
CDM
Wild Computation

Klaus Sutner
Carnegie Mellon University
Fall 2024

1 General Recursion

2 Evaluation

3 The Busy Beaver Problem

4 Insane Growth

5 Undecidability and Incompleteness

Ackermann’s Function (1928) 2

Primitive recursion uses only a single variable. One might suspect that
recursion over multiple variables could potentially produce more
complicated functions, but one needs to be careful: who knows, maybe
there is some clever way to express a multiple recursion in terms of a
single one.

Here is a classical example: the Ackermann function A : N × N → N
defined by double recursion. We write x+ instead of x + 1.

A(0, y) = y+

A(x+, 0) = A(x, 1)

A(x+, y+) = A(x, A(x+, y))

On the surface, this looks more complicated than primitive recursion. We
need to make sure that there really is no trick to rewrite this as a single
recursion.

Family Perspective–Currying 3

It is useful to think of Ackermann’s function as a family of unary
functions (Ax)x≥0 where Ax(y) = A(x, y) (“level x of the Ackermann
hierarchy”).

The definition then looks like so:

A0 = S Ax+(0) = Ax(1)

Ax+(y+) = Ax(Ax+(y))

From this it follows easily by induction that

Lemma
Each of the functions Ax is primitive recursive (and hence total).

The Bottom Hierarchy 4

A(0, y) = y+

A(1, y) = y++

A(2, y) = 2y + 3

A(3, y) = 2y+3 − 3

A(4, y) = 22. . .
2

− 3

The first 4 levels of the Ackermann hierarchy are easy to understand,
though A4 starts causing problems: the stack of 2’s in the exponentiation
has height y + 3.

Tetration 5

The basic operation behind A4 is usually called super-exponentiation or
tetration and often written na or a↑↑n.

a↑↑n =
{

1 if n = 0,
aa↑↑(n−1) otherwise.

For example,
A(4, 3) = 2↑↑6 − 3 = 2265536

− 3

an uncomfortably large number (we’ll see much worse in a moment).

The Mystery of A(6, 6) 6

Alas, if we continue just a few more levels, darkness befalls.

A(5, y) ≈ super-super-exponentiation

A(6, y) ≈ an unspeakable horror

A(7, y) ≈ speechlessness

For level 5, one can get some vague understanding of iterated
super-exponentiation, A(5, y) = (λz.z ↑↑ y + 3)y+3(1) − 3 but things
start to get quite murky at this point.
At level 6, we iterate over the already nebulous level 5 function, and
things really start to fall apart.
At level 7, Wittgenstein comes to mind: “Whereof one cannot speak,
thereof one must be silent.”∗

∗“Wovon man nicht sprechen kann, darüber muss man schweigen.” Tractatus
Logico-Philosophicus

Ackermann vs. PR 7

Theorem
The Ackermann function dominates every primitive recursive function f
in the sense that there is a k such that

f(x) < A(k, max x).

Hence A is not primitive recursive.

Sketch of proof.
Since we are dealing with a rectype, we can argue by induction on the
buildup of f .
The atomic functions are easy to deal with.
The interesting part is to show that the property is preserved during an
application of composition and of primitive recursion. Alas, the details
are rather tedious.

2

Ackermann and Union/Find 8

One might think that the only purpose of the Ackermann function is to
refute the claim that computable is the same as p.r. Surprisingly, the
function pops up in the analysis of the Union/Find algorithm (with
ranking and path compression).
The running time of Union/Find differs from linear only by a minuscule
amount, which is something like the inverse of the Ackermann function.
But in general anything beyond level 3.5 of the Ackermann hierarchy is
irrelevant for practical computation.

Exercise
Read an algorithms text that analyzes the run time of the Union/Find
method.

But Is It Computable? 9

Here is an entirely heuristic argument: we can write a tiny bit of C code
that implements the Ackermann function (assuming that we have infinite
precision integers).

int acker(int x, int y)
{
return(x ? (acker(x-1, y ? acker(x, y-1) : 1)) : y+1);

}

All the work of organizing the nested recursion is easily handled by the
compiler and the execution stack. So this provides overwhelming
evidence that the Ackermann function is intuitively computable.

Proofs by Hashing 10

We could memoize the values that are computed during a call to A(a, b):
build a hash table H such that H[x, y] = z whenever an intermediate
result A(x, y) = z is discovered during the computation.

In practice, this helps in computing a few more small values of A
(compared to the plain recursion), but does not go very far: the hash
table becomes huge very soon.

It’s a fun game to try to use any kind of dirty trick to compute as many
values of the Ackermann function given the constraints of a particular
piece of hardware.

Proofs and Computations 11

More interesting is the following: recall our claim that proofs and
computations are very closely related.

In the context of Ackermann, suppose someone claims that A(a, b) = c.
We want proof that this result is really correct.

One way to establish correctness is to use memoizing during the
computation and to hand over the corresponding table H.

Claim: H provides a proof that A(a, b) = c.

Not a proof in the classical sense, but an object that makes it possible to
perform a simple coherence check and conclude that the value c is indeed
correct.

Checking 12

To check the proof for correctness, it suffices to check the following
consistency properties of the table H:

H[0, y] = y + 1
H[x+, 0] = z implies H[x, 1] = z

H[x+, y+] = z implies H[x, z′] = z where z′ = H[x+, y]

The whole check comes down to performing O(N) table lookups where
N is the number of entries in H.

Once the table is verified, we check H[a, b] = c. Done.

Of course, N is usually so huge that this is not a feasible check.

PR versus Computable 13

Obvious Question: how much do we have to add to prim-
itive recursion to capture the Ackermann function?

As it turns out, we need just one modification: we have to allow
unbounded search: a type of search where the property we are looking for
is still primitive recursive, but we don’t know ahead of time how far we
have to go.

Unbounded Search vs. Ackermann 14

Proposition
There is a primitive recursive relation R such that

A(a, b) = dec
(
min

(
z | R(a, b, z)

))

Here dec(s) is a p.r. decoding function.

Sketch of proof. Think of z as a code (Gödel number) of the result c
and the hash table H.
R performs the consistency test described above and is clearly primitive
recursive. dec just extracts the result c from z. 2

Recursion Stack 15

In some cases, a recursion based computation unfolds in a very simple,
predictable manner. If that is the case, then it is usually a good idea to
try to figure out what the recursion stack looks like during the execution.

With luck, the pattern will be so simple that we can implement the
operations directly on a list (representing the stack, without all the
bureaucracy

Alternatively, one can try to find a systematic approach to solving the
system of equations, essentially by repeated instantiations and
substitutions.

Again, with luck, a simple pattern will emerge that provides a
computational shortcut.

Unfolding Ackermann 16

The computation of, say, A(2, 1) can be handled in a very systematic
fashion: always unfold the rightmost subexpression.

A(2, 1) = A(1, A(2, 0)) = A(1, A(1, 1)) = A(1, A(0, A(1, 0))) = . . .

Note that the A’s and parens are just syntactic sugar, a better
description would be

2, 1⇝ 1, 2, 0⇝ 1, 1, 1⇝ 1, 0, 1, 0⇝ 1, 0, 0, 1⇝ 1, 0, 2⇝ 1, 3⇝ 0, 1, 2
⇝ 0, 0, 1, 1⇝ 0, 0, 0, 1, 0⇝ 0, 0, 0, 0, 1⇝ 0, 0, 0, 2⇝ 0, 0, 3⇝ 0, 4⇝ 5

We can model these steps by a list function ∆ defined on sequences of
naturals (or, we could use a stack).

List Operation 17

Here is an algorithm that works on integer lists: initially, the list is (a, b).
The algorithm terminates when the list has length 1. A single step looks
like so:

∆(. . . , 0, y) = (. . . , y+)

∆(. . . , x+, 0) = (. . . , x, 1)

∆(. . . , x+, y+) = (. . . , x, x+, y)

If we encode integer lists as integers, the single-step operation ∆ is
primitive recursive. Using actual data structures, ∆ is just about trivial.

List Algorithm 18

int acker_list(int a, int b)
{

L = (a,b);
while(len(L) > 1)

L = Delta(L);
return fst(L);

}

Everything is perfectly harmless, except that the loop runs for a long,
long time (and the lists get horribly long).

A(3, 4) 19

The computation takes 10307 steps, the plot shows the lengths of the list.

1 General Recursion

2 Evaluation

3 The Busy Beaver Problem

4 Insane Growth

5 Undecidability and Incompleteness

Evaluation 21

We have seen that primitive recursive functions can be defined in terms
of expressions τ in a small programming language. Any syntactically
correct term τ describes an arithmetic function JτK : Nk → N .
For example, the term

τ = Prec[Prec[Prec[S ◦ P3
2, P1

1] ◦ (P3
2, P3

3), C(1)
0] ◦ (S ◦ P2

1, P2
2), C(0)

1]

describes the factorial function, JτK is the factorial function.

It is intuitively clear that we could write an interpreter, a function eval
that takes as input the string τ and a suitable input vector
x = x1, . . . , xk ∈ Nk and returns the result of evaluating JτK on x:

eval(τ, x) = value of JτK on arguments x

Arithmetizing 22

The type of eval is

eval : expressions × N⋆ −→ N

But Gödel has shown how to express any finitary object in terms of
natural numbers, we can translate the string τ into a Gödel number For
computable functions, the corresponding Gödel number is usually called
an index, written e = ⟨τ⟩. Similarly we can replace x by ⟨x⟩.

So its safe to think of evaluation as a map

eval : N × N −→ N

If e is not an index, we may assume eval(e, x) = 0.

Indices 23

There are many ways to organize the coding details of ⟨τ⟩, for the time
being think about replacing the letters in τ by positive natural numbers
(something like ASCII) and then use the coding function

⟨a1, a2, . . . , ak⟩ = pa1
1 pa2

2 . . . pak

k

where (pi) is the usual enumeration of prime numbers.

This function is multiadic, and hence cannot be primitive recursive, but if
we fix k it is indeed p.r., and we can recover the elements in a p.r.
manner. Ditto for the second argument of eval.

Details next lecture.

Coding PR 24

Here is one natural way of coding primitive recursive terms as naturals:

term code
C(0)

0 ⟨0, 0⟩
S ⟨1, 1⟩

Pn
i ⟨2, n, i⟩

Prec[h, g] ⟨3, n, ĥ, ĝ⟩
Comp[h, g1, . . . , gn] ⟨4, m, ĥ, ĝ1, . . . , ĝn⟩

Thus for any index e, the first component fst(e) indicates the type of
function, and snd(e) indicates the arity.

This type of coding makes it really easy to write an interpreter.

Hope Springs Eternally 25

Question: Could eval be primitive recursive?

Let’s assume eval primitive recursive. The we can define the following
function

f(x) := eval(x, x) + 1

This may look weird, but certainly f is also p.r. and must have an index
e. But then

f(e) = eval(e, e) + 1 = f(e) + 1

and we have a contradiction, 0 = 1.

Partial Functions 26

How do we avoid the problem with eval?

The only plausible solution appears to be to admit partial functions,
functions that, like eval, are computable but may fail to be defined on
some points in their domain. In this case, eval(e, e) is undefined.

Anyone who has ever written a sufficiently sophisticated program will
have encountered divergence: on some inputs, the program simply fails to
terminate. What may first seem like a mere programming error, is
actually a fundamental feature of computable functions.

Incidentally, in the early days of recursion theory, partial functions were
universally avoided.

General Computability 27

We presented the last argument in the context of primitive recursive
functions, but note that the same reasoning also works for any clone of
computable functions—as long as

successor and eval both belong to the clone, and
each function in the clone is represented by an index.

But then eval must already be partial, no matter what the details of our
clone are.

A similar argument shows that an interpreter for, say, polynomial time
computable functions cannot itself by polynomial time.

Fiat Halting 28

Since any general model of computation must deal with partial functions,
it is entirely natural to ask whether a given function f is defined on some
particular input x.

Another reasonable question would be to ask whether f is total; or even
whether f is nowhere defined.

So we automatically run into the Halting Problem, the first example of a
perfectly well-defined question that turns out to be undecidable.

Notation Warning 29

We write
f : A ↛ B

for a partial function from A to B. Terminology:

domain dom f = A

codomain cod f = B

support spt f = { a ∈ A | ∃ b (f(a) = b) }

It is also convenient to write f(x) ↓ for x ∈ spt f , and f(x) ↑ for
x /∈ spt f (converges/diverges).

Warning: Some misguided authors use “domain of definition” instead of
“support,” and then forget the “of definition” part.

Faking It 30

Suppose we have a partial function f : N ↛ N . We could try to turn f
into a total function f⊥ : N ↛ N by setting

f⊥(x) =
{

f(x) + 1 if x ∈ spt f
0 otherwise.

F clearly is total, and we can easily recover f from it.

In set theory la-la land there is no problem at all. But this construction is
not very useful for us: there are computable f such that f⊥ fails to be
computable.

Kleene’s Notation 31

Since we cannot avoid partial functions, it is helpful to adjust notation a
bit.

Given expressions α, β involving partial functions, we use Kleene equality
rather than plain equality:

α ≃ β

to indicate that either

both α and β are defined (the computations involved all terminate)
and have the same value, or
both α and β are undefined (some computation diverges).

More Kleene 32

Given a clone of computable functions, such as the primitive recursive
ones, and an index e for one of these functions, we write

{e}

for the eth function in the collection. Hence, ({e})e≥0 is an enumeration
of all the functions in the clone.

Since these functions are partial in general we have to be a bit careful
and write

{e}(x) ≃ y

to indicate that {e} with input x returns output y. This notation is a bit
sloppy, arguably we should also indicate the arity of the function–but for
us that’s overkill.

1 General Recursion

2 Evaluation

3 The Busy Beaver Problem

4 Insane Growth

5 Undecidability and Incompleteness

Busy Beaver Problem 34

In 1962, Tibor Rado described a now famous problem in computability.
Consider Turing machines on tape alphabet Σ = {0, 1} (where 0 is the
blank symbol) and n states.

Question: What is the largest number of 1’s any such
machine can write on an initially blank tape, and then halt?

Halting is crucial, otherwise we could trivially write infinitely many 1’s.

Other Variants 35

Rado’s original question is actually slightly arbitrary, here are two versions
more firmly rooted in computability theory.

Time Complexity What is the largest number of moves a halting n-
state machine can make?

Space Complexity What is the largest number of tape cells a halting
n-state machine can use?

Conventions 36

The tape alphabet is 2, 0 is the blank symbol; initially, the tape
contains only 0s.

The tape head must move left or right at each step.

We ignore the halting state, so n means “n ordinary states plus one
halting state.”

These details do not matter when it comes to defining computability in
general, but they make a difference here.

Hierarchy 37

We write BBT(n) for largest number of steps of any halting n-state
machine and refer to BBT as the Busy Beaver function.

We will also consider the original version of the problem and write
BBW(n) for the largest number of 1’s written by any halting n-state
machine.

Clearly, BBT(n) ≥ BBW(n), but the former has the advantage of relating
more directly to the Halting Problem, which one would suspect to be the
central issue with busy beaver functions.

Busy Beaver n = 1 38

BBT(1) = 1

To see this, note that any attempt to make a second move would already
lead to an infinite loop. Recall that the displacement of the head is
required to be ±1.

Similarly, BBW(1) = 1.

Busy Beaver n = 2 39

Amazingly, the answer is no longer obvious: BBW(2) = 4 and
BBT(2) = 6 with the same champion.

0 1
p (q,1,R) (q,1,L)
q (p,1,L) halt

p0 1q0 p11 q011 p0111 1q111

Orbit 40

Busy Beaver n = 3 41

Here things start to get messy: there are 4 826 809 Turing machines to
consider.

Exploiting isomorphisms, filtering out machines where all 4 states are
reachable (in the diagram, not necessarily the computation on empty
tape), and checking for halting we get down to 405 072

From the last group we can pick out the champions.

Write-Champion 42

Halt-Champion 43

How bad can it be? 44

The number of machines quickly becomes very difficult to manage:

n #machines
4 6 975 757 441
5 16 679 880 978 201

As usual, the problem is not isomorph-rejection (which requires
constructing all machines first), but to only build non-isomorphic ones to
begin with. And, given these numbers, it won’t make much of dent no
matter what.

The Marxen-Buntrock Machine 45

The current champion machine was found by Marxen and Buntrock, and
its discovery is a small miracle. Here is the table of the machine.

0 1
1 (2,1,R) (3,1,L)
2 (3,1,R) (2,1,R)
3 (4,1,R) (5,0,L)
4 (1,1,L) (4,1,L)
5 halt (1,0,L)

One can check that all 5 states are used during the the computation with
initial state 1 and on empty tape.

50 Steps 46

400 Steps 47

Misleading Pictures 48

Looking at a run of the Marxen-Buntrock machine for a few hundred or
even a few thousand steps, one invariably becomes convinced that the
machine never halts: the head zig-zags back and forth, sometimes
building solid blocks of 1’s, sometimes a striped pattern 100100100 . . .

Whatever the details, the machine seems to be in a “loop” (not a an easy
concept to clarify for Turing machines). Bear in mind: there are only 5
states, there is no obvious method to code an instruction such as “do
some zig-zag move 1 million times, then stop”.

Still, this machine stops after 47 176 870 steps on output 10(100)4097.

Why is this Hard? 49

There are several fundamental obstructions to computing busy beaver
numbers, in increasing levels of depth.

Brute-force search quickly becomes infeasible, even for single-digit
values of n.

The Halting conundrum: Even if we could somehow deal with com-
binatorial explosion, there is the problem that we don’t know if a
machine will ever halt – it might just keep running forever.

Reasoning about the behavior of Turing machines in a formal sys-
tem like Peano arithmetic or Zermelo-Fraenkel set theory is neces-
sarily of limited use.

State of the Art 50

n BBT(n) BBW(n)
1 1 1
2 6 4
3 21 6
4 107 13
5 ≥47 176 870 ≥4098
6 >7.4 × 1036 534 >3.5 × 1018 267

Concrete values are available for n ≤ 4; beyond that, we only have
bounds. And these bounds soon get ridiculous:

BBT(7) > 102·10101018 705 353

Alas, these results are not as robust as one would like them to be, see
Harland 16 for a critique.

http://www.cs.cmu.edu/~cdm/papers/Harland2016.pdf

6-State Busy Beaver 51

For n = 6 all hell breaks loose.

The raw search space here has size 59 604 644 775 390 625, though this
can be improved a bit exploiting symmetries and reachability.

Halting gets very messy here: there is no good heuristic to come to the
conclusion that a machine will never halt and can thus be dismissed from
the competition.

May 2022 52

A new machine by Pavel Kropitz, takes about 10 ↑↑ 15 steps to halt. A
more precise bound is

1010101010101010101010101010104.023873729

You’re welcome.

Busy Beaver Exercises 53

Exercise
Derive the transition table of the 3-state Busy Beaver machine. Give an
intuitive explanation of how this machine works.

Exercise
Prove that the last machine is indeed the champion: no other halting
3-state machine writes more than 6 ones.

Exercise (Hard)
Find the Busy Beaver champion for n = 4.

Exercise (Extremely Hard)
Organize a search for the Busy Beaver champion for n = 5.

1 General Recursion

2 Evaluation

3 The Busy Beaver Problem

4 Insane Growth

5 Undecidability and Incompleteness

Subsequence Order 55

Recall the subsequence ordering on words where u = u1 . . . un precedes
v = v1v2 . . . vm if there exists a strictly increasing sequence
1 ≤ i1 < i2 < . . . in ≤ m of positions such that u = vi1vi2 . . . vin

.
In symbols: u ⊑ v.

In other words, we can erase some letters in v to get u. Note that it is
easy to check for subsequences in linear time.

Subsequence order is never total unless the alphabet has size 1.

One nice features of subsequence order is that is entirely independent of
any underlying order of the alphabet (unlike, say, lexicographic or
length-lex order).

Warmup: Antichains 56

An antichain in a partial order is a sequence x0, x1, . . . , xn, . . . of
elements such that xi and xj are incomparable for i < j.

Example
Consider the powerset of [n] = {1, 2, . . . , n} with the standard subset
ordering. How does one construct a long antichain?

For example, x0 = {1} is a bad idea, and x0 = [n] is even worse.

What is the right way to get a long antichain?

Higman’s Lemma 57

Theorem (Higman 1952)
Every antichain in the subsequence order is finite.

Proof. Here is the Nash-Williams proof (1963): assume there is an
infinite antichain. Then there is a non-increasing sequence x = (xn) in
the sense that i < j implies that xi ̸⊑ xj .

By induction on n, choose the minimal such sequence in the sense that
xn is the length-lex minimal word such that x0, x1, . . . , xn starts a
non-increasing sequence.

There must be a letter a such that the subsequence xnj = a yj , j ≥ 0, of
words starting with a, is infinite. Let k = n0 and define a new sequence

z = x0, x1, . . . , xk−1, y0, y1, . . .

Proof, contd. 58

One can check that the new sequence z is again non-increasing.
But z violates the minimality constraint on x at position k, contradiction.

2

Note that this proof is highly non-constructive. We are essentially
performing surgery on a branch in an infinite tree that exists by
assumption. A lot of work has gone into developing more constructive
versions of the theorem, but things get a bit complicated.

See Seisenberger.

http://www.cs.cmu.edu/~cdm/resources/Seisenberger00.pdf

(Weak) Kőnig Infinity Lemma 59

Theorem
Every infinite, finitely branching tree contains an infinite branch.

In the weak version, the tree is required to be binary.

Weak implies full: replace higher branching nodes by binary trees.

Friedman’s Self-Avoiding Words 60

We are using 1-indexing. For a finite or infinite word x define the ith
block of x to be the factor (of length i + 1) of x:

x[i] = xi, xi+1, . . . , x2i

Note this makes sense only for i ≤ |x|/2 when x is finite. We will always
tacitly assume that this bound holds.

Bizarre Definition: A word is self-avoiding if, for all i < j, the block x[i]
fails to be a subsequence of block x[j].

For example,

abbbaaaa is self-avoiding
abbbaaab is not self-avoiding

Only Finite 61

The following is an easy consequence of Higman’s theorem.

Theorem
Every self-avoiding word is finite.

If there were an infinite self-avoiding word x ∈ Σω, the collection
{ x[i] | i ≥ 1 } of all its blocks would form an infinite antichain.

How Long? 62

Write Σk for an alphabet of size k.

By the last theorem and Koenig’s lemma, the set Sk of all finite
self-avoiding words over Σk must itself be finite.

But then we can define the following max-length function:

α(k) = max
(

|x| | x ∈ Sk

)
So α(k) is the length of the longest self-avoiding word over Σk.

Clearly, α is total and it is strictly increasing.

Moreover, α is easily computable, there is a very straightforward
algorithm to determine the value of α(k).

The Algorithm 63

Note that any prefix of a self-avoiding word must also be self-avoiding.
This produces a simple, brute-force algorithm to compute α.

At round 0, define S = {ε}.
In each round, extend all words in x ∈ S by all letters a ∈ Σk.
If xa is still self-avoiding, keep it; otherwise toss it.
When S becomes empty at round n + 1, return α(k) = n.

Each step is easily primitive recursive, really just some wordprocessing.

Termination is guaranteed by the theorem: we are essentially growing a
tree (actually: a trie). If the algorithm did not terminate, the tree would
be infinite and thus have an infinite branch, corresponding to an infinite
self-avoiding word; contradiction.

Some Examples 64

Here is the number of self-avoiding words of length up to 12, for k ≤ 4.

1 2 3 4 5 6 7 8 9 10 11 12
1 1 1 0 0 0 0 0 0 0 0 0
2 4 8 8 16 12 24 4 8 2 4 0
3 9 27 60 180 348 1044 1518 4554 5334 16002 16674
4 16 64 216 864 2688 10752 29376 117504 285108 1140432 2569248

So α(1) = 3: the first time a word contains 2 blocks, it is not longer
self-avoiding.

A little fumbling (or writing a program) shows that α(2) = 11, as
witnessed by abbbaaaaaaa and abbbaaaaaab and their duals.

Challenge for Hackers 65

Write a program in your favorite fast language that extends the table,
ideally by a column or a row.

I suspect the former is feasible, the latter may be tricky.

And k = 3? 66

Alas, α(3) is a bit harder to describe. We will use a slight variant of the
Ackermann function for this purpose.

B1(x) = 2x

Bk+(x) = Bx
k (1)

Bx
k (1) means: iterate Bk x-times on 1. So B1 is doubling, B2

exponentiation, B3 super-exponentiation and so on.

Just like the Ackermann function, B5 essentially makes no sense to mere
mortals, its growth rate is stupendous.

Drum Roll 67

α(3) > B7198(158386)

This is an incomprehensibly, mind-numbingly large number.

Never mind the 158386, it’s the 7198 that kills any chance of
understanding, at least roughly, what this means.

Smelling salts, anyone?

It is truly surprising that a function like α with a really simple algorithm
should exhibit this kind of growth.

It’s a Feature 68

And, of course, there is α(α(3)), α(α(α(3))), and so on. Or how about

αα(3)(3)

At this point one might wonder whether our whole approach to
computability is perhaps a bit off—we certainly did not intend to deal
with monsters like α.

Alas, as it turns out, this is a feature, not a bug: all reasonable
definitions of computability admit things like α, and worse. Far worse.

It is a fundamental property of computable functions that some of them
have absurd growth rates.

1 General Recursion

2 Evaluation

3 The Busy Beaver Problem

4 Insane Growth

5 Undecidability and Incompleteness

Non-Computability 70

Theorem
The Busy Beaver functions fail to be computable.

Proof.
We will only deal with BBT and leave the other one for homework. So
suppose BBT is computable. Given a Turing machine M and input x we
can an “equivalent” machine M ′ that uses tape alphabet 2: M ′ on the
empty tape simulates M on x.
Say, M ′ has n + 1 states, including a single halting state. Compute
BBT(n) to bound the computation of M ′, and we have solved the
Halting Problem. Contradiction.

2

And Reasoning? 71

So BBT(n) is not computable, but how far could we get with reasoning?
Say, we adopt a fairly strong (and presumably consistent) base theory T
in first-order logic; something like Zermelo-Fraenkel, and throw in Choice
for good measure, or even V = L if you like.

Question: Can T prove that BBT(n) = m for many n and m?

One might think that ZF should be able to handle this just fine. But
there is a problem: T is an axiomatic system: the axioms are decidable
and the rules of inference are easily computable. It follows that the
collection of all proofs in T is decidable: given a sequence of formulae,
we can check whether it forms a correct proof.

Disaster Strikes 72

But then we can enumerate all proofs: just run through all possible
sequences of formulae, and check which ones are proofs. T is inconsist iff
one of these proofs ends in 0 = 1.

Buth then it is straightforward (in principle, not practice) to construct a
Turing machine on, say, s states that searches for an inconsistency in T :
it just enumerates all possible proofs, and halts if it finds a bad one that
ends in 0 = 1.

If T could prove that BBT(s) = m, then it could prove its own
consistency, contradicting Gödel’s incompleteness theorem.

Limits of Knowledge 73

Theorem
Any consistent theory can only prove finitely many values of BBT.

By carefully constructing the ZF-consistency checker from scratch, one
can show that even n = 1000 is out of reach. This is hard.

The last method works since consistency is a Π1 statement, it requires
only one universal quantifier und looks like

∀ x Φ(x).

This is meant to be an arithmetic formula, interpreted over the natural
numbers. The matrix Φ(x) contains only bounded quantifiers of the form
∀ u < v and ∃ u < v , propositional logic, and ordinary arithmetic.

More Π1 Games 74

The actual meaning of ∀ x Φ(x) does not really matter, the same
approach also works for other Π1 statements. It so happens that there
are some very interesting ones.

Riemann Hypothesis Far from obvious, but true. It turns out that one
can build a machine of less than 1000 states that halts iff
the Riemann Hypothesis is false.

Goldbach Conjecture It seems that there is a machine on 27 states
that halts iff Goldbach is false. This number is rather un-
comfortably small.

	General Recursion
	Evaluation
	The Busy Beaver Problem
	Insane Growth
	Undecidability and Incompleteness

