
CDM
Iteration

Klaus Sutner

Carnegie Mellon University
Spring 2024

1 Iteration, Trajectories and Orbits

2 Finding Cycles

3 Pollard’s Rho Method

4 Goodstein Sequences

Computational Memes 2

There are several general ideas that are useful to organize computation,
perhaps the two most important ones being

Recursion (self-similarity)

Iteration (repetition)

Recursion is quite popular and directly supported in many programming
languages.

Iteration usually requires some amount of extra work (and, to really make
sense, support for functions as first class citizens).

Droste Effect 3

Menger Sponge 4

Iteration 5

Definition
Let f : A → A be an endofunction. The kth power of f (or kth iterate of f) is
defined by induction as follows:

f0 = IA

fk = f ◦ fk−1

Here IA denotes the identity function on A and f ◦ g denotes composition of
functions.

Informally, this just means: compose function f with itself, (k−1)-times.

fk = f ◦ f ◦ f ◦ . . . ◦ f︸ ︷︷ ︸
k terms

General Laws 6

Without any further knowledge about f there is not much one can say about
the iterates fk. But the following always holds.

Lemma (Laws of Iteration)

fn ◦ f = fn+1

fn ◦ fm = fn+m

(fn)m = fn·m

Exercise
Prove these laws by induction using associativity of composition.

Wurzelbrunft’s Idea 7

Prof. Dr. Alois Wurzelbrunft∗ stares at these equations and immediately
recognizes a deep analogy to exponentiation.
He also remembers that there is a method for fast exponentiation based on
squaring:

a2e = (ae)2

a2e+1 = (ae)2 · a

which allows us to compute ae in O(log e) multiplications.

Wurzelbrunft’s Conclusion:
There is an analogous “fast iteration” method.

∗A famous if fictitious professor in the Bavarian hinterland.

Aside 8

A mathematician is a person who can find analogies between
theorems; a better mathematician is one who can see analogies
between proofs and the best mathematician can notice analogies
between theories. One can imagine that the ultimate mathemati-
cian is one who can see analogies between analogies.

S. Banach

So is Wurzelbrunft brilliant?

Fast Iteration 9

Suppose we want to compute f1000. The obvious way requires 999
compositions of f with itself.

By copying the standard divide-and-conquer approach for fast exponentiation
we could try

f2n = (fn)2

f2n+1 = f ◦ (fn)2

This seems to suggest that we can compute fn(x) in O(log n) applications of
the basic function f .

After all, it’s just like exponentiation, right?

Computational Compressibility 10

There is an interesting idea here: we would like to take a plain computation

C = C0, C1, C2, . . . , C42, . . . , Cn

and somehow translate it into another computation

C′ = C′
0, C′

1, . . . , C′
m

such that

the result is the same, but
m ≪ n

Of course, this won’t always be possible, but sometimes we might be able to
“compress” a computation (by using a smarter algorithm).

Closed Forms 11

Consider the orbit of a under the rational function (this is a clear case of abuse
of a Möbius transformation)

f(x) = 2 + 2x

3 + x

A little fumbling shows that

f t(x) = 2(a − 1) + (a + 2)x
2a + 1 + (a − 1)x a = 4t

So there is no need to iterate f , we can simply do the coefficient arithmetic.

But if you insist . . . 12

f5(x) =

2 +

2

2+

2

(
2+

2
(

2+ 2(2+2x)
3+x

)
3+ 2+2x

3+x

)
3+

2+ 2(2+2x)
3+x

3+ 2+2x
3+x


3+

2+
2
(

2+ 2(2+2x)
3+x

)
3+ 2+2x

3+x

3+
2+ 2(2+2x)

3+x

3+ 2+2x
3+x

3 +

2+

2

(
2+

2
(

2+ 2(2+2x)
3+x

)
3+ 2+2x

3+x

)
3+

2+ 2(2+2x)
3+x

3+ 2+2x
3+x

3+

2+
2
(

2+ 2(2+2x)
3+x

)
3+ 2+2x

3+x

3+
2+ 2(2+2x)

3+x

3+ 2+2x
3+x

Fibonacci Numbers 13

The obvious bottom-up method to compute Fn requires essentially n additions
(we will ignore the growing size of the numbers).

We can exploit matrix multiplication to get an alternative description:

M =
(

0 1
1 1

)
implies Mn =

(Fn−1 Fn

Fn Fn+1

)
But the computation of Mn involves only log n matrix multiplications (8
integer multiplications plus 4 integer additions).

Asymptotically this is much faster, even though multiplication is substantially
more expensive than addition.

Linear Maps 14

If the function f in question is linear it can be written as

f(x) = M · x

where M is a square matrix over some suitable algebraic structure. Then

f t(x) = M t · x

and M t can be computed in O(log t) matrix multiplications.

So this is an exponential speed-up over the standard method.

Polynomial Maps 15

Another important case is when f is a polynomial map

f(x) =
∑

aix
i

given by a coefficient vector a = (ad, . . . , a1, a0).

In this case the coefficient vector for f ◦ f can be computed explicitly by
substitution. This is useful in particular when computation takes place in a
quotient ring such as R[x]/(xn − 1) so that the expressions cannot blow up.

Again, an exponential speed-up over the standard method.

But Beware of Hasty Conclusions 16

But we cannot conclude that f t(x) can always be computed in O(log t)
operations.

The reason fast exponentiation and the examples above work is that we can
explicitly compute a representation of f ◦ f , given the representation of f .

But, in general, there is no fast representation for f ◦ f , we just have to
evaluate f twice.

Just think of f as being given by an executable, a compiled piece of C code.
We can wrap a loop around the executable to compute f t, but that just
evaluates f t-times, in the obvious brute-force way. No speed-up whatsoever.

Exercise
Ponder deeply. Assume the speed-up trick always works and figure out what
that would mean for complexity theory.

Hasty Conclusion I 17

Speaking about hasty conclusions, here is a simple inductively defined sequence
of integers.

a1 = 1
an = an−1 + (an−1 mod 2n)

Thus, the sequence starts like so:

1, 2, 4, 8, 16, 20, 26, 36, 36, 52, 60, 72, 92, 100, 110, 124, 146, 148, 182, 204

This seems rather complicated. The function appears to be increasing in a
somewhat complicated manner.

Alas, there is a rude surprise.

Ultimately Linear 18

The sequence is ultimately linear: a396+k = a396 + k · 194 for k ≥ 0.

100 200 300 400 500 600

20000

40000

60000

80000

100000

100 200 300 400 500 600

200

400

600

800

The plot on the left is the sequence, on the right (in red) are the forward
differences.

Exercise
Figure out why the sequence is ultimately linear.

Hasty Conclusion II 19

Here is another strange integer sequence:

an = ⌈2/(21/n − 1)⌉ − ⌊2n/ ln 2⌋

This time, the sequence starts like so:

0, . . .

and continues like this for a long, long time, for trillions of terms.

Note that it is a minor pain to compute the terms; it’s not even clear that
n 7→ an is primitive recursive †. At any rate, it sure looks like the sequence is
constant 0. Alas

a777 451 915 729 368 = 1

†The expression looks like real arithmetic, but it can be handled with just integer arithmetic.

Hasty Conclusion III 20

Innocent Question:
Are n19 + 6 and (n + 1)19 + 6 relatively prime for all n?

Sure looks like it, for a long, long time. But there is a counterexample at

n = 1578270389554680057141787800241971645032008710129107338825798
≈ 1.5783 × 1060

where the gcd jumps to

5299875888670549565548724808121659894902032916925752559262837

Iteration versus Recursion 21

Intuitively, there are two basic ways to evaluate a recursive function:

bottom-up Use a loop to calculate result for large arguments, starting at
small arguments.

top-down Unfold the recursion starting from large arguments and tracing
things downward till termination occurs at small arguments.

The unfolding part requires a bit of bureaucracy, one needs to keep track of
pending calls. On the other hand, the number of calls may be smaller than in
the bottom-up approach.

More Formally . . . 22

Iteration can be construed as a special case of primitive recursion.

F (0, y) = y

F (x + 1, y) = f(F (x, y))

Then F (x, y) = fx(y).

Again, this is just the standard bottom-up approach to computing an primitive
recursive function, expressed in an elegant and concise way.

As Iteration 23

Conversely, iteration can be used to express recursion. Suppose

f(0, y) = g(y)
f(x + 1, y) = h(x, f(x, y), y)

Define a new function H by

H : N × N × Nk −→ N × N × Nk

H(x, z, y) = (x + 1, h(x, z, y), y)

Then

f(x, y) = snd(Hx(0, g(y), y))

This is perhaps the most natural definition, but if we wanted to we could make
H unary by coding everything up as a sequence number.

Unary Iteration 24

More surprisingly, suppose we have some simple basic functions such as

x + y x ∗ y x
•− y rt(x)

Here rt(x) is the integer part of
√

x. These functions suffice to set up the usual
coding machinery. If we add an additional operation of iteration

f(x) = gx(0)

we can replace primitive recursion by unary iteration.

Exercise
Come up with a precise version of this statement (define a clone) and give a
detailed proof.

Trajectories and Orbits 25

Definition
The trajectory or orbit of a ∈ A under f is the infinite sequence

orbf (a) = a, f(a), f2(a), . . . , fn(a), . . .

The set of all infinite sequences with elements from A is often written Aω.
Hence the we can think of the trajectory as an operation of type

(A → A) × A → Aω

that associates a function on A and element in A with an infinite sequence
over A.

Terminology Warning 26

Sometimes one is not interested in the actual sequence of points but rather in
the set of these points:

{ f i(a) | i ≥ 0 }

While the sequence is always infinite, the underlying set may well be finite,
even when the carrier set is infinite.

In a sane world one would refer to the sequences as trajectories, and use the
term orbit for the underlying sets. Alas, in the literature the two notions are
hopelessly mixed up.
So, when we refer to a “trajectory” we will always mean the sequence, but,
bending to custom, we will use “orbit” for both.

Digression: Dedekind’s Ketten (Chains) 27

Here is a clever definition due to Dedekind: given an endofunction f and a
point a, the corresponding chain is defined to be⋂

{ X ⊆ A | a ∈ X, f(X) ⊆ X }

Thus, the chain is the least set that contains a and is closed under f . That is
exactly the orbit of a under f , considered as a set.

Who cares?

Dedekind’s definition does not require the natural numbers. In fact, it can be
used to define them. In Dedekind’s view, this means that arithmetic can be
reduced to logic.

From Chains to Naturals 28

Here is how. Suppose we have a function f : A → A and a point a ∈ A such
that

f is an injection,
a is not in the range of f ,
A is the chain of f and a.

Dedekind calls these sets simply infinite.

We can think of a as 0 and, more generally, we can think of fn(a) as n.

So this is a way of describing the natural numbers, the smallest infinite set,
without any hidden references to the naturals.

The Price: Impredicativity 29

According to Dedekind, the chain C defined by f and a has the form

C =
⋂

{ X ⊆ A | a ∈ X, f(X) ⊆ X }

But note that C is one of the X’s on the right hand side. So there is some
(non-vicious) circularity in this approach. Most mathematicians would not bat
an eye when confronted with definitions like this one, they are totally standard.

And the payoff is huge. For example, when Bernstein told Dedekind about his
correct proof of the “Cantor-Schröder-Bernstein” theorem, he was shocked to
hear that Dedekind had a much better proof, based on his chains.

The Lasso 30

At any rate, if the carrier set is finite, all trajectories must ultimately wrap
around and all orbits must be finite:

What changes is only the length of the transient part and the length of the
cycle (in the picture 5 and 11).

Limit Cycles 31

The lasso shows the general shape of any single orbit, but in general orbits
overlap. All orbits with the same limit cycle are called a basin of attraction in
dynamics.

Reachability 32

The geometric perspective afforded by the diagram also suggests to study
path-existence problems.

Definition
Let f be a function on A and a, b ∈ A two points in A. Then point b is
reachable from a if for some i ≥ 0:

f i(a) = b

In other words, point y belongs to the orbit of x.

Proposition
Reachability is reflexive and transitive but in general not symmetric.

Reachability is symmetric when A is finite and f injective (and therefore a
permutation): each orbit then is a cycle and forms an equivalence class.

Confluence (aka Basins of Attraction) 33

Definition
Let f be a function on A and a, b ∈ A two points in A. Points a and b are
confluent if for some i, j ≥ 0:

f i(a) = f j(b)

In other words, the orbits of a and b merge, they share the same limit cycle
(which may be infinite and not really a cycle).

Reachability implies confluence but not conversely. For finite carrier sets
reachability is the same as confluence iff the map is a bijection.

Confluence is an Equivalence 34

Proposition
Confluence is an equivalence relation.

Reflexivity and symmetry are easy to see, but transitivity requires a little
argument.
Let f i(x) = f j(y) and fk(y) = f l(z), assume j ≤ k. Then with d = k − j ≥ 0
we have

f i+d(x) = f j+d(y) = fk(y) = f l(z).

Each equivalence class contains exactly one cycle of f , and all the points whose
orbits lead to this cycle – just as in the last picture.

1 Iteration, Trajectories and Orbits

2 Finding Cycles

3 Pollard’s Rho Method

4 Goodstein Sequences

Calculating Transients and Periods 36

How do we compute the transient t and period p of the orbit of a ∈ A under
f : A → A for finite carrier sets A?

The obvious brute force approach is to use a container to keep track of
everything we have already seen:

a, f(a), f2(a), . . . , f i(a)

and then to compare f i+1(a) to all these previous values.

In most cases, the data structure of choice is a hash table or tree: we can
check whether f i+1(a) is already present in expected constant time or
logarithmic time, respectively. Memory requirement is linear in the size of the
orbit assuming the elements in A require constant space (a fairly safe
assumption, if the elements are big use pointers).

Floyd’s Trick 37

A (simplified version of a) classical problem from the early days of Lisp:
Suppose we have a pointer-based linked list structure in memory and we want
to check if there are any cycles in the structure (as opposed to having all lists
end in nil).

We can think of this as an orbit problem:

A is the set of all nodes of the structure,
f(x) = y means there is a pointer from x to y.

The Problem:
Suppose further the structure consumes 90% of memory, so we cannot afford
to build a large hash table or tree.

Can we compute transients and periods in O(1) space?

Time/Space Tradeoff 38

At first glance, this may seem quite impossible: if we forget already discovered
elements we obviously cannot detect cycles. Right?

Not at all: we have an element b = f t(a), and we want to check if it is new.

We can simply compare b to all fs(a) for s < t.

This requires an absurd amount of recomputation and is thus highly inefficient,
but it trivially works and it uses only constant memory.

The method is actually quite simple: instead of storing an object, we
recompute whenenver necessary.

A Memoryless Approach 39

Here is a better way to handle the time/space tradeoff: race two pebbles down
the orbit.

u = f(a);
v = f(u);
while(u != v) {

u = f(u);
v = f(f(v));

}

Claim
Upon termination, u = v is a position on the cycle.

Pebble Race 40

Think of two pebbles u and v, moving at speed 1 and 2, respectively.

The slow pebble u enters the limit cycle at time t, the transient, when the fast
pebble v is already there. From now on, v gains one place on u at each step.
So pebble v must catch up at time s where s ≤ t + p, where p is the period.
The meeting time is called the Floyd-time.

Once we have a foothold on the cycle it is not hard to compute transient and
period, see below.

One can make a nice movie out of this. OK, it is pretty boring after all, but
what do you expect.

Example 41

Here the transient is 6, and the period 17.

The Floyd-time here is 17.

Tables 42

One can also write out a simple table of the process. Here we think of the
points on the orbit as −τ, . . . , −1, 0, 1, . . . , π − 1. To avoid visual clutter, we
write −k as k.

Not as pretty, but potentially more useful. Note that when the slow pebbles
enters the cycle at time 6, the fast one is in position 6. 6 + 11 = 17.

How about the Period? 43

Suppose we already have a point b on the cycle.

t = 1;
u = f(b);

while(u != b) {
u = f(u);
t++;

}
return t;

We walk around the cycle, and count steps.

How about the Transient? 44

Suppose we already know p, the period.

t = 0;
u = a;
v = iterate(f, a, p); // v = fˆp(a)
while(u != v) {
u = f(u);
v = f(v);
t++;

}
return t;

v has a headstart of p. So, when u first enters the cycle, v has just gone
around once, and they meet at the contact point.

Floyd’s Cycle Finding Algorithm 45

Let us assume f to be computable in time O(1) and elements of the carrier set
A to take space O(1).

Theorem
One can determine the transient t and period p of a point in A under f in time
O(t + p), and space O(1).

Linear time cannot be avoided in general (why?), so this is optimal.

Beware of Permutations 46

Floyd’s cycle finding algorithm is an excellent general purpose tool in particular
when the evaluation of the function in question is cheap.

But note that in the special case where the function is known to be a
permutation on a finite domain there is, of course, no need to use Floyd’s or
similar cycle finding algorithms: since the components of the diagram are all
cycles we can simply trace a cycle once to determine its length. So the natural
method to compute cycle length is automatically memoryless (if we assume the
objects in question can be stored in constant space).

Incidentally, determining cycle lengths of permutations is very important for
some advanced counting methods, more later.

Generalizations 47

It is tempting to try different pebble speeds. Here is transient 6, period 17,
pebbles at speeds 2 and 3, respectively.

Surprisingly, the pebbles meet at time 17, just like the ordinary algorithm.
Ponder deeply.

Floyd-Times 48

Floyd-Times Chaos 49

This uses speeds 2 and 4. Seems fairly complicated.

Some Questions 50

Exercise
What would happen to the Floyd-time if we changed the pebble speeds to u
and v, where 1 ≤ u < v?
Would the algorithm even work for all transients and period?

Exercise
Try to find an algebraic way to compute the Floyd-time directly from the
parameters τ and π. Do this for the (1, 2) version first, then generalize to
speeds u < v.

Exercise
Call the place where the pebbles meet the Floyd-point. Study it.

Brent’s Algorithm 51

Here is a method to compute the period using “teleportation.”

slow = a;
fast = f(a);
cnt = pow2 = 1;
while(fast != slow)

if(cnt == pow2)
{ slow = fast; cnt = 0; pow2 *= 2; }

fast = f(fast);
cnt++;

return cnt;

Exercise
Figure out how this works. Compare its performance to Floyd’s method.

More 52

There is another algorithm due to Nivasch that uses a bit of extra memory (a
small stack) to speed up the search.

Applications:

discrete dynamical systems (such as cellular automata)

Pollard’s factorization method

analysis of hash functions

1 Iteration, Trajectories and Orbits

2 Finding Cycles

3 Pollard’s Rho Method

4 Goodstein Sequences

Factoring Integers 54

There is a factoring method due to John Pollard in 1975 that works well if the
given number has a small factor.

Suppose n is some given non-prime. The idea is to use a pseudo-random
function f to generate a sequence (xn) modulo n and to check if

gcd(xi − x2i, n) > 1

If so, we terminate and return the gcd. Otherwise we terminate in failure when
we reach xi = x2i as in Floyd’s algorithm.

Pollard’s Algorithm 55

x = y = 2; // or some such
d = 1;

while(d == 1)
x = f(x);
y = f(f(y));
d = gcd(x - y, n);
if(d == n) return failure;
if(1 < d) return d;

This assumes that the gcd can handle negative arguments; if not use |x − y|.

8th Fermat Number 56

Using the simple QCG
f(x) = x2 − 1 mod n

this method produced a huge success story at the time: in 1975 Pollard and
Brent found the factor 1238926361552897 of the 8th Fermat number, in two
hours compute time on a UNIVAC 1100/42.

F8 = 228
+ 1

= 11579208923731619542357098500868
7907853269984665640564039457584007913129639937

= 1238926361552897×
93461639715357977769163558199606896584051237541638188580280321

But Why? 57

If the sequence generated by f were truly random then by probability theory
one should expect transient and period to be Θ(

√
n), so the algorithm would

terminate after some Θ(
√

n) steps.

But now suppose n has a small divisor m. Since we are using a polynomial f
we can think of tacitly computing the sequence modulo m, with the stopping
condition not equality but equality modulo m: from x = y mod m it follows
that gcd(x − y, n) must be at least m and our algorithm promptly reports a
factor.

Thus we should expect the algorithm to return a correct answer in just Θ(
√

m)
time, a much smaller value.

The Power of Wishful Thinking 58

To the purist, this will sound very disturbing: we pretend there is randomness
where it is clearly absent.
However, experimental results show that the algorithm behaves as the argument
above would suggest. A really precise analysis seems very difficult, though.

Exercise
What happens with the algorithm when n is prime?
What if n = pq where p and q are prime?
How could other QCGs f(x) = x2 − c mod n be used?

1 Iteration, Trajectories and Orbits

2 Finding Cycles

3 Pollard’s Rho Method

4 Goodstein Sequences

A Wild Iteration 60

We have already seen that iteration can produce very rapidly growing functions
(much like recursion). Here is another example where iteration produces a
rather perplexing result: every orbit ends in fixed point 0, though it looks like it
should diverge towards infinity.

Suppose we write a number in base 2, say

266 = 28 + 23 + 2

We can turn this into the hereditary binary expansion by writing the exponents
also in base 2, and so on.

266 = 222+1
+ 22+1 + 2

where we really should write 20 instead of 1, but c’mon.

Base Bump 61

Now suppose we replace 2 in the representation everywhere by 3:

333+1
+ 33+1 + 3

Unsurprisingly, this new number is much larger:

443426488243037769948249630619149892887 ≈ 4 × 1038

Next, we write this number in hereditary base 3, and bump the base to 4. We
get something like 3 × 10616.

Then we write this number in hereditary base 4 and bump to 5 . . . Obviously,
this process leads to a very rapidly increasing sequence of numbers.

Goodstein Sequences 62

More precisely, define the base bump function Gb(x) to to be the operation that
bumps x from hereditary base b to b + 1. Given a natural number n, define

n1 = n

nb+1 =
{

Gb+1(nb) − 1 if nb ̸= 0
0 otherwise.

The sequence (nk) is the Goodstein sequence for n. Note that there is a
primitive recursive function g such that g(n, k) = nk.

We follow the base bump by subtracting 1, so the result will be a tiny little bit
smaller than with a pure base bump. It seems fairly clear that a Goodstein
sequence will diverge. Alas . . .

Goodstein’s Theorem 63

Theorem (Goodstein 1944)
All Goodstein sequences converge to 0.

Goodstein’s proof of his theorem uses set theory and in particular a class of
countable ordinals.

The argument is extremely elegant, but feels very “non-elementary,” one might
try to come up with a more pedestrian proof that only uses the standard tools
of arithmetic.

Example? 64

Sadly, it is very hard to come up with good examples.

Starting at 2 and 3 we get the short sequences

n = 2 2, 2, 1, 0
n = 3 3, 3, 3, 2, 1, 0

But starting at n = 4, things already spin out of control:

4, 26, 41, 60, 83, 109, 139, 173, 211, 253, 299, . . . , 4026531832, . . .

It takes some 10121,210,695 steps to get to 0.

But Why? 65

Why does this really work? Because once the base is sufficiently large, we keep
chipping away at the constant term until we ultimately have to borrow from
one of the previous terms.

Consider the sequence for n = 4. When we get to base b = 402653183, the
sequence locally looks like

nb−1 = b2

nb = b(b + 1) + b

nb+1 = b(b + 2) + b − 1
nb+2 = b(b + 3) + b − 2

. . .

n2b = b(2b + 1)

Ponder deeply.

Unprovability 66

We can define the stopping time G : N → N that counts the number of steps it
takes to reach 0 in a Goodstein sequence:

G(n) = min
(

k ≥ 1 | nk = 0
)

Note that G is computable; in fact, the algorithm is not at all complicated.
The theorem says that G is a total computable function.

Alas, the proof requires induction up to

ϵ0 = ωωω...

Which is enough to prove that (DPA) is consistent.

Theorem (Kirby, Paris 1982)
Goodstein’s theorem is not provable in Dedekind-Peano arithmetic.

And Computation? 67

It is not terribly difficult to build a register machine M that, on input x,
computes the stopping time G(x). In fact, this just requires one while-loop
wrapped around a primitive recursive function.

We know that G is total, i.e., M halts on all inputs, but this assertion cannot
be proven in (DPA).

The totality statement for M is slightly more complicated than previous
examples we have seen, it is Π2:

∀ x ∃ t R(x, t)

where R is primitive recursive (and means: the Goodstein sequence for x
converges after t steps).

	Iteration, Trajectories and Orbits
	Finding Cycles
	Pollard's Rho Method
	Goodstein Sequences

