs.cmu.edu>

CMU/LTI

Embedded Reber Grammar Test

The embedded Reber grammar is harder.

Must remember initial T or P token and replay it at the end.

Intervening strings potentially have many Ts and Ps of their own.

17Scott E. Fahlman <sef@cs.cmu.edu>

CMU/LTI

Embedded Reber Grammar Results

State of the art:

● Elman net was unable to learn this task, even with 250,000 distinct
strings and 15 hidden units.

RCC Results:

● Fixed set of 256 training strings, presented repeatedly,
then tested on 256 different strings. 20 runs.

● Perfect performance on 11 of 20 runs, typically building 5-7 hidden
units.

● Worst performance on others, 20 test-set errors.

● Training required avg of 288 epochs, 200K string presentations.

18Scott E. Fahlman <sef@cs.cmu.edu>

CMU/LTI

Morse Code Test

● One binary input, 26 binary outputs (one per letter), plus
“strobe” output at end.

● Dot is 10, dash 110, letter terminator adds an extra zero.

● So letter V …- is 1010101100.
Letters are 3-12 time-steps long.

● At start of each letter, we zero the memory states.

● Outputs should be all zero except at end of letter – then
1 on the strobe and on correct letter.

19Scott E. Fahlman <sef@cs.cmu.edu>

CMU/LTI

Morse Code Results

● Trained on entire set of 26 patterns, repeatedly.

● In ten trials, learned the task perfectly every time.

● Average of 10.5 hidden units created.

▪ Note: Don’t need a unit for every pattern or every time-slice.

● Average of 1321 epochs.

20Scott E. Fahlman <sef@cs.cmu.edu>

CMU/LTI

“Curriculum” Morse Code

Instead of learning the whole set at once, present a series
of lessons, with simplest cases first.

● Presented E (one dot) and T (one dash) first, training
these outputs and the strobe.

● Then, in increasing sequence length, train “AIN”,
“DMSU”, “GHKRW”, “BFLOV”, “CJPQXYZ”. Do not
repeat earlier lessons.

● Finally, train on the entire set.

21Scott E. Fahlman <sef@cs.cmu.edu>

CMU/LTI

Lesson-Plan Morse Results

● Ten trials run.

● E and T learned perfectly, usually with 2 hidden units.

● Each additional lesson adds 1 or 2 units.

● Final combination training adds 2 or 3 units.

● Overall, all 10 trials were perfect, average of 9.6 units.

● Required avg of 1427 epochs, vs. 1321 for all-at-once,
but these epochs are very small.

● On average, saved about 50% on training time.

22Scott E. Fahlman <sef@cs.cmu.edu>

CMU/LTI

Cascor Variants

● Cascade 2: Different correlation measure works better for
continuous outputs.

● Mixed unit types in pool: Gaussian, Edge, etc. Tenure
whatever unit grabs the most error.

● Mixture of descendant and sibling units. Keeps detectors
from getting deeper than necessary.

● Mixture of delays and delay types, or trainable delays.

● Add multiple new units at once from the pool, if they are not
completely redundant.

● KBCC: Treat previously learned networks as candidate units.

23Scott E. Fahlman <sef@cs.cmu.edu>

CMU/LTI

Key Ideas

● Build just the structure you need. Don’t carve the filters
out of a huge, deep block of weights.

● Train/Add one unit (feature detector) at a time. Then
add and freeze it, and train the network to use it.

▪ Eliminates inefficiency due to moving targets and herd effect.

▪ Freezing allows for incremental “lesson-plan” training.

▪ Unit training/selection is very parallelizable.

● Train each new unit to cancel some residual error.
(Same idea as boosting.)

24Scott E. Fahlman <sef@cs.cmu.edu>

CMU/LTI

So…

● I still have the old code in Common Lisp and C.
Serial, so would need to be ported to work on GPUs, etc.

● My primary focus is Scone, but I am interested in collaborating with
people to try this on bigger problems.

● It might be worth trying Cascor and RCC on inferring real natural-
language grammars and other Deep Learning/Big Data problems.

● Perhaps tweaking the memory/delay model of RCC would allow it to
work on time-continuous signals such as speech.

● A convolutional version of Cascor is straightforward, I think.

● The hope is that this might require less data and much less
computation than current deep learning approaches.

25Scott E. Fahlman <sef@cs.cmu.edu>

CMU/LTI

Some Current Work

● One PhD student Dean Alderucci, has ported RCC to Python using
Graham Neubig’s Dynet toolkit.

▪ Dean will be looking at using this for NLP applications specifically aimed
at the language in patents.

▪ Dean also has done some work on word embeddings, developing a
version of word2vec using Scone.

● An undergrad, Ian Chiu, has ported Cascor to Python, running on
TensorFlow Eager, which can handle networks that change during
processing. Some issues remain.

▪ Ian is now looking for good sequential benchmarks to compare the
speed of RCC.

▪ It’s surprisingly hard to find reported results that we can compare for
learning speed.

Scott E. Fahlman <sef@cs.cmu.edu> 26

CMU/LTI

The End

27Scott E. Fahlman <sef@cs.cmu.edu>

CMU/LTI

Equations: Cascor Candidate Training

28

Adjust candidate weights to maximize covariance S:

Adjust incoming weights:

Scott E. Fahlman <sef@cs.cmu.edu>

CMU/LTI

Equations: RCC Candidate Training

29

Output of each unit;

Adjust incoming weights:

Scott E. Fahlman <sef@cs.cmu.edu>

