

Cascade-Correlation and Deep Learning

Scott E. Fahlman

Professor Emeritus Language Technologies Institute

February 27, 2019

Two Ancient Papers

- **Two Ancient Papers
• Fahlman, S. E. and C. Lebiere (1990) "The Cascade-Correlation
Learning Architecture", in NIPS 1990.
• Fahlman S. E. (1991) "The Boautreat Cascade Correlation** Learning Architecture", in NIPS 1990. ● Fahlman, S. E. and C. Lebiere (1990) "The Cascade-Correlation
• Fahlman, S. E. and C. Lebiere (1990) "The Cascade-Correlation
• Fahlman, S. E. (1991) "The Recurrent Cascade-Correlation
Architecture" in NIPS 1991.
- Architecture" in NIPS 1991.

Both available online at http://www.cs.cmu.edu/~sef/sefPubs.htm

Deep Learning 28 Years Ago?

- **Deep Learning 28 Years Ago?**
• These algorithms routinely built useful feature detectors 15-
^{30 layers deep.} 30 layers deep. **Deep Learning 28 Years Ago?**
• These algorithms routinely built useful feature detectors 15-
30 layers deep.
• Build just as much network structure as they needed – no
need to guess network size before training.
- need to guess network size before training.
- **Deep Learning 28 Years Ago?**

 These algorithms routinely built useful feature detectors 15-

30 layers deep.

 Build just as much network structure as they needed no

need to guess network size before training.

 S 100x faster than standard backprop. ■ These algorithms routinely built useful feature detectors 15-

30 layers deep.

■ Build just as much network structure as they needed – no

need to guess network size before training.

■ Solved some problems considered ■ Build just as much network structure as they needed – no

need to guess network size before training.

■ Solved some problems considered hard at the time, 10x to

100x faster than standard backprop.

■ Ran on a single-c
-
- today's "Deep Learning".

Why Is Backprop So Slow?

● Moving Targets:

• All hidden units are being trained at once, changing the environment seen by the other units as they train. **Thy Is Backprop So Slow?**
 Example 19
 Example 19
 Example a distinct a distinct job -- some component of the error to correct.
 All units scramble for the most important jobs. No central authority or

● Herd Effect:

- correct.
- All units scramble for the most important jobs. No central authority or communication.
- Once a job is taken, it disappears and units head for the next-best job, including the unit that took the best job. Fact Britain and the transformal chairs are being transformal of the environment
 and Effect:
 Each unit must find a distinct job -- some component of the error to

correct.
 All units scramble for the most important
-
-

Cascade Architecture

Cascade Architecture

Cascade Architecture

The Cascade-Correlation Algorithm The Cascade-Correlation Algorithm
• Start with direct I/O connections only. No hidden units.
• Train output-layer weights using BP or Quickprop. The Cascade-Correlation Algorithn
• Start with direct I/O connections only. No hidden units.
• Train output-layer weights using BP or Quickprop.
• If error is now acceptable, quit. The Cascade-Correlatio
• Start with direct I/O connections only. No
• Train output-layer weights using BP or C
• If error is now acceptable, quit.
• Else, Create one new hidden unit offline

-
-
-
-
- The Cascade-Correlation Algorithm
• Start with direct I/O connections only. No hidden units.
• Train output-layer weights using BP or Quickprop.
• If error is now acceptable, quit.
• Else, Create one new hidden unit offli Outputs are not yet connected to anything.
	- Train the incoming weights to maximize the match (covariance) between each unit's output and the residual error:
- When all are quiescent, tenure the winner and add it to active net. Kill all the other candidates. • If error is now acceptable, quit.

• Else, Create one new hidden unit offline.

• Create a pool of candidate units. Each gets all available inputs.

Outputs are not yet connected to anything.

• Train the incoming weig
-

Two-Spirals Problem & Solution

Cascor Performance on Two-Spirals

Standard BP 2-5-5-5-1: 20K epochs, 1.1G link-X

Cascor-Created Hidden Units 1-6

Scott E. Fahlman <sef@cs.cmu.edu> 11

Cascor-Created Hidden Units 7-12

Advantages of Cascade Correlation Advantages of Cascade Correlation
● No need to guess size and topology of net in advance.
● Can build deep nets with higher-order features. Advantages of Cascade Correlation
• No need to guess size and topology of net in advance.
• Can build deep nets with higher-order features.
• Much faster than Backprop or Quickprop. Advantages of Cascade Correlatio
• No need to guess size and topology of net in advi
• Can build deep nets with higher-order features.
• Much faster than Backprop or Quickprop.
• Trains just one layer of weights at a time Advantages of Cascade Correlation
● No need to guess size and topology of net in advance.
● Can build deep nets with higher-order features.
● Much faster than Backprop or Quickprop.
● Trains just one layer of weights at a

-
-
-
-
-
- No need to guess size and topology of net in advance.
• Can build deep nets with higher-order features.
• Much faster than Backprop or Quickprop.
• Trains just one layer of weights at a time (fast).
• Works on smaller tr ● No need to guess size and topology of net in advance.

● Can build deep nets with higher-order features.

● Much faster than Backprop or Quickprop.

● Trains just one layer of weights at a time (fast).

● Works on small good for incremental "curriculum" training. • Much faster than Backprop or Quickprop.
• Trains just one layer of weights at a time
• Works on smaller training sets (in some c
• Old feature detectors are frozen, not canre good for incremental "curriculum" training
•
-

Recurrent Cascade Correlation (RCC)

Simplest possible extension to Cascor to handle sequential inputs:

-
- If W_s is strongly positive, unit is a memory cell for one bit.
- If W_s is strongly negative, unit wants to alternate 0-1.

Reber Grammar Test

The Reber grammar is a simple finite-state grammar that others had used to benchmark recurrent-net learning.

CMU/LTI Typical legal string: "BTSSXXVPSE". Task: Tokens presented sequentially. Predict the next Token. Scott E. Fahlman <sef@cs.cmu.edu> 15

Reber Grammar Results

State of the art:

- Reber Grammar Results

State of the art:

 Elman net (fixed topology with recurrent units): 3 hidden units,

learned the grammar after seeing 60K distinct strings, once each.

(Best run, not average.) learned the grammar after seeing 60K distinct strings, once each. (Best run, not average.) Reber Grammar Results

State of the art:

• Elman net (fixed topology with recurrent units): 3 hidden units,

learned the grammar after seeing 60K distinct strings, once eac

(Best run, not average.)

• With 15 hidden unit State of the art:

● Elman net (fixed topology with recurrent units): 3 hidden units,

learned the grammar after seeing 60K distinct strings, once each

(Best run, not average.)

● With 15 hidden units, 20K strings suffic State of the art:

■ Elman net (fixed topology with recurrent units): 3 hidder learned the grammar after seeing 60K distinct strings

(Best run, not average.)

■ With 15 hidden units, 20K strings suffice. (Best run.)

RCC • Elman net (fixed topology with recurrent units): 3 hidden units, learned the grammar after seeing 60K distinct strings, once ear (Best run, not average.)

• With 15 hidden units, 20K strings suffice. (Best run.)

RCC Re Learned the grammar after seeing 60K distinct strings

(Best run, not average.)

● With 15 hidden units, 20K strings suffice. (Best run.)

RCC Results:

● Fixed set of 128 training strings, presented repeated

● Learned t
-

RCC Results:

-
-
-
-

Embedded Reber Grammar Test

The embedded Reber grammar is harder.

Must remember initial T or P token and replay it at the end.

Embedded Reber Grammar Results

State of the art:

Embedded Reber Grammar Results

State of the art:

• Elman net was unable to learn this task, even with 250,000 distinct

strings and 15 hidden units.

RCC Results: strings and 15 hidden units. Embedded Reber Grammar Results

State of the art:

• Elman net was unable to learn this task, even with 250,000 distined

strings and 15 hidden units.

NCC Results:

• Fixed set of 256 training strings, presented repeatedl

RCC Results:

- then tested on 256 different strings. 20 runs.
- State of the art:

 Elman net was unable to learn this task, even with 250,000 distinct

strings and 15 hidden units.

 Fixed set of 256 training strings, presented repeatedly,

then tested on 256 different strings. 20 units. ■ Elman net was unable to learn this task, even with 250,00

strings and 15 hidden units.

RCC Results:

■ Fixed set of 256 training strings, presented repeatedly,

then tested on 256 different strings. 20 runs.

■ Perfec ■ Eiman net was unable to learn this task, even with 250,000 distinct
strings and 15 hidden units.

NCC Results:

■ Fixed set of 256 training strings, presented repeatedly,

then tested on 256 different strings. 20 runs.

-
-

Morse Code Test

- Morse Code Test
• One binary input, 26 binary outputs (one per letter), plus
"strobe" output at end. "strobe" output at end. Morse Code Test
● One binary input, 26 binary outputs (one per letter), plus
"strobe" output at end.
● Dot is 10, dash 110, letter terminator adds an extra zero.
● So letter V … - is 1010101100. Morse Code Test

• One binary input, 26 binary outputs (one per letter

"strobe" output at end.

• Dot is 10, dash 110, letter terminator adds an ex

• So letter V …- is 1010101100.

Letters are 3-12 time-steps long. ■ One binary input, 26 binary outputs (one per letter), plus

"strobe" output at end.

■ Dot is 10, dash 110, letter terminator adds an extra zero.

■ So letter V- is 1010101100.

Letters are 3-12 time-steps long.

■
-
- Letters are 3-12 time-steps long.
-
- One binary input, 26 binary outputs (one per letter), plus

"strobe" output at end.

 Dot is 10, dash 110, letter terminator adds an extra zero.

 So letter V ...- is 1010101100.

Letters are 3-12 time-steps long.

 1 on the strobe and on correct letter.

Morse Code Results Morse Code Results
• Trained on entire set of 26 pattern
• In ten trials, learned the task perf
• Average of 10.5 hidden units crea
• Note: Don't need a unit for every patt
• Average of 1321 epochs.

-
- Morse Code Results
• Trained on entire set of 26 patterns, repeatedly.
• In ten trials, learned the task perfectly every time. Morse Code Results
• Trained on entire set of 26 patterns, repeatedly.
• In ten trials, learned the task perfectly every time.
• Average of 10.5 hidden units created. Morse Code Results
● Trained on entire set of 26 patterns, repeatedly.
● In ten trials, learned the task perfectly every time.
● Average of 10.5 hidden units created.
- Note: Don't need a unit for every pattern or every t
- -
-

"Curriculum" Morse Code

Instead of learning the whole set at once, present a series of lessons, with simplest cases first. **Curriculum" Morse Code**

Instead of learning the whole set at once, present a series

of lessons, with simplest cases first.

• Presented E (one dot) and T (one dash) first, training

these outputs and the strobe.

- these outputs and the strobe.
- "Curriculum" Morse Code

Instead of learning the whole set at once, present a series

of lessons, with simplest cases first.

 Presented E (one dot) and T (one dash) first, training

these outputs and the strobe.

 Then, "DMSU", "GHKRW", "BFLOV", "CJPQXYZ". Do not repeat earlier lessons. of lessons, with simplest cases first.

• Presented E (one dot) and T (one das

these outputs and the strobe.

• Then, in increasing sequence length,

"DMSU", "GHKRW", "BFLOV", "CJPQ

repeat earlier lessons.

• Finally, tr
-

Lesson-Plan Morse Results **Lesson-Plan Morse Re**
• Ten trials run.
• E and T learned perfectly, usua Lesson-Plan Morse Results
• Ten trials run.
• E and T learned perfectly, usually with 2 hidden units.
• Each additional lesson adds 1 or 2 units. **Lesson-Plan Morse Results
• Ten trials run.
• E and T learned perfectly, usually with 2 hidden i
• Each additional lesson adds 1 or 2 units.
• Final combination training adds 2 or 3 units. Lesson-Plan Morse Results
• Ten trials run.
• E and T learned perfectly, usually with 2 hidden unit
• Each additional lesson adds 1 or 2 units.
• Final combination training adds 2 or 3 units.
• Overall, all 10 trials were**

-
-
-
-
-
- Lesson-Plan Morse Results
● Ten trials run.
● E and T learned perfectly, usually with 2 hidden units.
● Each additional lesson adds 1 or 2 units.
● Final combination training adds 2 or 3 units.
● Overall, all 10 trials we ● Ten trials run.

● E and T learned perfectly, usually with 2 hidden units.

● Each additional lesson adds 1 or 2 units.

● Final combination training adds 2 or 3 units.

● Overall, all 10 trials were perfect, average of but these epochs are very small. ■ E and T learned perfectly, usually with 2 hidden units.

■ Each additional lesson adds 1 or 2 units.

■ Final combination training adds 2 or 3 units.

■ Overall, all 10 trials were perfect, average of 9.6 units.

■ Requ
-

Cascor Variants

- Cascade 2: Different correlation measure works better for continuous outputs. Cascor Variants
● Cascade 2: Different correlation measure works better for
continuous outputs.
● Mixed unit types in pool: Gaussian, Edge, etc. Tenure
whatever unit grabs the most error.
- whatever unit grabs the most error.
- Cascade 2: Different correlation measure works better for

continuous outputs.

 Mixed unit types in pool: Gaussian, Edge, etc. Tenure

whatever unit grabs the most error.

 Mixture of descendant and sibling units. Ke from getting deeper than necessary. ■ Cascade 2: Different correlation measure works better for

continuous outputs.

■ Mixed unit types in pool: Gaussian, Edge, etc. Tenure

■ whatever unit grabs the most error.

■ Mixture of descendant and sibling units.
-
- Cascade 2. Dilletent correlation measure works better for

continuous outputs.

 Mixed unit types in pool: Gaussian, Edge, etc. Tenure

 Mixture of descendant and sibling units. Keeps detectors

from getting deeper tha completely redundant. ■ Kinxed unit types in pool. Gaussian, Euge, etc. Tenure

whatever unit grabs the most error.

● Mixture of descendant and sibling units. Keeps detectors

from getting deeper than necessary.

● Mixture of delays and delay
-

Key Ideas

- Key Ideas
● Build just the structure you need. Don't carve the filters
out of a huge, deep block of weights. out of a huge, deep block of weights. **Key Ideas**
● Build just the structure you need. Don't carve the filters
out of a huge, deep block of weights.
● Train/Add one unit (feature detector) at a time. Then
add and freeze it, and train the network to use it.
- add and freeze it, and train the network to use it. out of a huge, deep block of weights.

• Train/Add one unit (feature detector) at a time. Then

add and freeze it, and train the network to use it.

• Eliminates inefficiency due to moving targets and herd effect.

• Freez
	- Eliminates inefficiency due to moving targets and herd effect.
	- Freezing allows for incremental "lesson-plan" training.
	- Unit training/selection is very parallelizable.
- (Same idea as boosting.)

So…

- I still have the old code in Common Lisp and C.
● I still have the old code in Common Lisp and C.
● My primary focus is Scone, but Lam interested in collabor Serial, so would need to be ported to work on GPUs, etc.
- 1 still have the old code in Common Lisp and C.
● 1 still have the old code in Common Lisp and C.
● My primary focus is Scone, but I am interested in collaborating with
people to try this on bigger problems.
● It might people to try this on bigger problems. ● I still have the old code in Common Lisp and C.

Serial, so would need to be ported to work on GPUs, etc.

● My primary focus is Scone, but I am interested in collaborating wi

people to try this on bigger problems.

● ■ Perint Fill have the old code in Common Lisp and C.

Serial, so would need to be ported to work on GPUs, etc.

■ My primary focus is Scone, but I am interested in collaborating with

people to try this on bigger problem ■ Fail in the old code in Common Eisp and C.

Serial, so would need to be ported to work on GPUs, etc.

● My primary focus is Scone, but I am interested in collaborating with

people to try this on bigger problems.

● It • My primary focus is Scone, but I am interested in collaborating with
people to try this on bigger problems.

• It might be worth trying Cascor and RCC on inferring real natural-

language grammars and other Deep Learnin
- language grammars and other Deep Learning/Big Data problems.
- work on time-continuous signals such as speech.
-
- computation than current deep learning approaches.

Some Current Work

- One PhD student Dean Alderucci, has ported RCC to Python using
● One PhD student Dean Alderucci, has ported RCC to Python using
Graham Neubig's Dynet toolkit.
→ Dean will be looking at using this for NLP applications sp Graham Neubig's Dynet toolkit.
The PhD student Dean Alderucci, has ported RCC to Python using Graham Neubig's Dynet toolkit.
• Dean will be looking at using this for NLP applications specifically aimed at the language in p
	- at the language in patents.
	- Dean also has done some work on word embeddings, developing a version of word2vec using Scone.
- One PhD student Dean Alderucci, has ported RCC to Python using

Graham Neubig's Dynet toolkit.

 Dean will be looking at using this for NLP applications specifically aimed

at the language in patents.

 Dean also has TensorFlow Eager, which can handle networks that change during processing. Some issues remain.
	- Ian is now looking for good sequential benchmarks to compare the speed of RCC.
	- It's surprisingly hard to find reported results that we can compare for learning speed.

The End

Equations: Cascor Candidate Training

Adjust candidate weights to maximize covariance S:

$$
S = \sum_{o} \left| \sum_{p} (V_p - \overline{V})(E_{p,o} - \overline{E_o}) \right|^{\bullet}
$$

Adjust incomina weights:

$$
\mathcal{L}_{\mathcal{C}}
$$

$$
\partial S/\partial w_i = \sum_{p,o} \sigma_o(E_{p,o} - \overline{E_o}) f'_p I_{i,p}
$$

Equations: RCC Candidate Training

Output of each unit;

$$
V(t) = \sigma \left(\sum_i I_i(t) w_i + V(t-1) w_s \right)
$$

Adjust incomina weights:

$$
\partial S/\partial w_i = \sum_{p,o} \sigma_o(E_{p,o} - \overline{E_o}) f'_p I_{i,p}
$$

$$
\partial V(t)/\partial w_s = \sigma'(t) \left(V(t-1) + w_s \partial V(t-1)/\partial w_s \right)
$$

