
CDM
Memoryless Machines

Klaus Sutner

Carnegie Mellon University
Spring 2024

1 Zero Space

2 Finite State Machines

3 The Foundations

Getting Real 2

So far, we have blissfully ignored physical limitations. For example, we pretend
that our registers can hold arbitrarily large naturals, and increment/decrement
them in one step.

We could avoid this by limiting the registers to k-bit numbers for some fixed k,
say, k = 64. So we wind up with a particularly bad assembly language.

In our model, this has an unintended side-effect: there are only finitely many
possible inputs (recall: the input has to be written into registers).

This is in stark contrast with standard arithmetical problems like primality
testing.

Circuits 3

Algorithms that take as input some fixed, finite number of bits and return a
similar output are hugely important.

Alas, this leads to a different realm (Boolean circuits, gates, electrical
engineering) that we do not want to get involved with.

A Catch 4

Claim: Every finite decision problem is decidable in constant time (albeit for
entirely the wrong reasons). Similarly every finite function can be computed in
constant time.

More precisely, we can simply hardwire a lookup table that lists the correct
answer for each instance.

The lookup table may get so large that this brute-force approach is not
practical (think about multiplying two 64-bit numbers), but from the
perspective of recursion theory everything is trivial. We need an input domain
like N or 2⋆ for our machinery to kick in.

Better Mousetrap 5

The last claim is perfectly correct, but it really means that we need to develop
a better framework. Clearly, we can distinguish different levels of difficulty even
for finite problems. Think about a finite set of instances I, say, all 1000-bit
numbers. Determine

all numbers in I divisible by 17,
all prime numbers in I,
all x ∈ I such that {x}() ↓.

Everyone would agree that these problem are listed in order of increasing
complexity, the first one is nearly trivial, the second requires a bit of work and
the last one is a hot mess.

Infinite Problems 6

Convention:
We will only consider problems with infinite instance sets.

It is also a good idea to give up on the domain of arithmetic and only talk
about natural numbers. We could use sequence numbers to code any
conceivable finitary structure, but that requires overhead that obscures the
details of simple computations.

Experience shows that a switch to strings or words over some finite alphabet
works well. So the standard input domain will be Σ⋆ and in particular 2⋆.

Note that Turing machines naturally work on strings, so we are drifting towards
a different model of computation.

Recall: PR String Functions 7

Recall from HW that one can define a clone of primitive recursive string
functions that has essentially the same power as ordinary p.r. arithmetic
functions.

At this point, we want to dive down to string functions that are very, very easy
to compute.

How could we define an easily computable class of functions that still has
interesting properties and applications?

To process a string we clearly have to read it, say, from left to right. How
about limiting the algorithm to just that?

Finite State 8

Of course, if we read the string we could simply store it into memory and the
perform an arbitrarily complicated computation. To prevent that, we take a
radical step:

We can only use a constant amount of memory.

For this to make sense we do not charge the algorithm for the memory needed
to store the input: the algorithm sees a stream of letters from some finite
alphabet Σ (think in particular of the binary alphabet 2).

Let us refer to the memory contents as the state of the algorithm, so there are
only finitely many states.

Decisions 9

When the input string has been consumed, the algorithm makes a decision
based solely on the last state (we will see how to adjust this model to
computing a function later).

If this sort of decision algorithm return Yes, we say that it accepts or recognizes
the input string.

The collection L ⊆ Σ⋆ of all such strings is the acceptance language of or the
language recognized by the algorithm.

These languages are called regular or (finite state) recognizable.

Zero Space 10

A sexier name for this kind of restricted computation is zero space.

This terminology is weakly justified by the fact that one can often nicely
distinguish between the internal states of a system and its memory (think
about register machines).

Our algorithms have only state but no memory at all, so we have the class of
zero-space problems.

Example: Parity and Majority 11

Let’s suppose the input is given as a bit sequence x = x1x2 . . . xn−1xn. Here
are two classical problems concerning these sequences:

Parity: Is the number of 1-bits in x even?

Majority: Are there more 1-bits than 0-bits in x?

Parity can easily be handled without memory: just add the bits in x modulo 2.

On the other hand, Majority seems to require an integer counter of unbounded
size log n bits; we will see in a while that Majority indeed cannot be solved in
zero space.

Parity Checker 12

s = 0; // initialize state

while(there is another input bit b)
s = b xor s;

return s;

This really computes the exclusive-or of all the bits, which happens to be the
right answer:

s = x1 ⊕ x2 ⊕ . . . ⊕ xn−1 ⊕ xn

Streaming Algorithms 13

So this is an extremely simple case of a streaming algorithm, when the number
of scans is just 1 and the memory is constant (as opposed to a small number of
scans, using little memory).

initialize;

while(there is another input letter x)
process x; // update system

return answer;

The point is that the state transition is extremely fast, typically using a lookup
table, or evaluating a simple function.

Transition Diagrams 14

A most useful representation for our parity checker is a diagram:

e o

1

1

0 0

The edges are labeled by the input bits, and the nodes indicate the internal
state of the checker (called e and o for clarity, these are the two internal
states).

This pictures are very easy to read and interpret for humans (and useless as
input to algorithms).

Complete Information 15

It is customary to indicate the initial state (where all computations start) by a
sourceless arrow, and the so-called final states states (corresponding to answer
Yes) by marking the nodes.

e o

1

1

0 0

In this case state e is both initial and final.

“Final state” is another example of bad terminology, something like “accepting
state” would be better. Alas . . .

Another Example 16

0 1 2 3
b b b

a a a a, b

There are 4 states {0, 1, 2, 3}. Input x ∈ {a, b}⋆ will take us from state 0 to
state 3 if, and only if, it contains at least 3 letters b.

The “correctness proof” here consists of staring at the picture for a moment.

Run-Length Limited Codes 17

Consider all words over {a, b} that start and end with a and have the property
that all as are separated by 1, 2 or 3 bs.

i 0 1 2 3
a

b b b

a
a

a

We allow missing transitions: if the machine reads b in state i it simply
“crashes” (see the formal definition of acceptance below). As a practical
matter, partial transition functions are critical for efficiency.

Correctness is by diagram chasing. Note that the informal description above
does not explain whether the first and last a need to be distinct. Deal with the
other case.

Checking Small Divisors 18

A typical primality testing algorithm starts very modestly by making sure that
the given candidate number x is not divisible by small primes, say, 2, 3, 5, 7,
and 11 (actually, checking the first 100 or so primes seems to be more realistic
in practice).

Assume n has 1000 bits. Using standard large integer library to do the tests is
not really a good idea, we want a very fast method to eliminate lots of bad
candidates quickly.

One could hardwire the division algorithm for a small divisor d but even that’s
still clumsy.

Can we use one of our memoryless machines?

Mod 5 Base 2 19

8-bit binary numbers that are divisible by 5 (written here in columns, LSD on
top).
There is some regularity in the bit patterns, but it’s elusive.

We need a machine that accepts these bit pattern, but rejects all others. And,
of course, works for an arbitrary number of bits.

Induction to the Rescue 20

Write ν(x) for the numerical value of bit-sequence x, assuming the MSD is
read first.

Then

ν(x0) = 2 · ν(x)

ν(x1) = 2 · ν(x) + 1

So if we are interested in divisibility by, say, d = 5 we have

ν(xa) = 2 · ν(x) + a (mod 5)

Since we only need to keep track of remainders modulo 5 there are only 5
values, corresponding to 5 internal states of the loop body.

Remainders Mod 5 21

0

1

2

3

4

0

1

0
1

0 1

0

1

0

1

Optimality in Time 22

Lower bound arguments are often tricky, but this really is the fastest possible
algorithm for divisibility by 5 as can be seen by an adversary argument.

Suppose there is an algorithm that takes less than n steps.

Then this algorithm cannot look at all the bits in the input, so it will not notice
a single bit change in at least one particular place.

But that cannot possibly work, every single bit change in a binary number
affects divisibility by 5:

x ± 2k ̸= x (mod 5)

for any k ≥ 0.

And Majority? 23

Majority cannot be handled by a our finite state algorithms.

For suppose otherwise. Suppose q0 is the initial state and start feeding the
algorithm 0s. By the old lasso argument, we must encounter some state twice:

q0
0a

−→ p
0b

−→ p

Hence, the algorithm must accept input 0a+b1a+b+1. But then it also accepts
0a+2b1a+b+1, contradiction.

In fact, we could repeat the loop p → p any number of times, producing
infinitely many inputs where the algorithm fails.

1 Zero Space

2 Finite State Machines

3 The Foundations

The Machine Perspective 25

We can think of our string decision algorithms as a sort of machine consisting
of two parts:

a transition system, and
an acceptance condition.

The transition system includes the states and the alphabet and can be
construed as a labeled digraph that we will refer to as the diagram of the
automaton.

Definition
A transition system is a structure

⟨Q, Σ, τ⟩

where Q and Σ are non-empty finite sets (the state set and the alphabet) and
τ ⊆ Q × Σ × Q is the transition relation of the structure. The elements of τ
are transitions and often written p

a−→ q.

Sequences, Words, Strings 26

Given an alphabet Σ one writes Σ⋆ for the collection of all words over Σ, and
Σ+ for the collection of all non-empty words.

In practice, the alphabet is usually along the lines of

digit alphabets: binary 2 = {0, 1}, decimal, hexadecimal
letter alphabets: ASCII (subset thereof),
large alphabets: UTF-8, 2k product alphabet

Algorithmically, there is a major difference between small and large alphabets, a
difference we will mostly ignore.

Runs 27

Fix some transition system A = ⟨Q, Σ, τ⟩. Given a word u = a1a2 . . . am over
Σ, a run of A on u is an alternating sequence of states and letters

π = p0, a1, p1, a2, p2, . . . , pm−1, am, pm

such that pi−1
ai−→ pi is a valid transition for all i. p0 is the source of the run

and pm its target, and m ≥ 0 its length. So a run is just a path in a labeled
digraph.

Sometimes we will abuse notation and also refer to the corresponding sequence
of states alone as a run:

p0, p1, . . . , pm−1, pm

Traces 28

Given a run
π = p0, a1, p1, a2, p2, . . . , pm−1, am, pm

of an automaton, the corresponding sequence of labels

a1a2 . . . am−1am ∈ Σ⋆

is referred to as the trace or label of the run.

Every run has exactly one associated trace, but the same trace may have
several runs, even if we fix the source and target states (ambiguous automata).

Finite State Machines 29

Definition
A finite state machine (FSM) or finite automaton (FA) is a structure

A = ⟨T ; acc⟩

where T = ⟨Q, Σ, τ⟩ is a transition system and acc is an acceptance condition.

We will make no attempt to define the concept of an acceptance condition in
general and simply explain various examples as we go along.

The acceptance condition determines whether an FA accepts or recognizes
some input x ∈ Σ⋆.

The (acceptance) language L(A) of the automaton A is the set of all words
accepted by the automaton. Alternatively, one speaks of the language
recognized by A.

Vanilla Acceptance 30

The most basic acceptance condition is comprised of a collection of initial
states I ⊆ Q and a collection of final or accepting state F ⊆ Q.

Vanilla acceptance:
A run is accepting if it starts in I and ends in F .

Note that this condition does not require knowledge of the whole run, we just
need to worry about the first and last state.

Configurations 31

We can also think of finite state machines as a basic model of computation.
Recall that in order to define how such a model works, one defines
configurations, snapshots that contains all the information needed to resume
the computation later. In this case, we only need to keep track of the current
state p ∈ Q and the remainder z ∈ Σ⋆ of the input.

p z p ∈ Q, z ∈ Σ⋆

One step in a computation is then given by τ , really just a lookup table.

p az A
1

q z ⇐⇒ τ(p, a, q)

Here p ∈ Q, a ∈ Σ, z ∈ Σ⋆.

Accepting Computations 32

On this view, the computation on input x ends after exactly |x| steps in some
state q without any input left. We accept if that state is final:

p x A q p ∈ I, q ∈ F

In this model, there is no need for a special halting state, we can simply read
off the “response” of the machine by inspecting the last state.

Decidability† here comes down to being able to recognize a particular language
L ⊆ Σ⋆: we want a FSM A such that L = L(A).

†We don’t have any computable functions here, just decision algorithms. And there is no issue
with termination.

Useful States 33

Only those states in a finite state machine are relevant that lie on a path from
I to F . A state is called accessible if it is reachable from I, and coaccessible if
F is reachable from it.
A state p is a trap if all transitions with source p also have target p.
A state is a sink if it is a trap and is not final.

One uses similar terminology for the whole automaton. In particular, an
automaton is trim if it is both accessible and coaccessible.
One also speaks of the accessible/coaccessible/trim part of a FSM.

Cleaning Up 34

More precisely, one can use standard graph exploration algorithms to compute
the accessible part of an automaton: determine the states reachable from I in
the diagram, and remove all the others (and the transitions affected by this). It
is clear that this can be done in linear time.
Coaccessible and trim parts are computed similarly.

Claim: Let A be a FSM and A′ its trim part. Then L(A) = L(A′).

Civilized Transitions 35

Definition
A transition system is complete if for all p ∈ Q and a ∈ Σ there is some q ∈ Q
and a transition

p
a−→ q

In other words, the system cannot get stuck in any state, we always can
consume all input symbols and obtain a run of length |x|.

Definition
A transition system is deterministic if for all p, q, q′ ∈ Q and a ∈ Σ

p
a−→ q, p

a−→ q′ implies q = q′

Thus, a deterministic system can have at most one run from a given state for
any input.

In Other Words 36

A deterministic transition system consists of a collection of partial functions

δa : Q ↛ Q

where a ∈ Σ. By currying, we can also think of these as a map

δ : Q × Σ ↛ Q

We will refer to these maps as transition functions.

If the transition system is in addition complete, we get plain functions
δa : Q → Q and δ : Q × Σ → Q .

DFAs 37

Combining the previous acceptance condition with completeness and
determinism produces a particularly useful type of automaton.

Definition
A partial deterministic finite automaton (PDFA) is a structure

A = ⟨Q, Σ, δ; q0, F ⟩

where the transition system ⟨Q, Σ, δ⟩ is deterministic. If the system is in
addition complete we call the structure a deterministic finite automaton (DFA).
We use the vanilla acceptance condition (path from q0 to F).

It is straightforward to see that a PDFA has at most one trace (or run) starting
at q0, of length at most |x|, on any possible input word x.

For a DFA there is exactly one trace starting at q0, of length |x|, on any
possible input word x.

Terminology 38

Arguably, DFAs should be called complete, deterministic finite automata,
acronym CDFA. Unfortunately, no one does this.

We will refer to nondeterministic machines of all kinds as NFAs.

Note that one can safely assume that all states in a DFA are accessible: we can
replace the automaton by its accessible part (in linear time).

This fails for coaccessibility: the coaccessible/trim part of a DFA may just be
PDFA. DFAs are nicer in many ways, but from an algorithmic perspective
PDFAs rule the roost.

Recognizable Languages 39

Definition
A language L ⊆ Σ⋆ is recognizable or regular∗ if there is a finite state machine
M that accepts L: L(M) = L.

Thus a recognizable language has a simple, finite description in terms of a of
finite state machine. As we will see, one can manipulate the languages in many
ways by manipulating the corresponding machines.

In a sense, recognizable languages are the simplest kind of languages that are
of interest. More complicated types of languages such as
context-free/context-sensitive languages are critical for compilers and
complexity theory, but even recognizable languages are surprisingly powerful.

∗Regular is more popular in the US, but hopelessly overloaded.

Weirdness 40

Note that we are using a slightly strange approach here: usually one first
defines a class of functions (RM computable, primitive recursive, polynomial
time computable, . . .).

Then one introduces the corresponding class of decision problems via
characteristic functions. This time we have no functions, only languages.

There is a class of finite state machines that compute functions, so-called
transducers, that require a bit more effort to deal with. More later.

The Killer Apps 41

There are two somewhat separate reasons as to why finite state machines are
hugely important.

1. Membership in a recognizable language can be tested blindingly fast, and
using only sequential access to the letters of the word. This works very
well with streams and is the foundation of many text searching and edit-
ing tools (such as grep and emacs). All compilers use similar tools.

2. Another important aspect is the close connection between finite state
machines and logic. Here we don’t care so much about acceptance of
particular words but about the whole language. The truth of a formula
can then be expressed as “some machine has non-empty acceptance lan-
guage.” Actually, this becomes really interesting for infinite words (where
the first application disappears entirely).

Pattern Matching 42

pattern

converter

FSMtext yes/no

Fast Acceptance Testing 43

Proposition
For any DFA A and any input string x we can test in time linear in |x| whether
A accepts x, with very small constants.

p = q0; // reset
while(a = x.next()) // next input symbol

p = delta[p][a]; // table look-up

return p in F; // table look-up

Truth in Advertising 44

In many situations the real computational problems is not the actual run of the
DFA on some input, it’s the construction of the DFA in the first place.

In fact, one often avoids the construction of a DFA and makes do with an NFA
(see below). When the speed of construction becomes mission-critical, one may
even produce a device that is almost a finite state machine and could relatively
easily be converted into one, but it is cheaper to use the gizmo directly.

Typical example: string matching.

One is given one or more strings w1, . . . , wm and one needs to find their
occurrences in a large text file.

As a good example, consider computational biology, where one looks for
particular patterns in an DNA string.

Aho-Corasick Algorithm 45

0

1

3 6 9 12 15 17

4 7 10 13 16 18

2 5 8 11 14

A

C

G A T A T

T

A T A T A

T

A T A T

This is the skeleton of a machine that searches for strings ACGATAT,
ATATATA and TATAT over alphabet {A, C, G, T } (adenin, cytosin, guanin,
thymine).

Back-Transitions 46

A

C

G A T A T

T

A T A T A

T

A T A T

If a mismatch occurs, take a back-transition and then try again. From there it
is not hard to construct a proper NFA or, if need be, even a DFA (though
efficiency-wise it may be better to stick with slightly more complicated devices).

1 Zero Space

2 Finite State Machines

3 The Foundations

The Early Days 48

W. S. McCulloch, W. Pitts
A logical calculus of the ideas immanent in nervous activity
Bull. Math. Biophysics 5 (1943) 115–133

S. C. Kleene
Representation of events in nerve nets and finite automata
in Automata Studies (C. Shannon and J. McCarthy, eds.)
Princeton UP, 1956, 3–41.

M. O. Rabin and D. Scott
Finite automata and their decision problems
IBM J. Research and Development, 3 (1959), 114–125.

http://www.cs.cmu.edu/~cdm/resources/McCullochPitts1943.pdf
http://www.cs.cmu.edu/~cdm/resources/Kleene1951.pdf
http://www.cs.cmu.edu/~cdm/resources/RabinScott1959.pdf

Neural Nets 49

McCulloch (neuroscientist) and Pitts (logician) present the first attempt to
define the functionality of a neuron abstractly. The current AI craze goes back
to this paper.

References 50

The references in the McCulloch/Pitts paper are rather remarkable.

R. Carnap, The Logical Syntax of Language
Harcourt, Brace and Company 1938.

D. Hilbert, W. Ackermann, Grundzüge der Theoretischen Logik
Springer Verlag 1927.

B. Russell, A. N. Whitehead, Principia Mathematica
Cambridge University Press 1925.

Kleene 51

Kleene’s paper puts some of the ideas in McCulloch/Pitts on a more solid
mathematical foundation and is strikingly elegant. The nets under
consideration are essentially finite state machines.

The behavior of a net is a regular event, essentially a regular language.

All regular events can be constructed from trivial ones using simple alge-
braic operations (synthesis problem, Kleene star).

Only regular events can be constructed by the algebraic machinery (analy-
sis problem).

The purely algebraic description for regular languages in terms of regular
expressions is critical in current applications. To wit, if a pattern matching
algorithm required a user to type in a finite state machine, it would be
essentially unusable. Anyone can type in a regular expression.

The Breakthrough 52

The 1959 paper by Rabin and Scott was an absolute breakthrough. For many
years it was the most highly cited paper in CS. In particular, it introduced two
major ideas:

nondeterminism in machines,

decision problems as a tool to study FSMs.

Prior to the paper, computations were always deterministic, the current
configuration always determined the next (even though nondeterminism pops
up very much by itself in the λ-calculus).

Nondeterminism 53

In the spirit of Rabin/Scott’s 1959 paper, it is perfectly acceptable to have
nondeterministic transitions

p
a−→ q and p

a−→ q′ where q ̸= q′

This sort of transitions makes it possible for computations to branch, the same
input may be associated with multiple (in fact, exponentially many) runs.

This idea may sound quaint today, but it was a huge conceptual
breakthrough at the time. Ponder deeply.

The Membership Problem 54

Every language L ⊆ Σ⋆ presents a natural decision problem: determine
whether some word belongs to the language. In the particular case when the
language is represented by a FSM we can think of the machine as part of the
input (uniform versus non-uniform).

Problem: FSM Membership (Recognition)
Instance: A FSM A and a word x.
Question: Does A accept input x?

Lemma
The FSM Membership Problem is solvable in linear time.

Killer App 55

// recognition problem
P = I

while some input symbol a ∈ Σ remains do
P = { q ∈ Q | ∃ p ∈ P ((p, a, q) ∈ τ) }

return P ∩ F ̸= ∅

Note that when the machine is a DFA the state set P ⊆ Q is just a single state,
and can be represented by an integer. Recognition is lightning fast in this case.

In general, we need to maintain a container type for P which leads to a modest
slow-down in applications. For fixed A, we pick up a multiplicative constant.

Killer Idea 56

It is intuitively clear that DFAs are less complicated than their nondeterministic
counterparts. This difference is visible in a minor slow-down in the recognition
algorithm for NFAs.

A Challenge:
Can one use other decision problems to distinguish between de-
terministic and nondeterministic machines?

In particular, are there problems that are, say, polynomial time for DFAs but
exponential for NFAs?

More Decision Problems 57

There are quite a few natural questions one can ask about FSMs that translate
into pretty decision problems.

Problem: Emptiness
Instance: A DFA A.
Question: Does A accept no input?

Problem: Finiteness
Instance: A DFA A.
Question: Does A accept only finitely many inputs?

Problem: Universality
Instance: A DFA A.
Question: Does A accept all inputs?

Easy Decidability 58

Theorem
The Emptiness, Finiteness and Universality problem for DFAs are decidable in
linear time.

Proof.
Consider the unlabeled diagram G of the machine. Emptiness means that there
is no path in G from q0 to any state in F , a property that can be tested by
standard linear time graph algorithms (such as DFS or BFS). 2

Exercise
Show in detail how to deal with Finiteness and Universality.

Not so Easy 59

Theorem
Emptiness and Finiteness for NFAs are decidable in linear time.
The Universality problem for NFAs is PSPACE-complete.

In fact, the algorithms for Emptiness and Finiteness are essentially the same as
for DFAs (path existence and cycle existence).

The PSPACE-completeness argument is a lot harder, we’ll skip.

Anther Killer Idea 60

For any kind of computational model, there is a natural problem called program
size complexity: try to find the smallest machine/program in your model that
solves a certain problem.

What is the (size of the) smallest program for a given task?

For general models of computation such as register machines or Turing
machines this problem is not computable. But for FSMs it is more manageable,
and for DFAs there is a very good solution.

Note that this approach is somewhat orthogonal to the usual time and space
complexity of an algorithm: here the issue is the size of the code, not it’s
efficiency. Can you program a SAT solver on your wrist watch?

Equivalence and State Complexity 61

Definition
Two FMSs A1 and A2 over the same alphabet are equivalent if they accept the
same language: L(A1) = L(A2).

So we would like to find the smallest machine in a class of equivalent ones
(that all recognize the same language). In some sense, the smallest machine is
the best representation of the corresponding language.

Definition
The state complexity of a FSM is the number of its states.
The state complexity of a recognizable language L is the size of a smallest DFA
accepting L.

Determining State Complexity 62

We wind up with another decision problem (this is really an optimization
problem, but we can express in the usual slightly twisted form):

Problem: State Complexity
Instance: A recognizable language L, a bound β.
Solution: Is the state complexity of L at most β?

Again, there is a gap between deterministic and nondeterministic machines.

Theorem
State Complexity is polynomial time for DFAs, but PSPACE-complete for
NFAs.

Brute Force 63

The obvious brute-force algorithm for state complexity is to

generate all DFAs in order of increasing size, and

check all of them for equivalence with the given machine;

stop when the first match pops up.

There are a few problems with this method. First, we need to make sure that
every recognizable language is already accepted by a DFA. Second, the search
may involve exponentially many DFAs. Third, we don’t know how to check
whether two machines are equivalent.

We will postpone the first problem, ignore the second and only handle the third
one.

Equivalence Testing 64

Lemma
Equivalence of finite state machines is decidable.

Proof.
It suffices to find some bound β so that A1 and A2 are equivalent iff they
agree on all words of length β. We may safely assume that both machines have
n states. Consider some word x of length m that the machines disagree on.

We trace the computations of both machines on x. Write x≤i for the prefix of
x of length i.

Si =
(
τ1(I1, x≤i), τ2(I2, x≤i)

)
If m ≥ (2n)2, then for some 0 ≤ i < j ≤ m we must have Si = Sj . But then
we can shorten x by removing the factor xi+1, . . . , xj . Repeating this sort of
surgery ultimately produces a string of length at most β = 4n works.

2

Rubbish 65

Note that For DFAs the bound can immediately be improved to β = n2.

Great, but still totally useless since we have to check kβ words where k = |Σ|.

The real challenge is to try to understand how efficient we can make
equivalence testing, and how efficiently we can determine state complexity of a
regular language.

Finding good algorithms requires a much better understanding of FSMs.

	Zero Space
	Finite State Machines
	The Foundations

