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Types of Prediction

* Two classes (binary classification)

| hate this movie

—» Negative

 Multiple classes (multi-class classification)

good
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\ bad
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* Exponential/infinite labels (structured prediction)
| hate this movie > PRP VBP DT NN

| hate this movie > KOno elga ga Kiral



Our Model:

Some Type of Auto-regressive NN
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Standard MT System
Training/Decoding



Decoder Structure
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Maximum Likelihood
Training

 Maximum the likelihood of predicting the next word
In the reterence given the previous words

(E|F)=—log P(E | F)

T
= — ) log P(e; | Fie1,... e;_1)

t=1

* Also called "teacher torcing’



Problem 1: Exposure Bias

e Jeacher forcing assumes feeding correct previous input,
but at test time we may make mistakes that propagate
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 Exposure bias: The model is not exposed to mistakes
during training, and cannot deal with them at test




Problem 2: Disregard to
Evaluation Metrics

* |nthe end, we want good translations

 (Good translations can be measured with metrics,
e.g. BLEU or METEOR

 Some mistaken predictions hurt more than others,
so we'd like to penalize them appropriately



Error and Risk



Error

e (3enerate a translation

A\ ~

E = argmaxzP(E | F)
* Calculate its "badness” (e.g. 1-BLEU, 1-METEOR)
error(E, E) = 1 — BLEU(E, F)

e We would like to minimize error



Problem: Argmax is Non-
differentiable

* The argmax function makes discrete zero-one
decisions

* The gradient of this function is zero almost
everywhere, not-conducive to gradient-based
training



RISK

* Risk is defined as the expected error

~

risk(F, E,0) = » P(E | F;0)error(E, E).
E

* This s includes the probability in the objective function!

o Differentiable, but the sum is intractable

 Minimum risk training minimizes risk, Shen et al. (2016)
do so for NMT



Sampling for Risk

* Create a small sample of sentences (5-50), and
calculate risk over that

risk(F, E,S) = Z

EcS

* Samples can be created using random sampling or
n-best search

* |t random sampling, make sure to deduplicate



Adding lemperature

E F:0 1/7 A
|Z’ ) error(F, F)

P
risk(F, E,0,7,5) = Z (
EcsS

emperature helps adjust for the fact that we're
only getting a small sample



Reinforcement Learning



Supervised Learning

* \WWe are given the correct decisions

Usuper (Y, X) = —log P(Y | X)

* In the context of reinforcement learning, this is also called
‘Imitation learning,” imitating a teacher (although imitation
learning is more general)



Selt Training

 Sample or argmax according to the current model

A

Y ~PY |X) or Y =argmaxy,P(Y |X)
* Use this sample (or samples) to maximize likelihood
gself(X) — _logP(Y | X)

* No correct answer needed! But is this a good idea?

* One successtul alternative: co-training, only use sentences
where multiple models agree (Blum and Mitchell 1998)



Policy Gradient/REINFORCE

* Add a term that scales the loss by the reward

gself(X) — _R(Yv Y) IOgP(Y ‘ X)

* Qutputs that get a bigger reward will get a higher
welight

* Can show this converges to minimum-risk solution

* Quiz: Under what conditions is this equal to MLE?



Credit Assignment for
Rewards

How do we know which action led to the reward?

Best scenario, immediate reward:

d1 d2 d3 a4 ds5 ds
O +1 0O -05 +1+1.5

Worst scenario, only at end of roll-out:

d1 d»? A3 d4 4dAs d4s
+3

Often assign decaying rewards for future events to take into
account the time delay between action and reward



Stabilizing MRT/
Reinforcement Learning



Problems w/ MRT/
Reinforcement Learning

* Sampling-based methods tend to be unstable

* |t is particularly unstable when using bigger output
spaces (e.qg. words of a vocabulary)

* A number of strategies can be used to stabilize



Adding a Baseline

* Basic idea: we have expectations about our reward
for a particular sentence

Reward Baseline B-R
“This Is an easy sentence” 0.8 0.95 -0.15
“Buffalo Buffalo Buffalo” 0.3 0.1 0.2

 \We can instead weight our likelihood by B-R to
reflect when we did better or worse than expected

Zbaselime()() — _(R(}A/7 Y) o B(ff)) lOgP(ff | X)

* (Be careful to not backprop through the baseline)



Calculating Baselines

 Choice of a baseline is arbitrary

* Option 1: predict final reward using linear from current
state (e.g. Ranzato et al. 2016)

 Sentence-level: one baseline per sentence
 Decoder state level: one baseline per output action

* Option 2: use the mean of the rewards in the batch as
the baseline (e.g. Dayan 1990)



Increasing Batch Size

* Because each sample will be high variance, we
can sample many different examples before
performing update

* We can increase the number of examples (roll-outs)
done before an update to stabilize

* We can also save previous roll-outs and re-use
them when we update parameters (experience
replay, Lin 1993)



Warm-start

o Start training with maximum likelihood, then switch
over to REINFORCE

 Works only in the scenarios where we can run MLE
(not latent variables or standard RL settings)

« MIXER (Ranzato et al. 2016) gradually transitions from
MLE to the full objective



Corruption-based
Approximations



Solution 1: Sample Mistakes in Training
(Ross et al. 2010)

 DAgger, also known as “scheduled sampling”, etc., randomly samples
wrong decisions and feeds them in
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e Start with no mistakes, and then gradually introduce them using
annealing

 How to choose the next tag”? Use the gold standard, or create a
“‘dynamic oracle” (e.g. Goldberg and Nivre 2013)



Solution 2:
Drop Out Inputs

 Basic idea: Simply don't input the previous decision
sometimes during training (Gal and Ghahramani 2015)
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* Helps ensure that the model doesn't rely too heavily on
predictions, while still using them
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Solution 3:
RAML (Nourozi et al. 2016)

* Reward augmented maximum likelihood

e Basic idea: randomly sample incorrect training data, train w/
maximum likelihood

| hate this movie
sample | $ MLE
| blue this movie

* Exponentiated payoft distribution: sample proportional to goodness of
output

a(y [ y;7) oc e

e Can be shown to approximately minimize risk with entropy regularization



BONUS:
SwitchOut (Wang et al 2018)

* Apply RAML-like sampling to source and target
side

Sk {q(f ?7; L y)/T}
Z;’z?',:ﬁ’ exp{s(z’,y;x,y)/T}

* (Gives a probabilistic description of data
augmentation algorithms for MT

q'(z,y|lz,y) =

e Good results on WMT en-de, de-en, en-vi



Other Options



Other Options

 Beam search optimization (\Wiseman and Rush
2016): Try to prevent good hypotheses from talling
off the beam

* Differentiable beam search (Goyal et al. 2018):
turn operations in beam search into differentiable

approximations

* Actor-critic algorithms (Bahdanau et al. 2016):
Create a "critic’ that predicts future reward



Questions?

References:

Optimization for Statistical Machine Translation, a Survey
(Neubig and Watanabe 2016)

Machine Translation and Sequence-to-sequence Models,
Parameter Optimization
http://phontron.com/class/mtandseqg2seq2018/schedule/
optimization.html



