
CDM
(Semi) Decidability

Klaus Sutner
Carnegie Mellon University
Fall 2024

1 Decidability

2 Diophantine Equations

3 Riemann Hypothesis

Decidability 2

Informally, a problem is decidable if there is a decision algorithm A that
returns Yes or No depending on whether the input has the property in
question.

x 

No

Yes

Formally . . . 3

We can easily model this in terms of computable functions:

Definition
A set R ⊆ Nk is decidable if the characteristic function charR is
computable.
A decision problem is decidable if the set of Yes-instances is decidable.

In keeping with the old recursive/partial recursive nomenclature, a
decideable set is also called recursive.

Generalization 4

In other words, a set R is decideable iff its characteristic function is
computable (i.e., it belongs to the clone of computable functions).

We could replace computable functions by any other clone C and get a
notion of C-decidable.

For example, we could talk about polynomial time decidable problems or
logarithmic space decidable problems. Note that this requires closure
under composition, it does not work for an arbitrary collection of
functions.

Gottfried Leibniz (1646–1716) 5

In a way, the idea of decidability can be traced back to Leibniz.

A Calculator 6

Moon Shot 7

ars inveniendi: discover all true scientific statements.

I don’t pay much attention to specific discoveries. What I
most desire is to perfect the Art of Invention, and to provide
methods rather than solutions to problems, for one single
method comprises an infinity of solutions.

Moon Shot II 8

ars iudicandi: determine whether a given scientific statement is true

It is obvious that if we could find characters or signs suited for
expressing all our thoughts as clearly and as exactly as arithmetic
expresses numbers or geometry expresses lines, we could do in all
matters insofar as they are subject to reasoning all that we can do
in arithmetic and geometry. For all investigations which depend on
reasoning would be carried out by transposing these characters and
by a species of calculus.

Decision Algorithms 9

Decision problems have been around since the day of the flood: one is
interested in checking whether a number is prime, whether a polynomial
is irreducible, whether a polygon is convex, and so on. Gauss certainly
understood the computational difficulty of primality checking quite well.

But Leibniz seems to have articulated the need for general decision
algorithm more clearly than anyone before him. Alas, he was ahead of his
time, nothing came of his ideas for a while.

The first big splash came in 1900, when Hilbert presented his famous list
of 23 open problems at the International Congress of Mathematicians in
Paris.

Hilbert’s List 10

Hilbert’s list was enormously influential throughout the 20th century.

Some of Hilbert’s Problems 11

1. Prove the Continuum Hypothesis. Well-order the reals.

2. Prove that the axioms of arithmetic are consistent.
. . .

8. Prove the Riemann Hypothesis.
. . .

10. Given a Diophantine equation with any number of unknown quan-
tities and with rational integral numerical coefficients: to devise a
process according to which it can be determined by a finite number
of operations whether the equation is solvable in rational integers.

The Mother of all Decision Problems 12

The Entscheidungsproblem is solved when one knows a pro-
cedure by which one can decide in a finite number of oper-
ations whether a given logical expression is generally valid
or is satisfiable. The solution of the Entscheidungsproblem
is of fundamental importance for the theory of all fields, the
theorems of which are at all capable of logical development
from finitely many axioms.

D. Hilbert, W. Ackermann
Grundzüge der theoretischen Logik, 1928

A Hedge 13

Note that Hilbert and Ackermann hedge a tiny little bit: the decision
procedure for the Entscheidungsproblem needs to work only for areas
where the fundamental assumptions can be finitely axiomatized.

The logician J. Herbrand† pointed out that

In a sense, the Entscheidungsproblem is the most general
problem of mathematics.

†Based on a suggestion by Herbrand, Gödel developed a model of computation
that uses recursion over multiple variables.

Aside: Hardness 14

Both Leibniz and Hilbert were asking for too much; in particular, there is
no algorithm to solve the Entscheidungsproblem.

But we can scale back a bit: try to solve the Entscheidungsproblem only
for a small domain. For example, only worry about propositional logic
(rather than full first-order). In this capacity, the Entscheidungsproblem
is an excellent source of difficult problems in complexity theory.

For suitable versions of the Entscheidungsproblem, instead of
undecidability, we get computational hardness. For example, for NP, we
only need Boolean formulae of type

∃ x1, . . . , xn φ(x1, . . . , xn)

Closure Properties 15

Lemma
The decidable sets are closed under intersection, union and complement.
In other words, the decidable sets form a Boolean algebra.

The proof is exactly the same as for primitive recursive relations.

And, just like for primitive recursive relations we get a slightly better
result: the Boolean algebra is effective in the sense that we can compute
the algebraic operations (assuming the sets are represented by an index
of their characteristic functions).

We have a computable structure, not just an abstract algebra.

Counting 16

Theorem
There are undecidable decision problems.

Proof.
There are uncountably many subsets of N (to be precise: 2ℵ0). But there
are only countably many register machines (recall our coding machinery).
Hence, almost all problems A ⊆ N are not decidable. 2

Note that this argument, like others imported from set theory, leaves a
bitter after-taste: it does not produce any concrete undecidable problem.

Going Concrete 17

First off, “almost all” is meant purely set-theoretically. It might well be
that all the interesting problems are decidable an no one cares about the
uncountably many other guys.

At the very least, we would like a concrete undecidable problem, and we
really would like examples of undecidable problems that are motivated by
concrete problems in math and CS.

We already know that, regardless of what general model of computation
one uses, there is always the undecidable question of Halting—which we
can use to construct more interesting examples.

Halting 18

There are several equally reasonable versions of Halting:

Problem: Full Halting
Instance: Index e ∈ N, an argument x ∈ N.
Question: Does register machine Me halt on input x?

For technical reasons, the following slightly artificial version of Halting is
also very popular:

Problem: Halting
Instance: Index e ∈ N.
Question: Does register machine Me halt on input e?

Another Halting 19

We can also get rid of the input altogether: the machine can start with a
precomputation that produces the input for the main computation.

Problem: Pure Halting
Instance: Index e ∈ N.
Question: Does register machine Me halt?

In this case, all registers are zeroed out before the computation starts.
Again, this is essentially the same as the other two versions. Arguably,
this is the most elegant variant.

Halting is Undecidable 20

A standard diagonalization argument shows that Halting cannot be
solved by a register machine.

Theorem
The Halting Problem is undecidable.

And, of course, we could do this in any model of computation, there
always is a universal “machine.”

Proof, Informal 21

Assume Halting is decidable. Then the following program produces a
contradiction:

// impossible function

if(halt(z,z))
return eval(z,z) + 42;

else
return 0;

Here halt(z,z) is the Halting tester that exists by assumption, and
eval(z,z) is the universal RM: run Mz on input z.

So this is the standard construction that turns a partial arithmetic
function into a total one (the old f and f⊥ trick).

Proof, Formal 22

Suppose Halting (the one-argument version) is decidable.

Then we can define a function g by cases:

g(z) ≃

{
{z}(z) + 1 if {z}(z) ↓,
0 otherwise.

From the description, this function g is computable. Hence, g has some
index e, which promptly produces a contradiction: g(e) = g(e) + 1.

Essentially we are dealing again with our old eval problem, the issue that
forces us to allow partial functions in the first place.

Diagonalization 23

Somewhat surprisingly, both arguments
are based on diagonalization, originally
invented by Cantor in the context of set-
theory to establish the uncountability of the
reals.

The very sametool also turns out to be of
central importance in the computational
universe, in recursion theory as well as com-
plexity theory.

The Next Step 24

Decidability makes direct algorithmic sense, we are trying to test for
certain properties in a computational manner.

The Halting Problem fails to be decidable, so it is natural to look for a
larger class of problems that accommodates Halting. We want a positive
characterization, not just a negative one.

A closer look shows that there is indeed a weakerm natural property,
called semidecidability, that encompasses Halting, and that is arguably
more fundamental and ultimately more important than decidability.

Semidecidability 25

We need to generalize decidability just a little bit:

Definition
A set A ⊆ Nk is semidecidable if there is a register machine that, on
input x, halts if x ∈ A, and fails to halt otherwise.

We will call this a semidecision procedure. As one might suspect, the
term semi-recursive is also used.

You can think of this as a broken decision algorithm: if the answer is Yes,
the algorithm works properly and stops after finitely many steps. But, if
the answer is No, it just keeps running forever, it never produces a result.

In Pictures 26

x 

Yes

zip

Just to be clear: zip is not output, it just means “there is no output.”

Quoi? 27

Note that Halting is the critical natural example of a semidecidable
problem: we can determine convergence in finitely many steps, but
divergence takes forever. This is exactly the idea behind an unbounded
search: we find a witness in finitely many steps if there is one, but
otherwise we keep searching forever.

Here is the critical connection between decidability and semidecidability:

Lemma
A set is decidable iff the set and its complement are both semidecidable.

Proof 28

Clearly, A decidable implies that both A and A are semidecidable.

But the opposite direction is far from trivial: we have two semidecision
procedures A0 and A1, but we don’t know which one is going to halt. So
we cannot simply run, say, A0 first.

The way around this problem is to run both procedures in parallel on the
given input: we combine two computations into one, alternating steps.
We stop as soon as one of the sub-computations terminates.

Intuitive, this no surprise; every operating system does this. But it
actually is another fundamental property of computation: we can
interleave two computations into a single one.

Closure Properties 29

Lemma
The semidecidable sets are closed under intersection and union.

Proof.
For intersection we can simply run the two semidecision-procedures
sequentially.
But for union we again need to interleave two computations.

2

Note: We do not have closure under complement in general: Halting
and the last lemma prohibit that.

Kleene Normal Form 30

Here is a closer look at Halting and semidecidability. Suppose we have a
universal register machine U producing an enumeration {e} of all
computable functions.

We claim that there is a primitive recursive relation T (e, x, t) and a
primitive recursive function D (in fact, both T and D are quite
straightforward) such that

{e}(x) ↓ ⇐⇒ ∃ t T (e, x, t)

{e}(x) ≃ D(min
(

t | T (e, x, t)
)

One can think of t as the number of steps required to complete the
computation of machine e on input x.

Kleene’s T Predicate 31

T (e, x, t)

e the index of a register machine M

x an input argument for M

t a witness for a halting computation of M on input x.

The witness is usually the (sequence number that codes) a sequence of
configurations C0, C1, . . . , Cn of M .

Since we have an alleged witness, T is easily decidable and primitive
recursive.

Moreover, given the right t, it is easy to read off the output of the
computation (that’s D’s job).

Still Unhappy? 32

Halting may well seem like a somewhat unsatisfactory example of an
undecidable problem: it’s a perfect case of navel gazing. Certainly it does
not deal with a question at least superficially unrelated to computability.

Actually, anyone who has ever written a complicated program in a
language like C would have to admit that Halting is really quite natural.

But how about undecidable problems that are of independent interest?
Perhaps something that was studied even before the concept of an
algorithm was invented?

1 Decidability

2 Diophantine Equations

3 Riemann Hypothesis

Warning: Treacherous Arithmetic 34

Basic arithmetic on the natural numbers may seem fairly straightforward;
tedious on occasion, but not truly complicated.

Wrong, wrong, wrong. Consider the numbers

n17 + 9 and (n+1)17 + 9

where n ≥ 0. They turn out to be coprime up until we hit the first
counterexample

n = 8424432925592889329288197322308900672459420460792433

This is rather large, about 8.42 × 1051.

Where the hell does this huge number come from?

Hilbert’s 10th Problem 35

Perhaps the most famous example of an undecidability result in
mathematics is Hilbert’s 10th problem, the insolubility of Diophantine
equations: we have a polynomial equation with integer coefficients:

P (x1, x2, . . . , xn) = 0

The problem is to determine whether such an equation has an integral
solution.

Theorem (Matiyasevic, Davis, Putnam, Robinson)
It is undecidable whether a Diophantine equation has a solution in the
integers.

Examples 36

Pythagorean triples: it is not hard to classify all the solutions of

x2 + y2 − z2 = 0

But tackling Fermat triples

xk + yk − zk = 0

for k > 2 was one of the central problems of number theory and it took
more than 350 years to show that solutions only exist for k = 1, 2.

The Proof 37

The proof of undecidability of Diophantine equations is way too
complicated to be presented here, but the main idea is a reduction using
very clever coding tricks:

Show that decidability of Hilbert’s 10th problem implies decid-
ability of the Halting problem.

More precisely, call a set A ⊆ Z Diophantine if there is a polynomial P
with coefficients over Z such that

a ∈ A ⇐⇒ ∃ x1, . . . , xn ∈ Z
(
P (a, x1, . . . , xn) = 0

)
.

This condition is rather unwieldy, it is usually fairly difficult to show that
a particular set is in fact Diophantine.

Diophantine Sets 38

We want to describe a ∈ Z with some particular property:

Even: a = 2x.

Non-zero: a x = (2y + 1)(3z − 1).

Non-negative: a = x2
1 + x2

2 + x2
3 + x2

4 (Lagrange’s theorem)

Similarly we can show closure under intersection (sum of squares) and
union (product). But note that complements don’t work in general.

Again: Semidecidability 39

It turns out that exactly the semidecidable sets are Diophantine. In
particular, the Halting Set is Diophantine, and so it must be undecidable
whether an integer polynomial has an integral solution.

It is clear that every Diophantine set is semidecidable: given a, we can
simply enumerate all possible x ∈ Zn in a systematic way, and compute
P (a, x).

If we ever hit 0, we stop; otherwise we run forever.

Surprisingly the opposite direction also holds, but this is much, much
harder to show.

Details 40

First M. Davis was able to show that every semidecidable set A has a
Davis normal form: there is a polynomial such that

a ∈ A ⇐⇒ ∃ z ∀ y < z ∃ x
(
P (a, x, y, z) = 0

)

Davis, Putnam and Robinson then managed to remove the offending
bounded universal quantifier at the cost of changing P to an exponential
polynomial (containing terms xy).

Lastly, Matiyasevic showed in 1970 how to convert the exponential
polynomial into an ordinary one.

Bounding Roots 41

Note that if we could produce a computable bound on the size of a
possible root we could use brute-force search to determine whether one
exists (in principle, in reality we die an exponential death).

Consider a univariate polynomial p(x) = anxn + an−1xn−1 + . . . a0 of
degree n (so an ̸= 0).

By rearranging terms a bit and using the standard properties of
inequalities over the reals we find that for any root x

|x| ≤ n · amax

|an|
where amax = max(|an−1|, . . . , |a0|). Done by search.

Elliptic Curves 42

How about a simple elliptic curve, say, y2 = x3 + c? Here is −2 ≤ c ≤ 3.

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Discrete Case 43

For real solutions, this scenario is trivial. But we are looking for integral
solutions, and then things get incredibly messy.

It is known that the least integral solution, if it exists, is bounded by

exp((1010|c|)10000)

So, in principle, this is decidable by brute force search.

In practice, nothing moves; even if we were to allow nondeterminism.
Elliptic curves turn out to be useful in cryptography.

Cubes 44

How about sums of three cubes? How hard could that be?

x3 + y3 + z3 = c

The smallest solutions for c = 74 and c = 33 are

74 = −2846502925558853 − 662298321905563 + 2834501056977273

33 = 88661289752875283 − 87784054428622393 − 27361114688070403

A Horror: It is not known that this problem is decidable. Worse, it may
well be that c is the sum of 3 cubes iff c ̸= ±4 (mod 9). But that’s an
open problem.

This just in . . . 45

Andrew Sutherland at MIT and Andrew Booker at U Bristol used over a
million hours of compute time on the Charity Engine to find

42 = −805387388120759743+804357581458175153+126021232973356313

Bounding Roots, II 46

So it would not be unreasonable to think that integer roots of
P (x1, . . . , xn) can be bounded by some rapidly growing but computable
function of n, the degree d of P , and the largest coefficient c.

Perhaps something insanely huge, using the Ackermann function:

A
(

n! |c|d, nnd+42
)

would work?

If not, try an even higher level of the Ackermann hierarchy or one of
Friedman’s monsters?

Different Rings 47

Note that the choice of Z as ground ring is important here. We can ask
the same question for polynomial equations over other rings R (always
assuming that the coefficients have simple descriptions).

Z: undecidable

Q: major open problem

R: decidable

C: decidable

Decidability of Diophantine equations over the reals is a famous result by
A. Tarski from 1951, later improved by P. Cohen.

One Implication 48

It is true that an algorithm for Diophantine equations over Z would
produce an algorithm for Diophantine equations over Q.

Consider P (x) = 0 with x ∈ Q. This is equivalent to

∃ y ∈ Zn, z ∈ Nn
+

(
P (y/z) = 0

)
By multiplying with powers of the zi, the RHS turns into a Diophantine
equation over Z, albeit with more variables.

Alas, this is exactly the wrong direction, we want to show that an
algorithm over Q produces an algorithm over Z.

Hard Polynomials 49

Since we can encode arbitrary semidecidable sets as Diophantine
equations, we can in particular encode universal sets.
That means that there is a single polynomial with parameter a for which
the question

∃ x1, . . . , xn P (a, x1, . . . , xn) = 0

is already undecidable.

As one might suspect, there is a trade-off between the degree d of such a
polynomial and its number of variables n. Here are some known (d, n)
pairs that admit universal polynomials:

(4, 58), (8, 38), (12, 32), . . . ,

(4.6 × 1044, 11), (8.6 × 1044, 10), (1.6 × 1045, 9)

Jones, Sato, Wada, Wiens Polynomial 50

(k + 2)
(

1 − [wz + h + j − q]2 − [(gk + 2g + k + 1)(h + j) + h − z]2−

[16(k + 1)3(k + 2)(n + 1)2 + 1 − f2]2 − [2n + p + q + z − e]2−
[e3(e + 2)(a + 1)2 + 1 − o2]2 − [(a2 − 1)y2 + 1 − x2]2−

[16r2y4(a2 − 1) + 1 − u2]2 − [n + l + v − y]2 − [(a2 − 1)l2 + 1 − m2]2−
[ai+k +1− l − i]2 − [((a+u2(u2 −a))2 −1)(n+4dy)2 +1− (x+cu)2]2−
[p + l(a − n − 1) + b(2an + 2a − n2 − 2n − 2) − m]2 − [q + y(a − p − 1)+

s(2ap+2a−p2 −2p−2)−x]2 − [z +pl(a−p)+t(2ap−p2 −1)−pm]2
)

This polynomial P has 26 variables and degree 25. P (N26) ∩ N is the set
of prime numbers. Note the factor (k + 2) up front.

1 Decidability

2 Diophantine Equations

3 Riemann Hypothesis

A Real Math Problem 52

Arguably the most important, longstanding open problem in math is the
Riemann Hypothesis.

In its original form, RH looks like a solid chunk of complex analysis. You
start with the Riemann zeta function

ζ(s) =
∑
n≥1

1
ns

where s ∈ C, Re(s) > 1.

The condition Re(s) > 1 is needed to ensure convergence of the series
(think about s = 1).

http://www.claymath.org/millennium-problems/

Better Riemann 53

Using a technique known as analytic continuation, one can then extend ζ
to a function of type C → C with a pole at s = 1.

The reason ζ is so hugely important is that it is closely connected to
prime numbers, a fact already known to Euler.

ζ(s) =
∏

p

1
1 − p−s

where the product is over all primes.

A better understanding of ζ would have huge implications for the
distribution of primes. For example, a more general form of RH, implies
that a particular primality test runs in polynomial time (G. Miller).

Visualization 54

Since ζ is a complex function, it is rather hard to draw.

The modulus of ζ(s) for 0 ≤ Re(s) ≤ 1 and 0 ≤ Im(s) ≤ 50.

Roots 55

One can show that ζ(−2k) = 0 for all positive integers k (trivial zeros).

Alas, there are other, non-real roots that are much harder to understand.
Here is the big conjecture, proposed by Bernhard Riemann in 1859:

All non-real roots s have the property Re(s) = 1/2.

Note that this statement seems to require considerable horse-power: first
we need to define the analytic extension of a power series, then we want
to argue about some of roots of the resulting function.

Complex Roots 56

10 20 30 40 50

-2

-1

1

2

3

Complex and real parts of ζ(1/2 + i t) for 0 ≤ t ≤ 50.

The Computability Sledgehammer 57

So far, we are dealing with complex analysis. The next step is to reduce
all this complicated material to computation.

A formula of arithmetic is said to be Π1 if it can be written down by
using just one universal quantifier over N, plus bounded quantifiers,
propositional logic and standard arithmetic.

Θ ≡ ∀ n ϕ(n)

where ϕ is a formula of basic arithmetic. The relation ϕ(n) is in
particular primitive recursive and easy to check.

But checking Θ itself is more problematic: on the face of it, we have to
perform an infinite computation, we have try out all possible values of n.

It’s Π1 58

Big Surprise: the Riemann Hypothesis is Π1.

This may sound patently wrong, but can be shown with enough effort:
let Hn =

∑
k≤n 1/k be the nth harmonic number, and σ(n) the divisor

function (total sum of all divisors of n). These are all primitive recursive.

The RH is equivalent to: for all n,

σ(n) ≤ Hn + eHn log Hn

As written, this looks like real arithmetic involving e and log. In the
actual argument, everything has to be rephrased in terms of rational
numbers, and one needs to be very careful with error estimates.

Example: n = 40 59

The Riemann Register Machine 60

Based on this inequality, one can now construct a register machine M
that runs through a (potentially infinite) loop and tries to check the
inequality for all n.

If M finds a counterexample, it stops and returns No. Otherwise M runs
forever.

Claim: M halts iff the Riemann Hypothesis is false.

There even are estimates on how large M would need to be (though
existing work uses Turing machines rather than register machines; less
than 10, 000 states).

Pushing Things 61

Similarly we can design a register machine Z that systematically
enumerates all first-order logic theorems provable in Zermelo-Fraenkel
with Choice. This works since the axioms of ZFC are easily decidable.

Now suppose Z is set up to halt when it finds a proof of ∅ = {∅},
otherwise it runs forever.

By Gödel’s incompleteness theorem, and assuming that ZFC is
consistent, we cannot prove in ZFC that Z never halts, nor can we prove
that it halts.

So ZFC is too weak to say anything about the Halting behavior of Z.

Halting is seriously hard.

	Decidability
	Diophantine Equations
	Riemann Hypothesis

