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Which open source project?
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Related math.  What is it talking 
about?
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And a Wikipedia page explaining it all
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The unreasonable effectiveness of 
recurrent neural networks..

• All previous examples were generated blindly 
by a recurrent neural network..
– With simple architectures

• http://karpathy.github.io/2015/05/21/rnn-
effectiveness/
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Modern text generation is a lot more 
sophisticated that that

• One of the many sages of the time, the Bodhisattva Bodhisattva
Sakyamuni (1575-1611) was a popular religious figure in India and 
around the world. This Bodhisattva Buddha was said to have passed 
his life peacefully and joyfully, without passion and anger. For over 
twenty years he lived as a lay man and dedicated himself toward 
the welfare, prosperity, and welfare of others. Among the many 
spiritual and philosophical teachings he wrote, three are most 
important; the first, titled the "Three Treatises of Avalokiteśvara"; 
the second, the teachings of the "Ten Questions;" and the third, 
"The Eightfold Path of Discipline.“
– Entirely randomly generated
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Modelling Series

• In many situations one must consider a series 
of inputs to produce an output
– Outputs too may be a series

• Examples: .. 
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What did I say?

• Speech Recognition
– Analyze a series of spectral vectors, determine what was said

• Note: Inputs are vectors.  Output is a classification result

“To be” or not “to be”??
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What is he talking about?

• Text analysis
– E.g. analyze document, identify topic

• Input series of words, output classification output

– E.g. read English, output French
• Input series of words, output series of words

“Football” or “basketball”?

9

The Steelers, meanwhile, continue to struggle to make stops on 
defense. They've allowed, on average, 30 points a game, and have 
shown no signs of improving anytime soon.



Should I invest..

• Stock market
– Must consider the series of stock values in the past several days to decide if it 

is wise to invest today
• Ideally consider all of history

• Note: Inputs are vectors.  Output may be scalar or vector
– Should I invest, vs. should I invest in X

15/0314/0313/0312/0311/0310/039/038/037/03

To invest or not to invest?

st
oc

ks
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Representational shortcut

• Input at each time is a vector
• Each layer has many neurons

– Output layer too may have many neurons

• But will represent everything by simple boxes
– Each box actually represents an entire layer with many units
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Representational shortcut

• Input at each time is a vector
• Each layer has many neurons

– Output layer too may have many neurons

• But will represent everything by simple boxes
– Each box actually represents an entire layer with many units
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Representational shortcut

• Input at each time is a vector
• Each layer has many neurons

– Output layer too may have many neurons

• But will represent everything simple boxes
– Each box actually represents an entire layer with many units
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The stock predictor

• The sliding predictor
– Look at the last few days
– This is just a convolutional neural net applied to series data

• Also called a Time-Delay neural network

Stock
vector

Time

X(t) X(t+1) X(t+2) X(t+3) X(t+4) X(t+5) X(t+6) X(t+7)

Y(t+3)
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The stock predictor

• The sliding predictor
– Look at the last few days
– This is just a convolutional neural net applied to series data

• Also called a Time-Delay neural network

Stock
vector

Time

X(t) X(t+1) X(t+2) X(t+3) X(t+4) X(t+5) X(t+6) X(t+7)

Y(t+4)
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The stock predictor

• The sliding predictor
– Look at the last few days
– This is just a convolutional neural net applied to series data

• Also called a Time-Delay neural network

Stock
vector

Time

X(t) X(t+1) X(t+2) X(t+3) X(t+4) X(t+5) X(t+6) X(t+7)

Y(t+5)
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The stock predictor

• The sliding predictor
– Look at the last few days
– This is just a convolutional neural net applied to series data

• Also called a Time-Delay neural network

Stock
vector

Time

X(t) X(t+1) X(t+2) X(t+3) X(t+4) X(t+5) X(t+6) X(t+7)

Y(t+6)
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The stock predictor

• The sliding predictor
– Look at the last few days
– This is just a convolutional neural net applied to series data

• Also called a Time-Delay neural network

Stock
vector

Time

X(t) X(t+1) X(t+2) X(t+3) X(t+4) X(t+5) X(t+6) X(t+7)

Y(t+6)
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Finite-response model

• This is a finite response system
– Something that happens today only affects the 

output of the system for days into the future
• is the width of the system
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The stock predictor

Stock
vector

Time

X(t) X(t+1) X(t+2) X(t+3) X(t+4) X(t+5) X(t+6) X(t+7)

Y(t+2)

• This is a finite response system
– Something that happens today only affects the output of the 

system for days into the future
• is the width of the system
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The stock predictor

Stock
vector

Time

X(t) X(t+1) X(t+2) X(t+3) X(t+4) X(t+5) X(t+6) X(t+7)

Y(t+3)

• This is a finite response system
– Something that happens today only affects the output of the 

system for days into the future
• is the width of the system
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The stock predictor

Stock
vector

Time

X(t) X(t+1) X(t+2) X(t+3) X(t+4) X(t+5) X(t+6) X(t+7)

Y(t+4)

• This is a finite response system
– Something that happens today only affects the output of the 

system for days into the future
• is the width of the system
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The stock predictor

Stock
vector

Time

X(t) X(t+1) X(t+2) X(t+3) X(t+4) X(t+5) X(t+6) X(t+7)

Y(t+5)

• This is a finite response system
– Something that happens today only affects the output of the 

system for days into the future
• is the width of the system
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The stock predictor

Stock
vector

Time

X(t) X(t+1) X(t+2) X(t+3) X(t+4) X(t+5) X(t+6) X(t+7)

Y(t+6)

• This is a finite response system
– Something that happens today only affects the output of the 

system for days into the future
• is the width of the system
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The stock predictor

Stock
vector

Time

X(t) X(t+1) X(t+2) X(t+3) X(t+4) X(t+5) X(t+6) X(t+7)

Y(t+7)

• This is a finite response system
– Something that happens today only affects the output of the 

system for days into the future
• is the width of the system
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Finite-response model

• This is a finite response system
– Something that happens today only affects the output of 

the system for days into the future
• is the width of the system

Stock
vector

Time

X(t) X(t+1) X(t+2) X(t+3) X(t+4) X(t+5) X(t+6) X(t+7)

Y(t+6)
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Finite-response

• Problem:  Increasing the “history” makes the 
network more complex
– No worries, we have the CPU and memory

• Or do we?

Stock
vector

Time

X(t) X(t+1) X(t+2) X(t+3) X(t+4) X(t+5) X(t+6) X(t+7)

Y(t+6)
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Systems often have long-term 
dependencies

• Longer-term trends –
– Weekly trends in the market
– Monthly trends in the market
– Annual trends
– Though longer historic tends to affect us less than more 

recent events.. 28



We want infinite memory

• Required:  Infinite response systems
– What happens today can continue to affect the output 

forever
• Possibly  with weaker and weaker influence

Time

29



Examples of infinite response systems

– Required: Define initial state:  for 
– An input at at produces 
– produces which produces and so on until even 

if are 0
• i.e. even if there are no further inputs!

• This is an instance of a NARX network
– “nonlinear autoregressive network with exogenous inputs”

–

• Output contains information about the entire past
30



A one-tap NARX network

• A NARX net with recursion from the output

Time
X(t)

Y(t)
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• A NARX net with recursion from the output

Time
X(t)

Y(t) Y

32

A one-tap NARX network



A one-tap NARX network

• A NARX net with recursion from the output

Time
X(t)

Y(t)
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• A NARX net with recursion from the output

Time
X(t)

Y(t)
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A one-tap NARX network



• A NARX net with recursion from the output

Time
X(t)

Y(t)
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A one-tap NARX network



• A NARX net with recursion from the output

Time
X(t)

Y(t)
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A one-tap NARX network



• A NARX net with recursion from the output

Time
X(t)

Y(t)
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A one-tap NARX network



• A NARX net with recursion from the output

Time
X(t)

Y(t)

38

A one-tap NARX network



A more complete representation

• A NARX net with recursion from the output
• Showing all computations
• All columns are identical
• An input at t=0 affects outputs forever

Time
X(t)

Y(t-1)

Brown boxes show output nodes
Yellow boxes are outputs
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Same figure redrawn

• A NARX net with recursion from the output
• Showing all computations
• All columns are identical
• An input at t=0 affects outputs forever

Time
X(t)

Y(t)

Brown boxes show output nodes
All outgoing arrows are the same output
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A more generic NARX network

• The output at time is computed from the 
past outputs and the current 
and past inputs  

Time
X(t)

Y(t)
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A “complete” NARX network

• The output at time is computed from all 
past outputs and all inputs until time t
– Not really a practical model

Time
X(t)

Y(t)
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NARX Networks

• Very popular for time-series prediction
– Weather
– Stock markets
– As alternate system models in tracking systems

• Any phenomena with distinct “innovations” that 
“drive” an output

• Note: here the “memory” of the past is in the 
output itself, and not in the network
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Lets make memory more explicit
• Task is to “remember” the past
• Introduce an explicit memory variable whose job it is to 

remember

• is a “memory” variable
– Generally stored in a “memory” unit
– Used to “remember” the past
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Jordan Network

• Memory unit simply retains a running average of past outputs
– “Serial order: A parallel distributed processing approach”, M.I.Jordan, 1986

• Input is constant (called a “plan”)
• Objective is to train net to produce a specific output, given an input plan

– Memory has fixed structure; does not “learn” to remember
• The running average of outputs considers entire past, rather than immediate past

Time

Y(t) Y(t+1)1 1

Fixed
weights

Fixed
weights

X(t) X(t+1)
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Elman Networks

• Separate memory state from output
– “Context” units that carry historical state
– “Finding structure in time”, Jeffrey Elman, Cognitive Science, 1990

• For the purpose of training, this was approximated as a set of T independent 1-step 
history nets

• Only the weight from the memory unit to the hidden unit is learned
– But during training no gradient is backpropagated over the “1” link

Time
X(t)

Y(t) Y(t+1)

1

Cloned state

1

Cloned state

X(t+1)
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Story so far
• In time series analysis, models must look at past inputs along with current 

input
– Looking at a finite horizon of past inputs gives us a convolutional network

• Looking into the infinite past requires recursion

• NARX networks recurse by feeding back the output to the input
– May feed back a finite horizon of outputs

• “Simple” recurrent networks:
– Jordon networks maintain a running average of outputs in a “memory” unit
– Elman networks store hidden unit values for one time instant in a “context” unit
– “Simple” (or partially recurrent) because during learning current error does not 

actually propagate to the past
• “Blocked” at the memory units in Jordan networks
• “Blocked” at the “context” unit in Elman networks
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An alternate model for infinite response 
systems: the state-space model

• is the state of the network
– Model directly embeds the memory in the state

• Need to define initial state 

• This is a fully recurrent neural network
– Or simply a recurrent neural network

• State summarizes information about the entire past

48



The simple state-space model

• The state (green) at any time is determined by the input at 
that time, and the state at the previous time

• An input at t=0 affects outputs forever
• Also known as a recurrent neural net

Time

X(t)

Y(t)

t=0

h-1
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An alternate model for infinite response 
systems: the state-space model

• is the state of the network
• Need to define initial state 

• The state an be arbitrarily complex

50



Single hidden layer RNN

• Recurrent neural network

• All columns are identical

• An input at t=0 affects outputs forever

Time

X(t)

Y(t)

t=0

h-1
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Multiple recurrent layer RNN

• Recurrent neural network

• All columns are identical

• An input at t=0 affects outputs forever

Time

Y(t)

X(t)

t=0
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Multiple recurrent layer RNN

• We can also have skips..

Time

Y(t)

X(t)

t=0
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A more complex state

• All columns are identical

• An input at t=0 affects outputs forever

Time
X(t)

Y(t)
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Or the network may be even more 
complicated

• Shades of NARX

• All columns are identical

• An input at t=0 affects outputs forever

Time
X(t)

Y(t)
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Generalization with other recurrences

• All columns (including incoming edges) are 
identical

Time

Y(t)

X(t)

t=0
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The simplest structures are most 
popular

• Recurrent neural network

• All columns are identical

• An input at t=0 affects outputs forever

Time

Y(t)

X(t)

t=0
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A Recurrent Neural Network

• Simplified models often drawn
• The loops imply recurrence
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The detailed version of the simplified 
representation

Time

X(t)

Y(t)

t=0

h-1
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Multiple recurrent layer RNN

Time

Y(t)

X(t)

t=0
60



Multiple recurrent layer RNN

Time

Y(t)

X(t)

t=0
61



Equations

• Note superscript in indexing, which indicates layer of 
network from which inputs are obtained

• Assuming vector function at output, e.g. softmax
• The state node activation, is typically 
• Every neuron also has a bias input

 

   

( )
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Equations

 

   

• Assuming vector function at output, e.g. softmax

• The state node activations, are typically 

• Every neuron also has a bias input

   

( )

( )
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Equations
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,

 

,

 

,

 

,
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Variants on recurrent nets

• 1:  Conventional MLP
• 2: Sequence generation,  e.g. image to caption
• 3: Sequence based prediction or classification, e.g.  Speech recognition,   

text classification

Images from
Karpathy
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Variants

• 1:  Delayed sequence to sequence
• 2:  Sequence to sequence, e.g. stock problem, label prediction
• Etc…

Images from
Karpathy
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Story so far
• Time series analysis must consider past inputs along with current input
• Looking into the infinite past requires recursion

• NARX networks achieve this by feeding back the output to the input

• “Simple” recurrent networks maintain separate “memory” or “context” 
units to retain some information about the past
– But during learning the current error does not influence the past

• State-space models retain information about the past through recurrent 
hidden states
– These are “fully recurrent” networks
– The initial values of the hidden states are generally learnable parameters as well

• State-space models enable current error to update parameters in the past
67



How do we train the network

• Back propagation through time (BPTT)

• Given a collection of sequence inputs
– (𝐗 , 𝐃 ),  where 

– 𝐗 = 𝑋 , , … , 𝑋 ,

– 𝐃 = 𝐷 , , … , 𝐷 ,

• Train network parameters to minimize the error between the output of the 
network , , and the desired outputs
– This is the most generic setting. In other settings we just “remove” some of the input or 

output entries

X(0)

Y(0)

t

h-1

X(1) X(2) X(T-2) X(T-1) X(T)

Y(1) Y(2) Y(T-2) Y(T-1) Y(T)
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Training: Forward pass

• For each training input:
• Forward pass:  pass the entire data sequence through the network, 

generate outputs

X(0)

Y(0)

t

h-1

X(1) X(2) X(T-2) X(T-1) X(T)

Y(1) Y(2) Y(T-2) Y(T-1) Y(T)
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Recurrent Neural Net 
Assuming time-synchronous output

# Assuming h(-1,*) is known

# Assuming L hidden-state layers and an output layer

# Wc(*) and Wr(*) are matrics, b(*) are vectors

# Wc are weights for inputs from current time

# Wr is recurrent weight applied to the previous time

# Wo are output layre weights

for t = 0:T-1  # Including both ends of the index

h(t,0) = x(t) # Vectors. Initialize h(0) to input

for l = 1:L  # hidden layers operate at time t

z(t,l) = Wc(l)h(t,l-1) + Wr(l)h(t-1,l) + b(l)

h(t,l) = tanh(z(t,l)) # Assuming tanh activ.

zo(t) = Woh(t,L) + bo
Y(t) = softmax( zo(t) )
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Training: Computing gradients

• For each training input:
• Backward pass: Compute gradients via backpropagation

– Back Propagation Through Time

X(0)

Y(0)

t

h-1

X(1) X(2) X(T-2) X(T-1) X(T)

Y(1) Y(2) Y(T-2) Y(T-1) Y(T)
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Back Propagation Through Time

h-1

𝑋(0) 𝑋(1) 𝑋(2) 𝑋(𝑇 − 2) 𝑋(𝑇 − 1) 𝑋(𝑇)

𝑌(0) 𝑌(1) 𝑌(2) 𝑌(𝑇 − 2) 𝑌(𝑇 − 1) 𝑌(𝑇)

Will only focus on one training instance

All subscripts represent components and not training instance index
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Back Propagation Through Time

h-1

𝑋(0) 𝑋(1) 𝑋(2) 𝑋(𝑇 − 2) 𝑋(𝑇 − 1) 𝑋(𝑇)

𝑌(0) 𝑌(1) 𝑌(2) 𝑌(𝑇 − 2) 𝑌(𝑇 − 1) 𝑌(𝑇)

𝐷(1. . 𝑇)

𝐷𝐼𝑉

• The divergence computed is between the sequence of outputs
by the network and the desired sequence of outputs
• DIV is a scalar function of a series of vectors!

• This is not just the sum of the divergences at individual times
 Unless we explicitly define it that way 73



Notation

• ( ) is the output at time 
– is the ith output

• is the pre-activation value of the neurons at the output layer at time t
• is the output of the hidden layer at time 

– Assuming only one hidden layer in this example

• is the pre-activation value of the hidden layer at time 74

h-1

𝑋(0) 𝑋(1) 𝑋(2) 𝑋(𝑇 − 2) 𝑋(𝑇 − 1) 𝑋(𝑇)

𝑌(0) 𝑌(1) 𝑌(2) 𝑌(𝑇 − 2) 𝑌(𝑇 − 1) 𝑌(𝑇)

𝐷(1. . 𝑇)

𝐷𝐼𝑉



Back Propagation Through Time

h-1

𝑋(0) 𝑋(1) 𝑋(2) 𝑋(𝑇 − 2) 𝑋(𝑇 − 1) 𝑋(𝑇)

𝑌(0) 𝑌(1) 𝑌(2) 𝑌(𝑇 − 2) 𝑌(𝑇 − 1) 𝑌(𝑇)

𝐷(1. . 𝑇)

𝐷𝐼𝑉

First step of backprop:   Compute 
( )

Note:  DIV is a function of all outputs Y(0) … Y(T)

In general we will be required to compute 
( )

as we will see. This can

be a source of significant difficulty in many scenarios. 75



h-1

𝑋(0) 𝑋(1) 𝑋(2) 𝑋(𝑇 − 2) 𝑋(𝑇 − 1) 𝑋(𝑇)

𝑌(0) 𝑌(1) 𝑌(2) 𝑌(𝑇 − 2) 𝑌(𝑇 − 1) 𝑌(𝑇)

𝐷(𝑇)

𝐷𝑖𝑣(𝑇)𝐷𝑖𝑣(𝑇 − 1)𝐷𝑖𝑣(𝑇 − 2)𝐷𝑖𝑣(2)𝐷𝑖𝑣(1)𝐷𝑖𝑣(0)

𝐷𝐼𝑉

Must compute Will usually get

Special case, when the overall divergence is a simple combination of local
divergences at each time:
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Back Propagation Through Time

h-1

𝑋(0) 𝑋(1) 𝑋(2) 𝑋(𝑇 − 2) 𝑋(𝑇 − 1) 𝑋(𝑇)

𝑌(0) 𝑌(1) 𝑌(2) 𝑌(𝑇 − 2) 𝑌(𝑇 − 1) 𝑌(𝑇)

𝐷(1. . 𝑇)

𝐷𝐼𝑉

First step of backprop:   Compute 
( )

( ) ( ) ( )
 

 

OR

Vector output activation
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Back Propagation Through Time

h-1

𝑋(0) 𝑋(1) 𝑋(2) 𝑋(𝑇 − 2) 𝑋(𝑇 − 1) 𝑋(𝑇)

𝑌(0) 𝑌(1) 𝑌(2) 𝑌(𝑇 − 2) 𝑌(𝑇 − 1) 𝑌(𝑇)

( ) ( )

( )

( )
( )

( )

  

𝐷(1. . 𝑇)

𝐷𝐼𝑉

78
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Back Propagation Through Time

h-1

𝑋(0) 𝑋(1) 𝑋(2) 𝑋(𝑇 − 2) 𝑋(𝑇 − 1) 𝑋(𝑇)

𝑌(0) 𝑌(1) 𝑌(2) 𝑌(𝑇 − 2) 𝑌(𝑇 − 1) 𝑌(𝑇)

( ) ( )

( )

( )

( )

 

𝐷(1. . 𝑇)

𝐷𝐼𝑉
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Back Propagation Through Time

h-1

𝑋(0) 𝑋(1) 𝑋(2) 𝑋(𝑇 − 2) 𝑋(𝑇 − 1) 𝑋(𝑇)

𝑌(0) 𝑌(1) 𝑌(2) 𝑌(𝑇 − 2) 𝑌(𝑇 − 1) 𝑌(𝑇)

( ) ( )

( )

( )

 

( )

( ) ( )

𝐷(1. . 𝑇)

𝐷𝐼𝑉
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Back Propagation Through Time

h-1

𝑋(0) 𝑋(1) 𝑋(2) 𝑋(𝑇 − 2) 𝑋(𝑇 − 1) 𝑋(𝑇)

𝑌(0) 𝑌(1) 𝑌(2) 𝑌(𝑇 − 2) 𝑌(𝑇 − 1) 𝑌(𝑇)

( )

𝐷(1. . 𝑇)

𝐷𝐼𝑉
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Back Propagation Through Time

h-1

𝑋(0) 𝑋(1) 𝑋(2) 𝑋(𝑇 − 2) 𝑋(𝑇 − 1) 𝑋(𝑇)

𝑌(0) 𝑌(1) 𝑌(2) 𝑌(𝑇 − 2) 𝑌(𝑇 − 1) 𝑌(𝑇)

( )( )

𝐷(1. . 𝑇)

𝐷𝐼𝑉
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Back Propagation Through Time

h-1

𝑋(0) 𝑋(1) 𝑋(2) 𝑋(𝑇 − 2) 𝑋(𝑇 − 1) 𝑋(𝑇)

𝑌(0) 𝑌(1) 𝑌(2) 𝑌(𝑇 − 2) 𝑌(𝑇 − 1) 𝑌(𝑇)

𝐷(1. . 𝑇)

𝐷𝐼𝑉

Vector output activation

 
 

OR
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Back Propagation Through Time

h-1

𝑋(0) 𝑋(1) 𝑋(2) 𝑋(𝑇 − 2) 𝑋(𝑇 − 1) 𝑋(𝑇)

𝑌(0) 𝑌(1) 𝑌(2) 𝑌(𝑇 − 2) 𝑌(𝑇 − 1) 𝑌(𝑇)

( )

 

( )

 

𝐷(1. . 𝑇)

𝐷𝐼𝑉
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Back Propagation Through Time

h-1

𝑋(0) 𝑋(1) 𝑋(2) 𝑋(𝑇 − 2) 𝑋(𝑇 − 1) 𝑋(𝑇)

𝑌(0) 𝑌(1) 𝑌(2) 𝑌(𝑇 − 2) 𝑌(𝑇 − 1) 𝑌(𝑇)

( )

 

( )

 

𝐷(1. . 𝑇)

𝐷𝐼𝑉

( )Note the addition
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Back Propagation Through Time

h-1

𝑋(0) 𝑋(1) 𝑋(2) 𝑋(𝑇 − 2) 𝑋(𝑇 − 1) 𝑋(𝑇)

𝑌(0) 𝑌(1) 𝑌(2) 𝑌(𝑇 − 2) 𝑌(𝑇 − 1) 𝑌(𝑇)

𝐷(1. . 𝑇)

𝐷𝐼𝑉
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Back Propagation Through Time

h-1

𝑋(0) 𝑋(1) 𝑋(2) 𝑋(𝑇 − 2) 𝑋(𝑇 − 1) 𝑋(𝑇)

𝑌(0) 𝑌(1) 𝑌(2) 𝑌(𝑇 − 2) 𝑌(𝑇 − 1) 𝑌(𝑇)

𝐷(1. . 𝑇)

𝐷𝐼𝑉

( )

Note the addition
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Back Propagation Through Time

h-1

𝑋(0) 𝑋(1) 𝑋(2) 𝑋(𝑇 − 2) 𝑋(𝑇 − 1) 𝑋(𝑇)

𝑌(0) 𝑌(1) 𝑌(2) 𝑌(𝑇 − 2) 𝑌(𝑇 − 1) 𝑌(𝑇)

𝐷(1. . 𝑇)

𝐷𝐼𝑉

( )

( )Note the addition
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Back Propagation Through Time

h-1

𝑋(0) 𝑋(1) 𝑋(2) 𝑋(𝑇 − 2) 𝑋(𝑇 − 1) 𝑋(𝑇)

𝑌(0) 𝑌(1) 𝑌(2) 𝑌(𝑇 − 2) 𝑌(𝑇 − 1) 𝑌(𝑇)

𝐷(1. . 𝑇)

𝐷𝐼𝑉

( )
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Continue computing derivatives
going backward through time until..



Back Propagation Through Time

h-1

𝑋(0) 𝑋(1) 𝑋(2) 𝑋(𝑇 − 2) 𝑋(𝑇 − 1) 𝑋(𝑇)

𝑌(0) 𝑌(1) 𝑌(2) 𝑌(𝑇 − 2) 𝑌(𝑇 − 1) 𝑌(𝑇)

𝐷(1. . 𝑇)

𝐷𝐼𝑉

,
( )

,
( , )

  

Not showing derivatives
at output neurons 
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Back Propagation Through Time

h-1

𝑋(0) 𝑋(1) 𝑋(2) 𝑋(𝑇 − 2) 𝑋(𝑇 − 1) 𝑋(𝑇)

𝑌(0) 𝑌(1) 𝑌(2) 𝑌(𝑇 − 2) 𝑌(𝑇 − 1) 𝑌(𝑇)

𝐷(1. . 𝑇)

𝐷𝐼𝑉

( )

 

( )
 

 

( )
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BPTT
# Assuming forward pass has been completed
# Jacobian(x,y) is the jacobian of x w.r.t. y
# Assuming dY(t) = gradient(div,Y(t)) available for all t
# Assuming all dz, dh, dW and db are initialized to 0

for t = T-1:downto:0  # Backward through time
dzo(t) = dY(t)Jacobian(Y(t),zo(t))
dWo += h(t,L)dzo(t)
db(L) += dzo(t)
dh(t,L) += dzo(t)Wo

for l = L:1  # Reverse through layers
dz(t,l) = dh(t,l)Jacobian(h(t,l),z(t,l))
dh(t,l-1) += dz(t,l) Wc(l)
dh(t-1,l) += dz(t,l) Wr(l)

dWc(l) += h(t,l-1)dz(t,l)
dWr(l) += h(t-1,l)dz(t,l)
db(l) += dz(t,l)
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BPTT

• Can be generalized to any architecture

93



Extensions to the RNN: Bidirectional 
RNN

• RNN with both forward and backward recursion
– Explicitly models the fact that just as the future can be predicted 

from the past, the past can be deduced from the future 94

Proposed by Schuster and Paliwal
1997



Bidirectional RNN

• A forward net process the data from t=0 to t=T
• A backward net processes it backward from t=T down to t=0

X(0)

Y(0)

t

hf(-1)

X(1) X(2) X(T-2) X(T-1) X(T)

Y(1) Y(2) Y(T-2) Y(T-1) Y(T)

X(0) X(1) X(2) X(T-2) X(T-1) X(T)

hb(inf)
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Bidirectional RNN: Processing an 
input string

• The forward net process the data from t=0 to t=T
– Only computing the hidden states, initially

• The backward net processes it backward from t=T down to t=0

X(0)

t

hf(-1)

X(1) X(2) X(T-2) X(T-1) X(T)
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Bidirectional RNN: Processing an 
input string

• The backward nets processes the input data in reverse time,  end to beginning
– Initially only the hidden state values are computed

• Clearly, this is not an online process and requires the entire input data

– Note: This is not the backward pass of backprop.net processes it backward from t=T down to t=0

X(0)

t

hf(-1)

X(1) X(2) X(T-2) X(T-1) X(T)

X(0) X(1) X(2) X(T-2) X(T-1) X(T)

hb(inf)
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Bidirectional RNN: Processing an 
input string

• The computed states of both networks are 
used to compute the final output at each time

X(0)

Y(0)

t

hf(-1)

X(1) X(2) X(T-2) X(T-1) X(T)

Y(1) Y(2) Y(T-2) Y(T-1) Y(T)

X(0) X(1) X(2) X(T-2) X(T-1) X(T)

hb(inf)
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Bidirectional RNN
Assuming time-synchronous output

# Subscript f represents forward net, b is backward net

# Assuming hf(-1,*) and hb(inf,*) are known

#forward pass

for t = 0:T-1 # Going forward in time

hf(t,0) = x(t) # Vectors. Initialize h(0) to input

for l = 1:Lf # Lf is depth of forward network hidden layers

zf(t,l) = Wfc(l)hf(t,l-1) + Wfr(l)hf(t-1,l) + bf(l)

hf(t,l) = tanh(zf(t,l)) # Assuming tanh activ.

#backward

h(T,:,:) = h(inf,:,:) # Just the initial value

for t = T-1:downto:0 # Going backward in time

hb(t,0) = x(t) # Vectors. Initialize h(0) to input

for l = 1:Lb # Lb is depth of backward network hidden layers

zb(t,l) = Wbc(l)hb(t,l-1) + Wbr(l)h(t+1,l) + bb(l)

hb(t,l) = tanh(zb(t,l)) # Assuming tanh activ.

for t = 0:T-1  # The output combines forward and backward

zo(t) = Wfohf(t,Lf) +  Wbohb(t,Lb) + bo
Y(t) = softmax( zo(t) ) 99



Bidirectional RNN: Simplified code

• Code can be made modular and simplified for 
better interpretability…

100



First: Define basic RNN with only 
hidden units

# Inputs:

#    L : Number of hidden layers

#    Wc,Wr,b: current weights,  recurrent weights, biases

#    hinit:  initial value of h(representing h(-1,*))

#    x: input vector sequence

#    T: Length of input vector sequence

# Output: 

#    h, z: sequence of pre-and post activation hidden
#          representations from all layers of the RNN

function [h,z] = RNN_forward(L, Wc, Wr, b, hinit, x, T)

h(-1,:) = hinit # hinit is the initial value for all layers

for t = 0:T-1 # Going forward in time

h(t,0) = x(t) # Vectors. Initialize h(0) to input

for l = 1:L

z(t,l) = Wc(l)h(t,l-1) + Wr(l)h(t-1,l) + b(l)

h(t,l) = tanh(z(t,l)) # Assuming tanh activ.

return h,z 101



Bidirectional RNN
Assuming time-synchronous output

# Subscript f represents forward net, b is backward net
# Assuming hf(-1,*) and hb(inf,*) are known

#forward pass

[hf, zf] = RNN_forward(Lf, Wfc, Wfr, bf, h(-1,:), x, T)

#backward pass

xrev = fliplr(x)  # Flip it in time

[hbrev, zbrev] = RNN_forward(Lb, Wbc, Wbr, bb, h(inf,:), xrev, T)

hb = fliplr(hbrev)  # Flip back to straighten time

zb = fliplr(zbrev)

#combine the two for the output

for t = 0:T-1  # The output combines forward and backward

zo(t) = Wfohf(t,Lf) +  Wbohb(t,Lb) + bo
Y(t) = softmax( zo(t) )
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Backpropagation in BRNNs

• Forward pass:  Compute both forward and 
backward networks and final output

X(0)

Y(0)

t

hf(-1)

X(1) X(2) X(T-2) X(T-1) X(T)

Y(1) Y(2) Y(T-2) Y(T-1) Y(T)

X(0) X(1) X(2) X(T-2) X(T-1) X(T)

hb(inf)
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Backpropagation in BRNNs

• Backward pass:  Define a divergence from the desired output
• Separately perform back propagation on both nets

– From t=T down to t=0 for the forward net
– From t=0 up to t=T for the backward net

X(0)

Y(0)

t

hf(-1)

X(1) X(2) X(T-2) X(T-1) X(T)

Y(1) Y(2) Y(T-2) Y(T-1) Y(T)

X(0) X(1) X(2) X(T-2) X(T-1) X(T)

hb(inf)

Div()d1..dT

Div
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Backpropagation in BRNNs

• Backward pass:  Define a divergence from the desired output
• Separately perform back propagation on both nets

– From t=T down to t=0 for the forward net
– From t=0 up to t=T for the backward net

X(0)

Y(0)

t

hf(-1)

X(1) X(2) X(T-2) X(T-1) X(T)

Y(1) Y(2) Y(T-2) Y(T-1) Y(T)
Div()d1..dT

Div
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Backpropagation in BRNNs

• Backward pass:  Define a divergence from the desired output
• Separately perform back propagation on both nets

– From t=T down to t=0 for the forward net
– From t=0 up to t=T for the backward net

Y(0)

t

Y(1) Y(2) Y(T-2) Y(T-1) Y(T)

X(0) X(1) X(2) X(T-2) X(T-1) X(T)

hb(inf)

Div()d1..dT

Div
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Backpropagation: Pseudocode

• As before we will use a 2-step code:
– A basic backprop routine that we will call
– Two calls to the routine within a higher-level 

wrapper
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First: backprop through a recurrent net
# Inputs:
#    (In addition to inputs used by L : Number of hidden layers
#    dhtop:  derivatives ddiv/dh*(t,L) at each time (* may be f or b)
#    h, z:  h and z values returned by the forward pass
#    T: Length of input vector sequence
# Output: 
#    dWc, dWb, db dhinit: derivatives w.r.t current and recurrent weights,
#                       biases, and initial h.
# Assuming all dz, dh, dWc, dWr and db are initialized to 0

function [dWc,dWr,db,dhinit] = RNN_bptt(L, Wc, Wr, b, hinit, x, T, dhtop, h, z)

dh = zeros

for t = T-1:downto:0  # Backward through time
dh(t,L) += dhtop(t)
for l = L:1  # Reverse through layers

dz(t,l) = dh(t,l)Jacobian(h(t,l),z(t,l))
dh(t,l-1) += dz(t,l) Wc(l)
dh(t-1,l) += dz(t,l) Wr(l)

dWc(l) += h(t,l-1)dz(t,l)
dWr(l) += h(t-1,l)dz(t,l)
db(l) += dz(t,l)

return dWc, dWr, db, dh(-1)  # dh(-1) is actually dh(-1,1:L,:)
108



Bi-RNN gradient computatoin
Assuming time-synchronous output

# Subscript f represents forward net, b is backward net

# First compute derivatives that directly relate to dY(t) for all t,

# then pass the derivatives into RNN_bptt to compute forward and backward

# parameter derivatives

for t = 0:T-1  # The output combines forward and backward

dzo(t) = dY(t)Jacobian(Y(t),zo(t))

dhfo(t) = dzo(t)Wfo
dhbo(t) = dzo(t)Wbo
dbo += dzo(t)

dWfo += hf(t,L)dzo(t)

dWbo += hb(t,L)dzo(t)

#forward net

[dWfc,dWfr,dbf,dhf(-1)] = RNN_bptt(L, Wfc, Wfr, bf, hf(-1), x, T, dhfo, hf, zf)

#backward net

xrev = fliplr(x)  # Flip it in time

[dWbc,dWbr,dbb,dhb(inf)] = RNN_bptt(L, Wbc, Wbr, bb, hb(inf), xrev, T, dhbo, hb, zb)
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Story so far
• Time series analysis must consider past inputs along with current input

• Recurrent networks look into the infinite past through a state-space framework
– Hidden states that recurse on themselves

• Training recurrent networks requires
– Defining a divergence between the actual and desired output sequences
– Backpropagating gradients over the entire chain of recursion

• Backpropagation through time

– Pooling gradients with respect to individual parameters over time

• Bidirectional networks analyze data both ways, beginend and 
endbeginning to make predictions
– In these networks, backprop must follow the chain of recursion (and gradient 

pooling) separately in the forward and reverse nets
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RNNs..

• Excellent models for time-series analysis tasks
– Time-series prediction
– Time-series classification
– Sequence prediction..
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So how did this happen
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So how did this happen

More on this later..
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RNNs..

• Excellent models for time-series analysis tasks
– Time-series prediction
– Time-series classification
– Sequence prediction..
– They can even simplify some problems that are 

difficult for MLPs
• Next class..
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