
CDM

Fast Minimization

Klaus Sutner

Carnegie Mellon University
Fall 2024

1 Partition Refinement

2 Hopcroft’s Algorithm

3 Valmari-Lehtinen

Battleplan 2

Minimization is a good example where efficient computation forces one to think
more carefully than in math alone.

We have a quadratic time (worst case), linear space algorithm that works fairly
well as long as the machines are not too large. If one tries to break through the
quadratic barrier, a reasonable target is log-linear.

So the challenge is to come up with a log-linear algorithm for minimization, or
come up with plausible arguments as to why such an algorithm does not exist.
To be clear: it does exist, but it’s much more complicated than Moore’s
algorithm.

Towards Algorithms 3

Mathematical Thinking: behavioral equivalence. Once the concept of be-
havior is clear, there is a straightforward algorithm for mini-
mization. And, it’s even polynomial time.

Algorithmic Thinking: refinement of equivalence relations. A better al-
gorithm is obtained by thinking clearly about computing with
equivalence relations (Moore). The reward is a clean, quadratic
time algorithm (which is often much better than quadratic).

Smart Algo Thinking: baby-steps vs. giant-steps. Now things get tricky:
all sub-quadratic algorithms require a much more careful argu-
ment and deeper algorithmic methods. A bit of creative insight
is required to get down to log-linear. And doing things ele-
gantly and efficiently is quite difficult.

Total Recall 4

Recall our abstract scenario: we have an equivalence relation ρ ⊆ Q × Q and
an endofunction f : Q → Q .

We want to find the coarsest refinement ρ̂ of ρ that is compatible with f :

p ρ̂ q ⇒ f(p) ρ̂ f(q)

This is accomplished by repeated application of a refinement operator reff :

p ρf q ⇔ f(p) ρ f(q)

reff (ρ) = ρ ⊓ ρf

In other words: ρ̂ is the fixed point of ρ under reff .

Moore’s Algorithm 5

The refinement operator in Moore’s algorithm works by representing all
relations as canonical selector functions (aka int arrays), each round requires a
scan of the whole array.

So each refinement step is Θ(n)—with good constants but still linear in n.

The good news is that, quite often, the algorithm uses fewer than n rounds, so
the total time complexity may well be sub-quadratic.

Alas, there are cases when Moore requires Θ(n) rounds, producing quadratic
running time overall.

Standard Example 6

Here is the standard example that demonstrates that Moore’s algorithm may be
quadratic: the minimal DFA for {a}≥k.

0 1 2 3 4 5
a a a a a

a

For this automaton, a single Moore round will split off only one state from the
right end of block D = {0, 1, . . . , r}, at a cost of Θ(n) steps.

The split occurs only because of some block B = {p}, nothing else matters.

Potential Speedup 7

Critical Idea:
Maybe we could get mileage out of trying to guide the refinement
by single blocks, instead of blindly hitting the whole carrier set.

We only want to touch the the blocks in the partition that are currently
“relevant,” not just blindly every state in the machine. E.g., in the last
machine we want to touch only {0, . . . , p − 1}.

Local Splitting, Backwards 8

Suppose ρ is a partition of Q, and consider two blocks C and B. Let
f : Q → Q be some endofunction.

We say that C splits B if

B ∩ f−1(C) ̸= ∅ and B − f−1(C) ̸= ∅.

In other words, f(B) intersects both C and Q − C and is not f -compatible yet:
stopping the refinement process at this point would produce a nondeterministic
machine. We need further refinement.

Giants versus Babies 9

Let’s define a new, more complicated refinement operator ρ′ = reff (ρ, B, C) as
follows:

p ρ′ q ⇐⇒ (p, q /∈ B ∧ p ρ q) ∨(
p, q ∈ B ∧ (f(p) ∈ C ⇔ f(q) ∈ C)

)

In other words: outside of block B we keep the old ρ. Inside of B we check for
C-equivalence of children.

So reff (ρ, B, C) is a indeed a refinement of ρ: block B is potentially split in
two (or may be unchanged).

Correctness 10

Proposition

reff (ρ) ⊑ reff (ρ, B, C).

reff (ρ) ̸= ρ implies that reff (ρ, B, C) ̸= ρ for some B and C.

In other words, we make no mistakes and we can’t get stuck.

Proof.
reff (ρ) is

d
C,B reff (ρ, B, C) and thus finer than each part.

If reff (ρ) ̸= ρ there must be some block B and p, q ∈ B such that
¬(f(p) ρ f(q)).
Let C be the block containing f(p), done. 2

But Why? 11

Of course, from a complexity perspective this may not sound too promising: we
are breaking one giant step into multiple baby steps. It is not unreasonable to
suspect that this might even increase running time.

But: The baby steps provide much better control over the selection of the next
refinement step: we can choose the blocks involved at will.

With a little effort this feature can be exploited sufficiently to speed up the
whole process.

1 Partition Refinement

2 Hopcroft’s Algorithm

3 Valmari-Lehtinen

Hopcroft’s Algorithm, Single-Letter Case 13

Suppose we have Σ = {a} and we want to insure compatibility with δa (see
below for the general case). In addition, we have an initial partition
(F, Q − F). The algorithm maintains two data structures, both are initialized
by the given partition.

a partition P of Q, representing the equivalence relation,

a split list S with entries some of the blocks in the partition.

We refer to the blocks C in S as active: those are the blocks that we will use
at some point to try to refine P by a−1C.
The algorithm extracts an active block from the split list and tries to refine the
blocks in the partition accordingly.
It then updates the split list in a clever way, and stops when the split list
becomes empty.

Getting Started 14

Initializing P is straightforward, just the given partition.

The split list S only gets the smaller of the two blocks (we are dealing with the
single-function case here, see below on how to handle larger alphabets).

Since we are interested in the case where f = δa, let us lighten notation a bit
and write a−1C rather than δ−1

a (C).

Incidentally, for some application one needs to allow initial partitions with more
than 2 blocks; everything we do here easily generalizes.

Hopcroft’s Algorithm 15

initialize partition P and split list S

while S not empty do
extract C from S

compute Ĉ = a−1C

foreach block B split by C do
B+ = B ∩ Ĉ

B− = B−B+

replace B by B+ and B− in P // update partition
if B is in S // update split list
then replace B by B+, B− in S

else replace B by the smaller of B+, B− in S

end

Missing Work? 16

At first glance it may seem like we are not doing enough work: in the last case
it feels like both B+ and B−, the parts of B obtained by splitting wrto the
critical block C, should be added to the split list.

Otherwise we might miss out on splitting some other block that is not split by
B but split by B+ or B−. The algorithm might stop without having produced
an f -compatible relation.

The correctness proof hinges on showing that this cannot happen: in the critical
case, if B+ splits some block, then so does B−, and the other way around.

By picking the smaller of the two blocks, we get the desired speedup while sill
producing the right result.

Hopcroft’s Proposition 17

The following observation by Hopcroft makes this idea of “no-missing-work”
more formal. Suppose we have 2 blocks B, C in partition P . Write

B/C

for the partition induced by splitting B via a−1C: B+ = B ∩ a−1C and
B− = B − a−1C.

Let X be a block.

Proposition

X/B ⊓ X/B+ = X/B ⊓ X/B− = X/B+ ⊓ X/B−

Correctness 18

Call a set Z ⊆ Q of states safe for partition P (or simply P -safe) if f−1(Z)
does not split any block in P .

We will show that the following assertion is a loop invariant:

∀ X ∈ P −S ∃ T ⊆ S

(
X ∪

⋃
T P -safe

)

In other words, Z = X itself may split some blocks, but if we pad it out with a
few blocks in S (and thereby inflate f−1(Z)) no splits occur.

Before and After 19

This assertion holds before the loop ever executes: there are only two blocks
X, Y in P and one, say, Y in S (the smaller of the two). Since
f−1(X ∪ Y) = f−1(Q) = Q, no splits occur.

After the loop terminates with S = ∅, the claim

∀ X ∈ P
(
X P -safe

)
meaning the every block is safe. Done.

Notation 20

As is customary, we indicate the value of a variable after one more execution of
the loop-body by attaching a prime: so P ′ is the partition after one more
round.

In the following we argue about the state of affairs at the end of a round. We
need to show that

∀ X ∈ P −S ∃ T ⊆ S

(
X ∪

⋃
T P -safe

)
implies that

∀ X ∈ P ′−S′ ∃ T ⊆ S′
(

X ∪
⋃

T P ′-safe
)

So assume we have some arbitrary block X ∈ P ′ − S′.

Aside 21

Induction arguments about procedural code are typically messy because one
has to distinguish between changes in state; in particular variables change their
values over and over again.

The resulting arguments can get quite involved combinatorially and are often
quite messy.

Case 1: X ∈ P , X ∈ S 22

In this case, X is an old block that has just been removed from the split list.

Since X is old, it has not been split in the last round, yet was removed from
the split list.

The only way this can happen is that C = X is the critical block, and was
removed after splitting blocks wrto a−1C. But then safety is a direct result of
the construction.

Case 2: X ∈ P , X /∈ S 23

By induction hypothesis: Z = X ∪
⋃

T is P -safe for some T ⊆ S.

Case 2.1: C /∈ T

In this case we can replace split blocks in the padding set T : replace Y by Y +

and Y − (which are both active) and we have Z = X ∪
⋃

T ′ is P -safe. It is
easy to check that Z is also P ′-safe.

Case 2.2: C ∈ T

Again, we can replace split blocks in the padding set T , producing T ′.
However, we can no longer use the critical block C /∈ S′, we can only pad with
T ′′ = T ′ − C. But no block in P ′ can be affected by this: it was already split
wrto f−1(C) during the round.

Case 3: X ∈ P ′ − P 24

So block X is new and was created by splitting a block Z in the last round.

Say, X = Z+ and Z ∪
⋃

T is P -safe for some T ⊆ S.

As before we can handle split blocks in T .

Case 3.1: C /∈ T

Then X ∪
⋃

T ′ ∪ Z− is P ′-safe as in Case 2.1. Note that indeed Z− ∈ S′ by
construction.

Case 3.2: C ∈ T

In this case, X ∪
⋃

T0 ∪ Z− is P ′-safe as in Case 2.2.

Time Complexity 25

Each block in P is represented by a doubly-linked list.

We maintain an array of pointers to these lists for P and similarly for S. We
also keep track of the cardinality of each block.

Furthermore, we have an array of pointers so that pos[p] points to the list
node containing p, plus information about the current block containing p.

The key part of each round is the computation of Ĉ = a−1C. We may assume
that f−1(p) has been precomputed for each state p. We can traverse C in time
linear in |C|.

When a block B is hit for the first time, we start splitting it into two lists B+

and B−. If, in the end, B− = ∅ we simply replace B by B+.

All this can be handled in time O(|a−1C|).

Active States 26

Let us say that a state p is active if p ∈
⋃

S, inactive otherwise.

At level 0, at most half of all states are active.

Each state in the critical block C becomes inactive, but maybe reactivated
later. Hence we can naturally assign activation levels 0, 1, 2, . . . to all active
states.

Recall that we only reactivate at most half the states in a block, so no state
can be activated more than log n times. But then the total work computing
pre-images of active states during the whole execution is just O(n log n).

Hence the running time of the whole algorithm is bounded by O(n log n).

The Paper 27

J. Hopcroft
A N log N Algorithm for Minimizing States in a Finite Automaton
STAN-CS-71-190

This is a seminal paper that will bring tears to your eyes.

http://www.cs.cmu.edu/~cdm/resources/Hopcroft1971.pdf

Multiple Functions 28

We modify the split list in the algorithm to contain entries

(a, C) ∈ S

where C is a block and a ∈ Σ: the intent is that we later refine via a−1C.

Of course, (a, X) is smaller than (a, Y) if |X| ≤ |Y |.

Note that we need to add (a, X) for all a ∈ Σ, which produces a running time
of O(kn log n).

Hopcroft Example 29

The following example uses a machine over alphabet {a, b} with 15 states. The
transition matrix is

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
a 2 4 6 8 10 12 14 8 10 12 14 8 10 12 14
b 3 5 7 9 11 13 15 9 11 13 15 9 11 13 15

The final states are {12, 13, 14, 15}.

The following table shows the element extracted from the split list in the first
column and the blocks in the second.

Note that split list entry (a, i) means: use the ith block in the current partition
with respect to f = δa.

The Diagram 30

1

2

4

3

6

8

5

10

12

7

14 911

13

15

Sample Run 31

((12, 13, 14, 15), (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)) a, 1; b, 1
((14, 15), (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11), (12, 13)) b, 1; a, 3; b, 3
((14, 15), (6, 7, 10, 11), (12, 13), (1, 2, 3, 4, 5, 8, 9)) b, 1; a, 3; b, 3; a, 2; b, 2
((15), (6, 7, 10, 11), (12, 13), (1, 2, 3, 4, 5, 8, 9), (14)) a, 3; b, 3; a, 2; b, 2; a, 5; b, 5
((15), (7, 11), (12, 13), (1, 2, 3, 4, 5, 8, 9), (14), (6, 10)) a, 3; b, 3; a, 2; b, 2; a, 5; b, 5; a, 6; b, 6
((15), (7, 11), (13), (1, 2, 3, 4, 5, 8, 9), (14), (6, 10), (12)) a, 5; b, 5; a, 6; b, 6; a, 7; b, 7
((15), (7, 11), (13), (3, 5, 9), (14), (6, 10), (12), (1, 2, 4, 8)) a, 5; b, 5; a, 6; b, 6; a, 7; b, 7; a, 4; b, 4

In the first step, a−1(12, 13, 14, 15) = (6, 7, 10, 11, 14, 15) and we split both
existing blocks.

This trace only shows steps where the partition changes. Note there are many
“useless” steps at the end.

Implementation Warning 32

The algorithm is quite messy to implement correctly, as can be seen from the
following papers:

D. Gries
Describing an algorithm by Hopcroft
Acta Informatica, 2 (1973) 97–109.

T. Knuutila
Re-describing an algorithm by Hopcroft
Theoretical Computer Science, 250 (2001) 333–363.

Exercise
Implement Hopcroft’s algorithm, correctly.

http://www.cs.cmu.edu/~cdm/resources/Gries1972.pdf
http://www.cs.cmu.edu/~cdm/resources/Knuutila2001.pdf

Hopcroft’s Algorithm 33

Theorem (Hopcroft 1971)
Hopcroft’s algorithm minimizes a DFA in O(kn log n) steps, where n is the
state complexity of the DFA and k the size of the alphabet.

Gries gives a very careful description (and slight improvement) of the
algorithm, really proves correctness and analyzes running time in detail.

Knuutila pointed out in 2001, one can produce cubic (in n) running time when
k = n/2 and a poor method of choosing the “smaller” block is used. OK, but
how is this relevant?

Nondeterminism 34

Note that Hopcroft’s algorithm is nondeterministic in several ways.

We can extract any element from the split list (e.g., could use a stack,
queue, . . .).

Likewise we can place the new entries anywhere in the split list.

When B+ and B− have the same size, we can pick either one.

None of these choices effect correctness, but they may well influence running
time. As a consequence, any detailed analysis taking into account possible
strategies is quite complicated.

Actual Running Time 35

It should be noted that the algorithm often takes far fewer than n log n steps.

Given a reasonable implementation, every round is linear. It turns out to be
quite difficult to construct inputs where the algorithm requires log n many
rounds.

The best result known today is that there are some DFAs such that the
algorithm takes n log n steps for a certain choice of active blocks in the main
loop.
Alas, for these machines a different choice of active blocks results in linear
running time.

Research Problems 36

When is the running time Ω(n log n) regardless of the chosen split list
protocol? (A unary example is known where the execution sequence is
essentially unique and reaches the log-lin bound.)

What is the average complexity of Hopcroft’s algorithm (average with
respect to input automaton and/or split list protocol)?

Is Hopcroft faster than Moore on average? For the uniform distribution,
Moore has expected behavior O(n log n) and it may be that the constants
are smaller (Bassino, David, Nicaud 2009).

1 Partition Refinement

2 Hopcroft’s Algorithm

3 Valmari-Lehtinen

Partial DFAs 38

There are many examples where the number of transitions m in a partial DFA
is much smaller than k · n, k the size of the alphabet and n the number of
states. This leads naturally to an algorithmic question:

Is there a O(m log n) minimization algorithm that deals directly
with partial transition functions?

This would also nicely encapsulate problems with alphabet size in a parameter
that really reflects the size of the data structure: unused symbols do not inflate
the transition function.

Splitters, Again 39

The high-level logic is similar as in Hopcroft’s algorithm: one maintains a
partition of Q and tries to refine the partition by splitting with sets of the form

δ−1
a (B)

The choice of B is a bit more complicated, though. Special care is taken to
avoid unnecessary computation when preimages of blocks are computed.

New Idea:
Maintain and refine a second partition of the transitions.

The transition partition helps to speed up pre-image computation.

Partition Refinement Data Structure (PRDS) 40

Important implementation detail: the partition data structure is all array-based
(unlike Hopcroft’s algorithm).

Suppose we wish to maintain a partition of n†. Keep track of r, the number of
blocks, and maintain two maps (arrays)

lo, hi : r −→ n

plus an array P[n] such that

Bd, the block number d, is located in P [lo[d], hi[d] − 1]

We also have location and block-number maps

loc : n −→ n

bnum : n −→ r

such that P [loc[p]] = p, loc[P [i]] = i and p ∈ Bbnum[p].

†Write n for {0, 1, . . . , n − 1}.

Splitting 41

It is convenient to subdivide the splitting process into three phases:

Pre-splitting: initialize offset pointers mrk[d] = lo[d] for all blocks, create
empty hit list.

Splitting: process a sequence of elements, swap each to the “marked”
part P [lo[d], mrk[d] − 1] of their respective blocks. If block Bd is encoun-
tered for the first time, add to hit list.

Post-splitting: walk through blocks in hit list and update to maintain in-
variants.

It is straightforward to arrange the post-splitting phase so that whenever B
splits into B1 and B2, the larger part replaces B and the smaller part receives
the higher block index (the current value of r).

The Algorithm 42

As already mentioned, the minimization algorithm uses two PRDS:

P : represents a partition of Q; initialized to (F, Q − F), as usual.
T : represents a partition of the transitions; initialized to blocks containing
all transitions with the same label.

The main loop of the algorithm looks like this:

foreach T -block C do
split blocks in P via C
foreach P -block B do

split blocks in T via B

New blocks are “appended” in both partitions, so the traversals end when all
blocks have been processed.

Two Splitting Procedures 43

pre-split P

foreach transition p
a−→ q in block C do

mark source p in P -partition
post-split P

pre-split T
foreach state p in block B do

foreach transition t : q
a−→ p do

mark t in T -partition
post-split T

Auxiliary Transition List 44

Note that for the transition splitting operation one needs to be able to traverse
all transitions with a fixed target.

To this end one precomputes two arrays

trn : m −→ m

fst : n −→ m

such that for each state p

the transitions with target p are located in trn[fst[p], fst[p + 1] − 1]

This is easy via counting sort.

Correctness 45

Recall that bnum(p) is the block number of state p. By abuse of notation,
bnum(t) is the block number of transition t.

Proposition

States:
bnum(p) ̸= bnum(q) implies JpK ̸= JqK

Transitions:
bnum(s) ̸= bnum(t) and lab(s) = lab(t) implies Jtrg(s)K ̸= Jtrg(t)K

Correctness II 46

Proposition
Let s, t be two transitions in the same T -block.
If src(s) and src(t) are in different P -blocks, then at least one of the blocks is
unprocessed.

Proposition
Let p, q be two states in the same P -block and s : p

a−→ p′, t : q
a−→ q′ two

transitions in different T -blocks. Then at least one of these blocks is
unprocessed.
If s : p

a−→ p′ and there is no a-transition with source q, then s is in an
unprocessed T -block.

Correctness III 47

Theorem
The algorithm correctly minimizes a trim partial DFA in O(m log n) steps.

Proof.
It follows from the propositions that two states have the same behavior iff,
upon completion, they are in the same P -block.

For running time, note that since we are dealing with a trim automaton, we
have n ≤ m + 1.
As in Hopcroft’s algorithm, each state can be active at most log n times and,
likewise, a transition can be active at most log m times.
So the total running time is O(m log n).

The Paper 48

Antti Valmari
Fast brief practical DFA minimization
Information Processing Letters 112 (2012) 213–217

This is another paper that will bring tears to your eyes, but for entirely different
reasons.

http://www.cs.cmu.edu/~cdm/resources/Valmari2012.pdf

	Partition Refinement
	Hopcroft's Algorithm
	Valmari-Lehtinen

