
Hypercomputation—A Rant

Klaus Sutner

Carnegie Mellon University
Fall 2024

1 Generalized Computation

2 The Cult of Hypercomputation

3 Infinite Time Turing Machines

4 The Death of Hypercomputation

Tired of Computation? 2

Tired of computability, complexity, algorithms, average case analysis, efficiency,
non-computability, intractability?

All the endless of effort of thinking about hard problems?

No problem. There are people working in the brand-new and exciting field of

HYPERCOMPUTATION

Just wait a little bit longer, and your desktop machine will be replaced by a
hypercomputer and will solve unsolvable problems on a routine basis. Merely
intractable problems are handled instantaneously.

Even Books . . . 3

Computability 4

At present, the theory of computation falls into two major parts:

Classical Computability Primitive recursive functions, Turing/register ma-
chines, λ-calculus, decidability, semidecidability, arithmetical
hierarchy, degrees of unsolvability, . . .

Complexity Theory Time and space classes, deterministic and nondetermin-
istic classes, circuits, P versus NP, randomness, probabilistic
classes, quantum computation, . . .

Could this be all? Nah . . .

Going Hyper 5

Historical Hypercomputation

This area is known as Generalized Recursion Theory (GRT) (as
opposed to Classical Recursion Theory (CRT)) and has been
studied extensively for almost a century, there are sophisticated
methods and lots of interesting results.

Hysterical Hypercomputation

A more recent idea, unencumbered by any sort of results. It re-
lates to actual computability theory in about the way astrology
relates to astronomy.

Generalized Computation? 6

My favorite quote from Stefan Banach:

A mathematician is a person who can find analogies between
theorems; a better mathematician is one who can see analogies
between proofs and the best mathematician can notice analogies
between theories. One can imagine that the ultimate mathemati-
cian is one who can see analogies between analogies.

Does this apply to computability?

Is there any reasonable way to generalize computability?

Is there any mileage one can get out of such generalizations?

Generalized Recursion Theory 7

A good number of theories of computation on structures other than the natural
numbers have been developed: computation on words, ordinals, sets, algebraic
structures, higher types and so on.

In fact, there is even an axiomatization of computation that tries to pin down
the most basic principles of computation in a clear, logical form:

J. E. Fenstad
General Recursion Theory: An Axiomatic Approach
Springer 1979

Unfortunately, the axiomatization by Fenstad feels a bit awkward and overly
technical (compared to, say, Hilbert’s axiomatization of geometry or
Zermelo-Fraenkel’s axiomatization of set theory), but overall it captures the
fundamental ideas behind computation fairly well.

1 Generalized Computation

2 The Cult of Hypercomputation

3 Infinite Time Turing Machines

4 The Death of Hypercomputation

Aside: Bad Slides Coming 9

All the experts tell you to

keep text on slides to a minimum

under no circumstances read your own slides

use simple, stripped down graphics

do not use multiple fonts, loud backgrounds, garish colors, useless pic-
tures, cartoons, watermarks, anything distracting . . .

In general, I try to adhere to these principles†, but there will be too much text
on the following slides, and I will read some of it aloud. Sorry.

†Except for item 1, I can’t stand slides that are utterly meaningless without a video.

Fashionable Nonsense 10

There are some areas of intellectual discourse where the experts can engage in
furious debates about the basic usefulness of certain methods, even beyond the
question of correctness. Psychology, philosophy, literature, history, economics
and so forth come to mind.

However, in the hard sciences, these debates tend to be rare and focus on
particular technical issues:

is string theory falsifiable,
is AI a threat to civilization,
is automatic theorem proving essential for math.

Amazingly, we now have an example of an entirely meaningless theory in
computability theory, or at least some area close thereto.

Jack Copeland and Diane Proudfoot 11

Hypercomputation 12

The term hypercomputation gained notoriety after a 1999 paper by Copeland
and Proudfoot in the Scientific American titled

Alan Turing’s Forgotten Ideas in Computer Science

The article makes the most astounding claim that Turing “anticipated
hypercomputation” in his technical work.

A clever PR trick, of course. Hiding behind one of the greats is usually a good
idea—in particular if the person is dead and cannot complain.

Copeland-Proudfoot Machine (CPM) 13

To support this conclusion, the authors misinterpret Turing’s concept of an
oracle machine in patently absurd ways. To help the baffled reader, the authors
provide a lovely picture of an oracle machine:

The idea is that the big, ominous, gray box (the oracle) has access to a copy of
the Halting set, an infinite bit-sequence τ that lives in the smaller, more
appealing blue box.

Hunting Oracles 14

The authors comment:

Obviously, without τ the oracle would be useless, and finding
some physical variable in nature that takes this exact value might
very well be impossible. So the search is on for some practicable
way of implementing an oracle. If such a means were found, the
impact on the field of computer science could be enormous.

Italics mine.
No doubt, the impact of finding τ under a rock somewhere in New Zealand
could be enormous. For example, we could potentially solve Diophantine
equations and get answers to all kinds of open problems like the Riemann
hypothesis.

Oracles in the RealWorldTM 15

To first-order approximation, there are two basic possibilities for the resource
requirements of the CPM:

It is reasonably fast, say, low degree polynomial time.
It is not, the running time is some rapidly growing horror.

If the CMP is slow, it is just as utterly useless with τ as without it.
One suspects this is not what the authors had in mind.

Working Assumption: The CPM is fast.

The End of the World 16

The reason Halting is quite so important is that a great many problems can be
reduced to it quite easily. E.g., let n = pq be the product of two large primes,
so RSA depends on factoring n being hard.

With CPM, this is a piece of cake. For 2 ≤ a ≤ b ≤ n, construct a Turing
machine Ma,b that halts if there is some factor of n in the interval [a, b]. Then
do a binary search.

Similar tricks would destroy just about all the cryptographic schemes relevant
today (I suppose quantum-generated one-time pads would still work). So, the
world financial system would implode immediately, followed by the whole world
economy, and soon after we’d be back in the stone age.

Heisenberg 17

The next vexing issue is that oracle τ depends on storing an infinite amount of
information in a finite physical system—remember the little blue box. There
are good reasons to believe that this is quite patently impossible.

And even if we could somehow store an infinite amount of information in the
blue box, how could we possibly retrieve it with sufficient precision—perhaps
the authors are unaware of Heisenberg’s uncertainty principle?

We would have to fire photons of arbitrarily high energy at our box to get at
distant bits, which would destroy the device immediately and the whole CPM
would turn into a black hole.

Feynman 18

It bothers me that, according to the laws as we understand them
today, it takes a computing machine an infinite number of logical
operations to figure out what goes on in no matter how tiny a
region of space, and no matter how tiny a region of time. How
can all that be going on in that tiny space? Why should it take
an infinite amount of logic to figure out what a tiny piece of
space-time is going to do?
So I have often made the hypothesis that ultimately physics
will not require a mathematical statement, that in the end the
machinery will be revealed and the laws will turn out to be simple,
like the checker board with all its apparent complexities.

R. Feynman, 1965

A Misunderstanding? 19

Maybe Copeland-Proudfoot did not really mean to have an infinite oracle,
perhaps they were only hoping to get the first, say, trillion bits.

A nice initial slice of τ could still have huge impact on math. Depending on
coding details we might be able to resolve open problems such as the Riemann
hypothesis or the Goldbach conjecture, the consistency of Dedekind-Peano
arithmetic, and so on.

Implementing a bit-string of length 1012 would be entirely trivial, if only
someone could provide the actual bits. Alas, that’s exactly where things fall
apart; any finite oracle exists abstractly, but we don’t know how to construct it.

Zeus’s Gift 20

Suppose Zeus wakes up tomorrow and finds himself in a particularly spectacular
mood. He decides to gift mankind with the first trillion bits of τ . He asks
Athena to figure them out and sends Hermes down from Mount Olympus with
a USB stick.

Great, right?

Not really. How do we know that the bits are correct? There is no computable
way to test whether the bits have anything to do with τ—we would get
answers but there would be no reason to trust any of them.

Copeland versus Math 21

Many objections could be raised to this proposal. The most relevant
for us is that abstract mathematical entities are not the right kind of
entity to implement a computation. Time and change are essential to
implementing a computation: computation is a process that unfolds
through time, during which the hardware undergoes a series of changes
(flip-flops flip, neurons fire and go quiet, plastic counters appear and
disappear on a Go board, and so on).

Abstract mathematical objects exist timelessly and unchangingly. What
plays the role of time and change for this hardware? How could these
Platonic objects change over time to implement distinct computational
steps? And how could one step “give rise” to the next if there is no time
or change? Even granted abstract mathematical objects exist, they do
not seem the right sort of things to implement a computation.

WTF?

Toby Ord 22

The next quote is taken from a
2006 article titled “The many
forms of hypercomputation” by
Toby Ord, an Oxford educated
thinker and one of Copeland’s
acolytes.

In the interest of fairness, Ord
is really a moral philosopher
and quite impressive as such,
see Giving What We Can.

http://www.amirrorclear.net/academic/research-topics/other-topics/hypercomputation.html
https://en.wikipedia.org/wiki/Giving_What_We_Can

Ord Hedges 23

Let us suppose, however, that hypercomputation does turn out to be
physically impossible–what then? Would this make the study of hyper-
computation irrelevant? No. Just as non-Euclidean geometry would
have mathematical relevance even if physical space was Euclidean, so
too for hypercomputation.
Perhaps, we will find certain theorems regarding the special case of clas-
sical computation easier to prove as corollaries to more general results
in hypercomputation. Perhaps our comprehension of the more general
computation will show us patterns that will guide us in conjectures about
the classical case.

Sure, No Problem 24

All good, but this is one of the central reasons why recursion theory was
generalized in the first place: to gain additional insight into the nature of
ordinary computation. Sometimes one really can miss the forest for the trees.

So what exactly are the new results or insights obtained specifically from the
Copeland-Proudfoot approach? As far as I can tell, none.

Also note the evolution on the issue of implementability, apparently the oracles
have so far escaped capture and are still at large. Hence the need to salvage
hypercomputation in the absence of physical oracles.

Ord Halts 25

Thus the claims that such problems are “undecidable” or “unsolvable”
are misleading. As far as we know, in 100 years time these problems
might be routinely solved using hypermachines. Mathematicians may
type arbitrary Diophantine equations into their computers and have them
solved. Programmers may have the termination properties of their pro-
grams checked by some special software.
We cannot rule out such possibilities with mathematical reasoning alone.
Indeed, even the truth or otherwise of the Church-Turing Thesis has no
bearing on these possibilities. The solvability of such problems is a matter
for physics and not mathematics.

Quoi? 26

Seems like implementability is critical again, all of a sudden. Instead of gaining
alternative views on general issue of computability, we are back to having to
actually build and run our hypermachines.

The idea that undecidability is a matter of physics, not math, is just utterly
insane. In Ord’s defense, there are some notable physicists that have made
similar wrongheaded claims (Landauer, Deutsch). They all fail to comprehend
the difference between classical recursion theory and physical realizability.

Alas, that is a topic for another rant.

Wolfgang Pauli 27

This is not even wrong.

1 Generalized Computation

2 The Cult of Hypercomputation

3 Infinite Time Turing Machines

4 The Death of Hypercomputation

A Useful Generalization 29

Just to demonstrate that it can be perfectly interesting and productive to
generalize ordinary computation, here is one example that is intuitively quite
appealing:

Infinite Time Turing Machine (ITTMs)

Turing Machines and Infinite Computations 30

Usually we want a Turing machine to stop after finitely many steps† so we can
read off the result and go on to do other things.

However, it also makes sense to have a TM run forever.

For example, we could use the standard dovetailing approach to construct a
TM that runs forever and writes all e such that {e} halts on empty tape on a
special output tape.

This is perfectly fine intuitively, TMs can enumerate certain infinitely many
steps. Alas, to get real mileage out of this idea, one needs to work a bit harder
to make the notion of “run forever” more precise.

†Ironically, in Turing’s 1936 paper they were not supposed to stop.

Getting Serious 31

Technically, we need two main ingredients to formalize our idea:

The use of transfinite ordinals rather than just natural numbers to count
steps in a computation.

A mechanism to preserve information when a computation reaches a limit
stage, without breaking the constraint that a machine has to be a strictly
finitary object (at least the control mechanism).

To be clear: we wind up with a model of computation that is eminently
unrealizable, we cannot build such a device within the framework of physics.
Still, it fits in nicely with other ideas from generalized recursion theory, and the
ultimate justification is that a number of interesting results can be obtained
this way.

ω (omega) 32

It is easy to add another step to any computation, the real problem is to deal
with limit stages when infinitely many steps have just been performed. Here is
the basic idea.

We can associate the steps of an ordinary Turing machine with the natural
numbers:

0, 1, 2, . . . , n, n+1, . . . |

The notation . . . | is meant to indicate infinitely many steps, as opposed to the
first . . ., which stands for finitely many steps†. We write ω for all these
infinitely many steps.

The idea is that a machine, after running through all the finite steps n, arrives
at the (first) infinite level ω. To deal with endless boredom, the machine goes
into a trance along the way, and wakes up at level ω.

†The ellipsis is one of the most consistently abused symbols in all of math.

. . . and Beyond . . . 33

So suppose our machine has reached level ω. Nothing can stop us from taking
another step, leading to level ω + 1. And then to ω + 2, . . . , ω + n, and so on.
If we keep going, we finally wind up at

0, 1, 2, . . . , n, . . . | ω, ω + 1, ω + 2, . . . , ω + n, . . . |

which we express as ω + ω = ω · 2. So these are two infinite blocks of activity,
one after the other.

You guessed it, we can also get ω + ω + ω = ω · 3. In fact, we can get

ω, ω · 2, ω · 3, . . . , ω · n, . . . |

We denote this level by ω · ω = ω2: ω many blocks of size ω each.

. . . To Infinity 34

In a similar way we can get to higher powers ωk and ultimately to ωω.

Moving right along, we get ωωω

and so on.

Nothing can stop us now, we get to level

ε0 = ωωω
. . .

So this is a stack of ω many ωs all exponentiated somehow.

We’ll stop here to avoid injury to malleable young minds. But rest assured, one
can keep on going on, and on, and on . . . |

Aside: Induction up to ε0 is needed to prove the consistency of
Dedekind-Peano arithmetic, your favorite system from 15-151.

Von Neumann 35

If transfinite ordinals sound alluring, but perhaps a bit hallucinatory, no worries.

Von Neumann showed how ordinals can be constructed in a perfectly rigorous
and formal way in, say, Zermelo-Fraenkel set theory.

Moreover, one can use a transfinite version of recursion to define all the
required arithmetic operations (addition, multiplication, exponentiation, . . .)
on ordinals. They really form a nice extension of the natural numbers.

Infinite Time Turing Machines (ITTM) 36

The next key questions is: how can we make sense of the computation of a
Turing machine at stage ω? Or any other limit stage for that matter?

There is a clever model developed by J. Kidder, J. Hamkins and others. We use
a Turing machine with a one-way infinite tape that is subdivided into three
tracks:

input
scratch
output

u0 u1 . . . un . . .

x0 x1 . . . xn . . .

v0 v1 . . . vn . . .

We can safely assume that each tape cell (a single column on the tape)
contains 3 bits (ui, xi, vi). We have a finite state control and a read/write
head, as usual.

Limit Stages 37

Now suppose the Turing machine has already performed all steps n < ω. We
define the configuration at time ω as follows:

The machine is in a special state qlim.

The head is in position 0.

The content of each subcell such as xi is the limsup of its contents at
times n < ω.

The definition for an arbitrary limit level λ is exactly the same. Thus, the entry
in a subcell is 1 at time λ iff

∀ β < λ ∃ α
(
β < α < λ ∧ symbol at time α is 1

)
Think of a light blinking infinitely (actually, cofinally) often before time λ.

Preserving Information 38

Note that the special limit state qlim is the same for each limit λ; there is no
special qω, qω+ω, qω·ω and so on. So the state set of a ITTM is still finite.

The only way to preserve information at a limit stage is our limsup mechanism;
state and head position are always exactly the same when we wake up on the
other side.

Essentially, we have a a way to check whether a particular condition was met
over and over again, arbitrarily close to the the limit stage.

Clearly, there is no analogue to this in an ordinary Turing machine, it dies at
level ω and, sadly, never wakes up again.

Example: Prime Twins 39

We can use an ITTM to check whether there are infinitely many prime twins.

foreach n ∈ N do
if n and n + 2 are prime
then flash x0 // turn on and then off again right away

if x0 = 1 // we are at a limit stage
then Yes
else No

This machines solves the prime twin conjecture in ω + 1 steps.

Example: Halting 40

Consider the Halting problem for ordinary Turing machines: given an index e
we want to know if {e} halts on the empty tape.

This can be handled by an ITTM M where e is written on the input track.

M simulates the computation of {e} on empty tape.

If {e}() halts after finitely many steps, M also halts and accepts.

Otherwise M wakes up in state qlim.
It takes one more step, halts and rejects at time ω + 1.

Note that all we need here is to reach state qlim, the limsup mechanism is not
required.

Example: All of Halting 41

We can do better than this: we can dovetail all computations {e}(), e ∈ N,
and write a 1 in position e of the output track whenever the corresponding
computation converges.

At time ω, the (characteristic function of the) Halting set will appear on the
output track.

More generally, we can use ITTMs to compute functions

f : 2N −→ 2N

essentially functions on the reals.

Example: INF 42

Halting is near the bottom level of the arithmetical hierarchy, but we can also
handle higher levels via ITTMs.

For example, recall INF, the collection of all Turing machines that halt on
infinitely many inputs:

INF = { e ∈ N | {e} converges on infinitely many inputs }

Intuitively, this is clearly harder than plain Halting.

In fact, we have seen INF is Π2-complete in the arithmetical hierarchy. Pretty
hopelessly hopeless . . .

No Problem 43

Lemma
We can decide membership in INF by an ITTM.

Just to be clear: we are making no claim that INF is decidable, it’s definitely
not. But it is ITTM-decidable, we are dealing with much stronger model of
computation.

Unlike other models in generalized recursion theory, ITTMs are a rather neat
and require far fewer technicalities than more traditional approaches.

Proof 44

As before, e is written on the input track.

Then ITTM M runs the following program:

foreach n ∈ N do
if {e}(n) ↓
then flash x0 // turn on and then off again right away

if x0 = 1 // we are at a limit stage
then accept
else reject

So M flashes a light whenever it finds a convergence. Infinitely many flashes
means e is in INF.

Quoi? 45

If M finds that {e} converges on n, it turns bit x0 on, and then off again at
the next step. Of course, M will not use subcell x0 for the simulation, just for
messaging.

If the machine {e} diverges on n, we just spend ω many steps finding out,
without ever flashing x0.

At the limit stage corresponding to completion of the main loop, subcell x0 will
hold a 1 iff there were infinitely many good arguments n.

The check for each n may require up to ω steps, so the total running time is
between ω and ω2.

Aside: How Long Does It Take? 46

Here is a nice example of a theorem for ITTMs that exhibits a new type of
behavior. This is the kind of result that makes GRT worthwhile.

An ordinary Turing machine can halt, enter a loop or diverge (run through an
ω-sequence of non-repeating configurations). By contrast, an ITTM either
halts or enters a loop of sorts: even if it “diverges” for a while, it will ultimately
end up in a limit cycle. How far do we have to go before the computation ends
in this sense?

Theorem
Every computation of a ITTM either halts or enters a loop after countably
many steps.

So we do not have to run the machine ℵ1 or ℵ17 many steps, some α < ℵ1 will
do. Small consolation, but at least we are not totally out to lunch.

1 Generalized Computation

2 The Cult of Hypercomputation

3 Infinite Time Turing Machines

4 The Death of Hypercomputation

Classical and Generalized Computation 48

To summarize: Classical recursion theory (CRT) can be generalized. And it has
been, for nearly a century. There are many models M that are both
mathematically sound and define M-computations that are more or less
powerful than ordinary Turing machines†.

Generalized recursion theory (GRT) is interesting at the very least since it
sheds light on the fundamental ideas in ordinary computability. And there are
connections to other areas of mathematics (e.g. set theory).

To breath even a semblance of life into hypercomputation on needs to cling to
physics and implementability for dear life: otherwise one winds up with a
particularly insipid and boring form of GRT.

†The less powerful ones are hugely important in computer science, both at the applied end and
in abstract theory

Hypercomputation and Physics 49

Once physics is taken into consideration one is confronted with a beautiful,
albeit brutally hard, question:

Can one physically implement computations that go beyond CRT?
In this here universe that we currently occupy?

One of the great attractions of Turing machines (as opposed to the λ-calculus
or Herbrand-Gödel equations is that they are obviously physically realizable. In
fact, people have built LEGO Turing machines.

The Glitch 51

One can clearly build physical devices that simulate small Turing machines
performing small computations.

Alas, there are many computable functions such as Ackermann’s monster that
can be computed by a TM†, but these computations cannot be realized in
physical reality. Not in this particular universe, at any rate.

Hence, in any exposition that is carefully phrased, one always finds a hedge
along the lines of:

In principle, Turing machines are physically realizable. However,
resource limitations . . .

†The Turing machine for Ackermann is actually not particularly large; this is a characterbuild-
ing exercise.

Axiomatizing Physics 52

So how would we prove or refute the claim that physics can implement some
hypercomputation or other?

The CPM is utterly useless in this regard, it relies on the realizability of some
magic bit string τ ∈ 2ω—without even the slightest attempt to justify the
assertion that such a string can somehow be implemented.

The only weight-bearing way is to

Axiomatize physics in some formal system Γ , in some suitable logic.

Show (preferably using a theorem prover) that

Γ ⊢ ∃ M
(
device M solves Halting

)

Hilbert 53

Hilbert alluded to the axiomatization question already in his famous 1900
address.

The investigations on the foundations of geometry suggest the
problem: To treat in the same manner, by means of axioms,
those physical sciences in which already today mathematics plays
an important part; in the first rank are the theory of probabilities
and mechanics.

Unfortunately, Hilbert’s problem #6 (interpreted as concerning all of physics),
is still unanswered today: no one knows how to axiomatize physics in its
entirety. We would need a Theory of Everything (ToE) and that seems brutally
difficult.

Trust but Verify 54

Suppose someone proposes a ToE Γ that seems to work and passes all the
experimental tests we can throw at it. If no one can come up with a bad
experiment for, say, 100 years the theory is good.

As Karl Popper happily pointed out, this method may be very appealing, but it
it is really quite weak from a logical perspective. There is nothing like a
inductivist correctness proof in physics, there are only depressing falsifications.

Ultimately we are simply not dealing with a problem in pure computability
theory, and there is no reason to believe that the methods that work perfectly
well there can nicely be carried over to include physics.

Exploring (Partial) Models 55

Just to be clear, exploring the computational aspects of existing physical
theories, even partial or inaccurate ones, is not all useless, far from it.

In fact, it is an excellent exercise to fix some particular theory Γ of physics (not
a ToE) and try to show that in Γ it is possible to “construct a device” that
solves the Halting problem—or prove that it cannot be done.

For example, assume Newtonian physics: gravitating point masses, no relativity
theory, no quantum theory. Then build a hypercomputer that solves Halting.

So What’s The Difference? 56

CPMs solve the Halting problem, as do ITTMs. Why should one care about
one model but not the other?

Because ITTMs produce an interesting theory of computation that has close
connections to other areas of generalized recursion theory, along the lines
discussed above. The proof techniques are interesting and quite complicated.

CPMs, on the other hand, are utterly useless, just a shallow public relations
stunt that is of no importance to mathematics, computer science or physics.

Blowback: Andrew Hodges 57

Hodges has written the definitive biography of Turing (incidentally, very well
worth reading). He found it necessary to comment on the Copeland/Proudfoot
article, an unusual step in the genteel world of math.

I was appalled that this hare-brained idea should be associated with Alan
Turing as his ’lost brainstorm.’ Scientific American said that this ’hyper-
computation’ is a ’hot idea’ which Alan Turing had ’anticipated in detail.’
I suspect many people with a physical or engineering background took it,
on reading this nonsense, that Turing had come up with this ridiculous
idea because he was an impractical logician without understanding of
reality. What a slur on his reputation!

Here is the link: Hodges on Copeland/Proudfoot

http://www.turing.org.uk/publications/sciam.html

Blowback: Martin Davis 58

In 2006, Martin Davis could not stand it any longer, and published a paper

The Myth of Hypercomputation

In the paper, he very sweetly demolishes, annihilates and eviscerates the idea of
“hypercomputation.” Again, this kind of direct and scathing criticism is highly
unusual; bad work is typically ignored, not openly criticized.

Needless to say, the Cult of Hypercomputation simply ignores Davis’s paper, as
well as all other criticism.

https://www.cs.cmu.edu/~cdm/resources/Davis2004-myth-hyper.pdf

The Point 59

Currently, several areas of what used to be pure, hard science have been
invaded by fashionable nonsense and—sadly—even fraud†

There is some amusement value in this, and it even may be welcome as a sign
of a more open, less dogmatic and hierarchical world. For example, arXiv is a
big step forward from the traditional publishing machine and some math/cs
blogs and videos are absolutely great. The flip-side is viXra, an inexhaustible
source of garbage, and a lot of material on the web is simply trash.

Democratizing science is great. But, there is a substantial danger, without any
control mechanism whatsoever we get “alternative facts” instead of science.

It’s a slippery slope from shoddy work to just plain nonsense. And worse.

†Recent examples: the room-temperature superconductor fiasco at UoR; 29% of certain
biomedical papers irreproducible.

Insanity 60

This drifting of figures and geometric figuring, this irruption
of dimensions and transcendental mathematics, leads to the
promised surrealist peaks of scientific theory, peaks that cul-
minate in Gödel’s theorem: the existential proof, a method that
mathematically proves the existence of an object without pro-
ducing the object.

Paul Virilio

Virilio is described as a “cultural theorist, urbanist, and aesthetic philosopher.”

https://en.wikipedia.org/wiki/Paul_Virilio

	Generalized Computation
	The Cult of Hypercomputation
	Infinite Time Turing Machines
	The Death of Hypercomputation

