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Two Ancient Papers

● Fahlman, S.  E. and C. Lebiere (1990) "The Cascade-Correlation 

Learning Architecture”, in NIPS 1990.

● Fahlman, S.  E.  (1991) "The Recurrent Cascade-Correlation 

Architecture" in NIPS 1991.

Both available online at http://www.cs.cmu.edu/~sef/sefPubs.htm
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Deep Learning 28 Years Ago?

● These algorithms routinely built useful feature detectors 15-
30 layers deep.

● Build just as much network structure as they needed – no 
need to guess network size before training.

● Solved some problems considered hard at the time, 10x to 
100x faster than standard backprop.

● Ran on a single-core, 1988-vintage workstation, no GPU.

● But we never attacked the huge datasets that characterize 
today’s “Deep Learning”.
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Why Is Backprop So Slow?

● Moving Targets:

▪ All hidden units are being trained at once, changing the environment 
seen by the other units as they train.

● Herd Effect:

▪ Each unit must find a distinct job -- some component of the error to 
correct.

▪ All units scramble for the most important jobs.  No central authority or 
communication.

▪ Once a job is taken, it disappears and units head for the next-best job, 
including the unit that took the best job.

▪ A chaotic game of “musical chairs” develops.

▪ This is a very inefficient way to assign a distinct useful job to each unit.
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Cascade Architecture
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Cascade Architecture
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Cascade Architecture
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The Cascade-Correlation Algorithm

● Start with direct I/O connections only.  No hidden units.

● Train output-layer weights using BP or Quickprop.

● If error is now acceptable, quit.

● Else, Create one new hidden unit offline.

▪ Create a pool of candidate units.  Each gets all available inputs.  
Outputs are not yet connected to anything.

▪ Train the incoming weights to maximize the match (covariance) 
between each unit’s output and the residual error:

▪ When all are quiescent, tenure the winner and add it to active net.  Kill 
all the other candidates.

● Re-train output layer weights and repeat the cycle until done.
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Two-Spirals Problem & Solution
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Cascor Performance on Two-Spirals

Standard BP 2-5-5-5-1:  20K epochs, 1.1G link-X

Quickprop 2-5-5-5-1: 8K epochs, 438M link-X

Cascor: 1700 epochs, 19M link-X
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Cascor-Created Hidden Units 1-6
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Cascor-Created Hidden Units 7-12
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Advantages of Cascade Correlation

● No need to guess size and topology of net in advance.

● Can build deep nets with higher-order features.

● Much faster than Backprop or Quickprop.

● Trains just one layer of weights at a time (fast).

● Works on smaller training sets (in some cases, at least).

● Old feature detectors are frozen, not cannibalized, so 
good for incremental “curriculum” training.

● Good for parallel implementation.
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Recurrent Cascade Correlation (RCC)

Simplest possible extension to Cascor to handle sequential 
inputs:

● Trained just like Cascor units, then added, frozen.

● If Ws is strongly positive, unit is a memory cell for one bit.

● If Ws is strongly negative, unit wants to alternate 0-1.
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Reber Grammar Test

The Reber grammar is a simple finite-state grammar that others had 
used to benchmark recurrent-net learning.

Typical legal string: “BTSSXXVPSE”.
Task: Tokens presented sequentially. Predict the next Token.
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Reber Grammar Results

State of the art:

● Elman net (fixed topology with recurrent units): 3 hidden units, 
learned the grammar after seeing 60K distinct strings, once each.  
(Best run, not average.)

● With 15 hidden units, 20K strings suffice. (Best run.)

RCC Results:

● Fixed set of 128 training strings, presented repeatedly.

● Learned the task, building 2-3 hidden units.

● Average: 195.5 epochs, or 25K string presentations.

● All tested perfectly on new, unseen strings.
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Embedded Reber Grammar Test

The embedded Reber grammar is harder.

Must remember initial T or P token and replay it at the end.

Intervening strings potentially have many Ts and Ps of their own.
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Embedded Reber Grammar Results

State of the art:

● Elman net was unable to learn this task, even with 250,000 distinct 
strings and 15 hidden units.

RCC Results:

● Fixed set of 256 training strings, presented repeatedly,
then tested on 256 different strings.  20 runs.

● Perfect performance on 11 of 20 runs, typically building 5-7 hidden 
units.

● Worst performance on others, 20 test-set errors.

● Training required avg of 288 epochs, 200K string presentations.
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Morse Code Test

● One binary input, 26 binary outputs (one per letter), plus 
“strobe” output at end.

● Dot is 10, dash 110, letter terminator adds an extra zero.

● So letter V   …- is 1010101100.
Letters are 3-12 time-steps long.

● At start of each letter, we zero the memory states.

● Outputs should be all zero except at end of letter – then 
1 on the strobe and on correct letter.
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Morse Code Results

● Trained on entire set of 26 patterns, repeatedly.

● In ten trials, learned the task perfectly every time.

● Average of 10.5 hidden units created.

▪ Note: Don’t need a unit for every pattern or every time-slice.

● Average of 1321 epochs.
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“Curriculum” Morse Code

Instead of learning the whole set at once, present a series 
of lessons, with simplest cases first.

● Presented E (one dot) and T (one dash) first, training 
these outputs and the strobe.

● Then, in increasing sequence length, train “AIN”, 
“DMSU”, “GHKRW”, “BFLOV”, “CJPQXYZ”.  Do not 
repeat earlier lessons.

● Finally, train on the entire set.
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Lesson-Plan Morse Results

● Ten trials run.

● E and T learned perfectly, usually with 2 hidden units.

● Each additional lesson adds 1 or 2 units.

● Final combination training adds 2 or 3 units.

● Overall, all 10 trials were perfect, average of 9.6 units.

● Required avg of 1427 epochs, vs. 1321 for all-at-once, 
but these epochs are very small.

● On average, saved about 50% on training time.
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Cascor Variants

● Cascade 2: Different correlation measure works better for 
continuous outputs.

● Mixed unit types in pool: Gaussian, Edge, etc.  Tenure 
whatever unit grabs the most error.

● Mixture of descendant and sibling units.  Keeps detectors 
from getting deeper than necessary.

● Mixture of delays and delay types, or trainable delays.

● Add multiple new units at once from the pool, if they are not 
completely redundant.

● KBCC: Treat previously learned networks as candidate units.
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Key Ideas

● Build just the structure you need.  Don’t carve the filters 
out of a huge, deep block of weights.

● Train/Add one unit (feature detector) at a time.  Then 
add and freeze it, and train the network to use it.

▪ Eliminates inefficiency due to moving targets and herd effect.

▪ Freezing allows for incremental “lesson-plan” training.

▪ Unit training/selection is very parallelizable.

● Train each new unit to cancel some residual error.  
(Same idea as boosting.)
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So…

● I still have the old code in Common Lisp and C.
Serial, so would need to be ported to work on GPUs, etc.

● My primary focus is Scone, but I am interested in collaborating with 
people to try this on bigger problems.

● It might be worth trying Cascor and RCC on inferring real natural-
language grammars and other Deep Learning/Big Data problems.

● Perhaps tweaking the memory/delay model of RCC would allow it to 
work on time-continuous signals such as speech.

● A convolutional version of Cascor is straightforward, I think.

● The hope is that this might require less data and much less 
computation than current deep learning approaches.
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Some Current Work

● One PhD student Dean Alderucci, has ported RCC to Python using 
Graham Neubig’s Dynet toolkit.

▪ Dean will be looking at using this for NLP applications specifically aimed 
at the language in patents.

▪ Dean also has done some work on word embeddings, developing a 
version of word2vec using Scone.

● An undergrad, Ian Chiu, has ported Cascor to Python, running on 
TensorFlow Eager, which can handle networks that change during 
processing.  Some issues remain.

▪ Ian is now looking for good sequential benchmarks to compare the 
speed of RCC.

▪ It’s surprisingly hard to find reported results that we can compare for 
learning speed.
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The End
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Equations: Cascor Candidate Training
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Adjust candidate weights to maximize covariance S:

Adjust incoming weights:
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Equations: RCC Candidate Training
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Output of each unit;

Adjust incoming weights:
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