
CDM

Finite Fields

Klaus Sutner

Carnegie Mellon University
Spring 2023



1 Ideals

2 The Structure Theorem



Where Are We? 2

We know that every finite field carries two apparently separate structures:
additive and multiplicative.

addition F ∼= (Zp)k (a1, . . . , ak)

multiplication F× ∼= Zpk−1 gi

The problem is that we have absolutely no idea how to unify the two.



Back to the Roots 3

Time to get serious about building a finite field.

We would like to follow the construction of Q(
√

2) from above, adjoining a
root of x2 − 2 = 0 to the rationals. But this time, we won’t rely on intuition
and prior knowledge of the reals. For example, consider the polynomial

f = x2 + x + 1 ∈ F2[x]

We can easily check that f has no root over F2.

So how do we expand F2 to a field F where f has a root?



Obstructions 4

This time:

We do not know a convenient big field like R that we can use as a safe
sandbox, and

we have no intuitive idea what a root of f looks like.

So, we can’t just do

Q(
√

2) = { a + b
√

2 | a, b ∈ Q } ⊆ R

But: we can try to lift this construction to our new setting. To wit, we applied
the simplification rule

x2 ⇝ 2

to all polynomials over Q. This produces expressions a + bx, a, b ∈ Q, that turn
out to form a field (the “unknown” x works just like the root we are after).



Generalizing 5

We want x2 + x + 1 = 0, so we use the simplification rule

x2 ⇝ x + 1

and apply it to all polynomials in F2[x]. We are in characteristic 2, so plus is
minus.

With luck, we might wind up with a finite field that has a root for f .



Wordprocessing 6

Here is one of the occasions where it is useful to think of a polynomial as an
expression, a term in some formal language.

On that view, we can apply the rewrite rule x2 ⇝ x + 1 to try to simplify the
expression. More precisely, we use this rule plus all the standard simplifications
we can apply to our terms (associativity, commutativity, cancellation, . . . ).

For those concerned about the StringWorld approach to life, not to worry, we
will unearth the actual algebraic meaning behind this rewrite process in a
moment.



The Rewrite Rule 7

So what happens to an arbitrary polynomial p(x) ∈ F2[x] if we apply this rule
systematically? Essentially, we can smash all the higher powers of x. Here is an
example.

x6 + x3 + x + 1⇝ (x + 1)3 + x(x + 1) + x + 1
⇝ (x3 + x2 + x + 1) + (x2 + x) + x + 1
⇝ x(x + 1) + (x + 1) + 1
⇝ x + 1

Proposition
xk reduces to 1, x, x + 1, depending on k mod 3.

So x6 + x3 + x + 1⇝ 1 + 1 + x + 1 = x + 1.



Warning 8

The simplification process is highly nondeterministic, there are many choices
along the way.

This might cause a huge headache: if we apply the rules in one particular way,
we get a different result from when we apply the rules in another way.

One really needs to make sure the process is confluent: application order does
not matter, the final result is always the same. More later.



Simplification, Algorithmically 9

In general, if we start with a polynomial f ∈ F[x] of degree d, we get a
simplification rule

xk ⇝ ak−1xk−1 + ak−2xk−2 + . . . + a1x + a0

But then we can reduce all polynomials down to polynomials of degree at most
d − 1. If the coefficient field has size q, the collection of polynomials of degree
less than d, F<d[x], has size qd.

In particular if F = Zp for some prime p we get pd reduced polynomials.



And Operations? 10

We want to use F<d[x] as the carrier set for our extension field F ⊆ K. What
are the operations?

Addition is simply addition of polynomials in F[x].

Multiplication is multiplication of polynomials in F[x] followed by a re-
duction: we have to apply the simplification rule until we get back to a
polynomial of degree less than d.



Quotients 11

We have an algorithm, but we need to work out the algebraic meaning of all of
this.

Our simplification process induces an equivalence relation on F[x]: two
polynomials are equivalent if they reduce to the same polynomial in F<d[x].

In fact, we get a congruence ≈: our simplification is compatible with the field
operations.

So we can form a quotient ring, which turns out to be exactly the field we are
looking for:

K = F[x]/ ≈



Ideals 12

Definition
Let R be a commutative ring. An ideal I ⊆ R is a subset that is closed under
addition and under multiplication by arbitrary ring elements: a ∈ I, b ∈ R
implies ab ∈ I.

So an ideal is much more constrained than a subring: it has to be closed by
multiplication from the outside. Ideals are hugely important since they produce
congruences and thus allow us to form a quotient structure:

a = b (mod I) iff a − b ∈ I.

As a consequence, arithmetic in this quotient structure is well-behaved: E.g.

a = a′, b = b′ (mod I) ⇒ a + b = a′ + b′, a b = a′b′ (mod I)



Modular Arithmetic for Polynomials 13

Suppose F is a field and consider an irreducible polynomial f(x) and the
principal ideal

(
f(x)

)
= f(x)F[x] that it generates.

We identify two polynomials when their difference is divisible by f :

h(x) = g(x) (mod f(x)) ⇐⇒ f(x) | h(x) − g(x)

Let d be the degree of f . Then any polynomial h is equivalent to a polynomial
g of degree less than d: write h(x) = q(x)f(x) + g(x) by polynomial division.



Generating Ideals 14

What is the smallest ideal containing elements a1, . . . , ak ∈ R?

All we need is linear combinations: the ideal generated by a1, . . . , ak is

(a1, . . . , ak) = { r1a1 + . . . + rkak | ri ∈ R }

In particular for k = 1 we have

(a) = { ra | x ∈ R }

This is the principal ideal generated by a.

The ideals {0} and R are called trivial, all others are proper.

Note that a field is a commutative ring that has no proper ideals.



Principal Ideal Domains 15

Definition
A principal ideal domain (PID) is an integral domain, all of whose ideals are
principal.

Important examples of PIDs are

the integers Z (think GCD)

the Gaussian integers Z[i]

a polynomial ring F[x] where F is a field

Counterexamples: Z[x] and F[x, y] both fail to be PIDs.



Minimal Polynomials 16

Suppose we have an extension F ⊆ K with α ∈ K algebraic over F. Let

I = { f ∈ F[x] | f(α) = 0 }

Then I is an ideal and we must have I = (g).
The polynomial g has minimal degree among all the annihilators of α, and we
may safely assume that g is monic.

Definition
This polynomial g is the minimal polynomial of α over F.



Digression: Proper Substructures 17

In algebra it is important to come up with the right notion of substructure: just
picking a subset that is closed under the algebraic operations is often not very
interesting.

For groups, normal subgroups are arguably more important than plain
subgroups.

For rings, ideals are arguably more important than subrings.

But for vector spaces, sub-vector-spaces are just the right notion.



Irreducible Polynomials 18

Ideals provide the right type of equivalence relation for the construction of a
finite field from a polynomial ring. Alas, the ideals cannot be chosen arbitrarily,
we need to start from special polynomials, in analogy to the modulus being
prime in the integer case.

Definition
A polynomial is irreducible if it is not the product of polynomials of smaller
degree.

Irreducibility is necessary when we try to construct a field F[x]/(f): otherwise
we do not even get an integral domain.
For suppose f(x) = f1(x)f2(x) where both f1 and f2 have degree at least 1.
Then 1 ≤ deg(fi) < deg(f), so neither f1 or f2 can be simplified in F[x]/(f).
In particular both elements in F[x]/(f) are non-zero, but their product is zero.



Counting Irreducibles 19

Fix some prime p.

Question:
How many irreducible polynomials of degree m are there in Fp[x]?

Let’s write Ip
m for this number, so trivially Ip

m ≤ pm.

Lemma (Gauss)

Ip
m = 1

m

∑
d|m

µ(m/d) pd



Möbius Inversion 20

Recall the Möbius function µ:

µ(n) =

{ +1 if n square-free, even number of prime factors
−1 if n square-free, odd number of prime factors
0 otherwise.

One can show that

(pm − 2pm/2)/m ≤ Ip
m ≤ pm/m

E.g., I2
50 = 22517997465744, about 2 percent.

Here are some numerical values for characteristic 2.

1−5 2 1 2 3 6
6−10 9 18 30 56 99
11−15 186 335 630 1161 2182
16−20 4080 7710 14532 27594 52377



Example 21

x, 1 + x

1 + x + x2

1 + x2 + x3, 1 + x + x3

1 + x3 + x4, 1 + x + x4, 1 + x + x2 + x3 + x4

1 + x3 + x5, 1 + x2 + x5, 1 + x2 + x3 + x4 + x5, 1 + x + x3 + x4 + x5

1 + x + x2 + x4 + x5, 1 + x + x2 + x3 + x5

All irreducibles in F2[x] up to degree 5.



Finding Irreducibles 22

Lemma

xpk

− x =
∏(

f | f monic, irreducible, deg(f) | k
)

There is a fairly good test for irreducibility that assumes we have access to the
prime factors of m (a reasonable assumption).

Theorem (Rabin)
Suppose f ∈ Fp[x] is a monic polynomial of degree m. Then f is irreducible iff
f divides xpd

− x but f and xpd/q

− x are coprime for all prime divisors q of m.



Another Example 23

Over F2, the polynomial
f(x) = x3 + x + 1

is irreducible. Let I =
(
f(x)

)
be the ideal generated by f .

The first few powers of x modulo I are:

1, x, x2, x + 1, x2 + x, x2 + x + 1, x2 + 1

These are actually all polynomials of degree less-than 3, except 0.

So F<3[x] forms an integral domain, and hence a field, if multiplication is
understood modulo I.

OK, but where is the root of f?



The Magic Root 24

We write α for (the equivalence class of) x for emphasis, α = x mod f(x).

Then α ∈ K is a root of f in the extension field K.

Why? We have by brute force

f(α) = x3 + x + 1 = 0 (mod I)

Yes, this is a bit lame. One would have hoped for some kind of fireworks, some
clever way of writing down the root in terms of some fancy polynomial.

But, it’s really no different from the
√

2 example, just less familiar.



Representatives II 25

Again, algebraically, it is best to think of the extension field F2 ⊆ K as a
quotient structure, as the polynomials modulo f :

K = F2[x]/
(
f(x)

)

With a view towards algorithms, we can make things more combinatorial by
keeping track of coefficient vectors, in this case

c2x2 + c1x + c0 ⇝ (c2, c1, c0)

where ci ∈ F2 is just a single bit.



Addition, Algorithmically 26

In this setting the additive structure is trivial: it’s just componentwise addition
of these triples mod 2.

(c2, c1, c0) + (c′
2, c′

1, c′
0) = (c2 + c′

2, c1 + c′
1, c0 + c′

0)

As observed before, the additive group of these fields is just a Boolean group.
Note that this operation is trivial to implement (xor on bit-vectors, can even be
done in 32 or 64 bit blocks).

For other characteristics, though, we have to use modular numbers.



Multiplication, Algorithmically 27

How about multiplication? Since multiplication increases the degree, we can’t
just multiply out, but we have to simplify using our rule x3 → x + 1 afterwards.
The product

(c2, c1, c0) · (c′
2, c′

1, c′
0) = (d2, d1, d0)

is given by the coefficient triple

d2 = c2 c′
0 + c1 c′

1 + c0 c′
2 + c2 c′

2

d1 = c1 c′
0 + c0 c′

1 + c2 c′
1 + c1 c′

2 + c2 c′
2

d0 = c0 c′
0 + c2 c′

1 + c1 c′
2

This is a bit messy, and it gets more messy when we deal with larger degree
polynomials. Still, we could hard-wire a circuit.



Multiplicative Structure 28

Recall that α is the equivalence class of x. We have already checked that α is
the generator of F×. Here are the corresponding vector representations.

α0 = 1 = (0, 0, 1)
α1 = α = (0, 1, 0)
α2 = α2 = (1, 0, 0)
α3 = α + 1 = (0, 1, 1)
α4 = α2 + α = (1, 1, 0)
α5 = α2 + α + 1 = (1, 1, 1)
α6 = α2 + 1 = (1, 0, 1)



Primitive Polynomials 29

Careful, though, it is in general not the case that α generates the whole
multiplicative group.

For this to work, we need to choose particular irreducible polynomials in our
construction, so-called primitive polynomials.

For example, there are 9 monic irreducibles of degree 6 in F2[x]:

1+x5 +x6, 1+x3 +x6, 1+x2 +x4 +x5 +x6, 1+x2 +x3 +x5 +x6, 1+x+x6,

1+x+x4+x5+x6, 1+x+x3+x4+x6, 1+x+x2+x5+x6, 1+x+x2+x4+x6

But 3 of them fail to be primitive:

1 + x3 + x6, 1 + x + x2 + x4 + x6, 1 + x2 + x4 + x5 + x6



Table of Inverses 30

We really obtain a field this way, not just some ring.

h h−1

1 1 1
2 α 1 + α2

3 α2 1 + α + α2

4 1 + α α + α2

5 1 + α2 α
6 α + α2 1 + α
7 1 + α + α2 α2

This table duly defines an involution: (h−1)−1 = h.



1 Ideals

2 The Structure Theorem



The Structure of Finite Fields 32

Recall the big theorem we announced some time ago:

Theorem
Every finite field F has cardinality pk where p is prime and the characteristic of
F, and k ≥ 1.
Moreover, for every p prime and k ≥ 1 there is a finite field of cardinality pk.
Lastly, all fields of cardinality pk are isomorphic.



Proof Sketch 33

We have already taken care of parts 1 and 2:

Since F is finite vector space over Zp where p is the characteristic of F it
must have size pk, p prime, k ≥ 1.

Since there are irreducible polynomials over Zp of degree k for any k we
can always construct a finite field of the form Zp[x]/(f) of size pk.

The Problem:
It is absolutely unclear that all these quotient rings are isomorphic.



Battleplan 34

Issue 1 Suppose we use some irreducible polynomial f . Say f has
roots α and β. Why should we have

Fp(α) ∼= Fp(β)

Issue 2 Suppose f and g are two irreducible polynomials of the same
degree. Why should we have

Fp[x]/(f) ∼= Fp[x]/(g)

We will first deal with issue 1, and then extend the method to handle issue 2.

First a few handy tools.



Homomorphisms and Kernels 35

Let’s collect some tools to compare rings and fields.

Definition
Let R and S be two rings and f : R → S . f is a ring homomorphism if

f(g + h) = f(g) + f(h) and f(gh) = f(g)f(h).

If f is in addition injective/surjective/bijective we speak about
monomorphisms, epimorphism and isomorphisms, respectively. The kernel of a
ring homomorphism is the set of elements that map to 0.
Notation: ker(f).

Note that f(0) = 0. Since f(x) = f(y) iff x − y ∈ ker(f) a ring
homomorphism is a monomorphism iff its kernel is trivial: ker(f) = {0}.

It is easy to see that the kernel of any ring homomorphism f : R → S is an
ideal in R.



Rings with 1 36

Recall that our rings always have a multiplicative unit (as opposed to
abominable rngs). So one requires

f(1) = 1.

These are sometimes called unital ring homomorphisms. In particular field
homomorphisms are unital.

Lemma
If f : F → K is a field homomorphism, then f is injective.

Proof.
ker(f) ⊆ F is an ideal. But in a field there are only two ideals: {0} and the
whole field. Since f(1) = 1, 1 is not in the kernel, so the kernel must be {0}
and f is injective.

2



The Frobenius Homomorphism 37

Here is a somewhat surprising example of a homomorphism.

Definition
Let R be a ring of characteristic p > 0.
The Frobenius homomorphism is defined by the map R → R, x 7→ xp.

The Frobenius map is indeed a ring homomorphism since R has characteristic p:

(a + b)p = ap + bp.

Over a finite field we even get an automorphism. The orbits of a non-zero
element look like

a, ap, ap2
, . . . , apk−1

Exercise
Use the binomial theorem to prove that the Frobenius map is a homomorphism.



Adjoining Different Roots 38

Back to our uniqueness problem. As a first step, consider two roots of the
same polynomial. More precisely, let f(x) ∈ F[x] irreducible, α1 ̸= α2 two
roots of f . Consider two corresponding simple field extensions F ⊆ Ki = F(αi)
where αi ∈ Ki.

Theorem (Extension Isomorphism Theorem)
There is a unique isomorphism φ : K1 → K2 such that φ(α1) = α2 and φ is
the identity on F.

Proof.
We exploit the fact that Ki = F[αi] and define

φ(p(α1)) = p(α2)

for any p ∈ F[x].



Proof 39

It is straightforward but tedious to check that φ has all the right properties.

The interesting part is to verify well-definedness.

To this end, suppose p(α1) = p′(α1).
Then f divides p − p′, say p − p′ = f · q.
But then (p − p′)(α2) = f(α2) · q(α2) = 0.

2

Exercise
Work out the rest of the proof.



Establishing Isomorphisms 40

The following fact is often useful to establish an isomorphism. Suppose
f : R → S is an epimorphism (no major constraint, otherwise replace S by the
range of f). Then R/ ker(f) is isomorphic to S.

For example, we can use this technique to prove our old theorem about field
extensions by adjoining roots.

More precisely, let F(α) be the smallest field F ⊆ F(α) ⊆ K that contains a
root α ∈ K of some polynomial f ∈ F[x]. Then

F(α) = { g(α) | g ∈ F[x] } = F[α]

rather than, say, the collection of rational functions over F evaluated at α.



Adjoining a Root, contd. 41

To see why, note that the right hand side is the range of the evaluation map

ν : F[x] −→ K
g 7→ g(α)

that evaluates g at α, producing a value in K. It is easy to check that ν is a
ring homomorphism and clearly (f) ⊆ ker(ν).
We may safely assume that f is monic and has minimal degree in F[x] of all
polynomials with root α. Then f is irreducible and we have

ker(ν) = { p ∈ F[x] | f divides p } = (f)

This shows that the range of ν is isomorphic to F[x]/(f) and hence a field.

Irreducibility is essential here, otherwise f(x) = (x2 − 2)(x2 − 3) = x4 − 5x2 + 6
with α =

√
2 over F = Q ⊆ C = K would produce a non-integral domain.



Kernels, The Idea 42

Note that this is the third time we encounter kernels.

For a general function f : A → B the kernel relation is given by
f(x) = f(y).

For a group homomorphism f : A → B the kernel is given by
{ x ∈ A | f(x) = 1 }.

For a ring homomorphism f : A → B the kernel is given by
{ x ∈ A | f(x) = 0 }.

In the last two cases we can easily recover the classical kernel relation and the
definition as stated turns out to be more useful.
Still, there is really just one idea.



Uniqueness 43

Back to the problem of showing that there is only “one” finite field Fpk of size
pk. To understand finite fields completely we need just one more idea.

Definition
Let f ∈ F[x] monic, F ⊆ K. Field K is a splitting field of f if

f(x) = (x − α1) . . . (x − αd) in K[x], and

K = F(α1, . . . , αd).

Needless to say, the αi ∈ K are exactly the roots of f . Thus, in a splitting field
we can decompose the polynomial into linear factors.

In other words, K is the smallest field where f splits into linear factors; by
adjoining all the roots of f we get all of K.



Examples 44

Example
C is the splitting field of x2 + 1 ∈ R[x].
It is hugely surprising that over C any non-constant real polynomial can already
be decomposed into linear factors, everybody splits already.

Example
Consider f(x) = x8 + x ∈ F2[x]. Then

f(x) = x(x + 1)(x3 + x2 + 1)(x3 + x + 1)

Adjoining one root of g(x) = x3 + x + 1 already produces the splitting field of
f : the other irreducible factor of degree 3 also splits.



Example contd. 45

x8 + x = x(x + 1)(x3 + x2 + 1)(x3 + x + 1)

element root of
0 x

α0 x + 1
α1 x3 + x + 1
α2 x3 + x + 1
α3 x3 + x2 + 1
α4 x3 + x + 1
α5 x3 + x2 + 1
α6 x3 + x2 + 1



Splitting Field theorem 46

Our next goal is to establish the following result.

Theorem (Splitting Field Theorem)
For any irreducible polynomial there exists a splitting field.
Moreover, any two such splitting fields are isomorphic.

Note that we have all the tools to construct a splitting field: we just keep
adjoining roots of irreducible factors of the given polynomial.

But for the uniqueness part we need a bit more machinery.

Basic problem: what would happen in the last example if we had chosen
x3 + x + 1 rather than x3 + x2 + 1? We get isomorphic vector spaces, but why
should the multiplicative structure be the same?



Constructing Isomorphisms 47

Suppose we have an isomorphism θ : F1 → F2 and f1 ∈ F1[x]. Set f2 = θ(f1)
and let Fi ⊆ Ki be splitting fields for fi.

Lemma
There exists a isomorphism φ : K1 → K2 such that φ ↾ F1 = θ.

Proof.
We construct φ by repeated application of the Extension Isomorphism theorem.

Technically, we perform induction on the degree d = [K1 : F1] of the splitting
extension.
The case d = 1 is trivial, since then Fi = Ki.

So suppose d > 1. We may safely assume that f is not irreducible; otherwise
the Extension Isomorphism theorem suffices.



Since F1 ̸= K1 there is some irreducible factor g1 ∈ F[x] of f1 of degree larger
than 1.

g1 splits in K1, say, it has a root α1.

Set g2 = θ(g1) with root α2 in K2.

By the Extension Isomorphism theorem from above, there is a unique
isomorphism θ′ : F1[α1] → F2[α2] such that θ′(α1) = α2 and θ′ ↾ F1 = θ.

But [Ki[αi] : Fi] = deg gi < deg fi, so by the induction hypothesis we are done.
2

Corollary
Splitting fields are unique up to isomorphism.



Finite Fields Explained 49

Now we can pin down the structure of all finite fields: they are splitting fields
(and hence uniquely determined).

Theorem
There is a unique (up to isomorphism) finite field of size pk.

Proof.
Let q = pk and consider f = xq − x ∈ Fp[x].
f has q roots, which form a field. For let a and b two roots, then:

f(a + b) = (a + b)q − (a + b) = aq − a + bq − b = 0

f(ab) = (ab)q − (ab) = aqbq − ab = 0

Hence the roots of f form the whole splitting field of f . By the Splitting Field
theorem, this field is unique up to isomorphism. 2



Fixed Point Perspective 50

Note that the prime subfield of Fq, q = pk, consists of all fixed points of the
Frobenius morphism: x = xp, or xp − x = 0.

Similarly, the whole field can be construed as the fixed points of the map
x 7→ xq, an iterated version of the Frobenius morphism:

xq − x = 0

Also note that Fq is far removed from being algebraically closed: xk − 1 has
the obvious root 1, but no others. So

(xk − 1)/(x − 1) = xk−1 + . . . + x + 1

has no roots whatsoever.



Example: A Splitting Field 51

We can exploit knowledge of the splitting field to study roots of irreducible
polynomials.

Consider the irreducible f = x3 + x2 + 1 ∈ F2[x].

Let α be a root of f in the splitting field K. By long division (exploiting
α3 + α2 + 1 = 0) we find all the roots of f :

f = (x + α)(x + α2)(x + α2 + α + 1)

Hence
K = F2(α) = { aα2 + bα + c | a, b, c ∈ F2 }



Example: The Field F52 52

Consider characteristic p = 5 and k = 2.

x25 − x = x (1 + x) (2 + x) (3 + x) (4 + x)
(2 + x2) (3 + x2) (1 + x + x2) (2 + x + x2) (3 + 2 x + x2) (4 + 2 x + x2)

(3 + 3 x + x2) (4 + 3 x + x2) (1 + 4 x + x2) (2 + 4 x + x2)

The factorization of x25 − x was done by an algorithm, one of the great
success stories of computer algebra dating back to the 1960s.

At any rate, there are 10 irreducible quadratic polynomials to choose from.
Which one should we pick?



Example: The Field F112 53

The factorization of X112
− x.

x(1 + x)(2 + x)(3 + x)(4 + x)(5 + x)(6 + x)(7 + x)(8 + x)(9 + x)(10 + x)(
1 + x2) (

3 + x2) (
4 + x2) (

5 + x2) (
9 + x2) (

1 + x + x2) (
4 + x + x2) (

6 + x + x2)(
7 + x + x2) (

8 + x + x2) (
2 + 2x + x2) (

4 + 2x + x2) (
5 + 2x + x2) (

6 + 2x + x2)(
10 + 2x + x2) (

3 + 3x + x2) (
6 + 3x + x2) (

8 + 3x + x2) (
9 + 3x + x2) (

10 + 3x + x2) (
2 + 4x + x2)(

5 + 4x + x2) (
7 + 4x + x2) (

8 + 4x + x2) (
9 + 4x + x2) (

1 + 5x + x2) (
2 + 5x + x2) (

3 + 5x + x2)(
7 + 5x + x2) (

10 + 5x + x2) (
1 + 6x + x2) (

2 + 6x + x2) (
3 + 6x + x2) (

7 + 6x + x2)(
10 + 6x + x2) (

2 + 7x + x2) (
5 + 7x + x2) (

7 + 7x + x2) (
8 + 7x + x2) (

9 + 7x + x2) (
3 + 8x + x2)(

6 + 8x + x2) (
8 + 8x + x2) (

9 + 8x + x2) (
10 + 8x + x2) (

2 + 9x + x2) (
4 + 9x + x2)(

5 + 9x + x2) (
6 + 9x + x2) (

10 + 9x + x2) (
1 + 10x + x2) (

4 + 10x + x2) (
6 + 10x + x2)(

7 + 10x + x2) (
8 + 10x + x2)

This time, there are 55 quadratic irreducible polynomials to pick from.



Number of Terms 54

50 100 150 200

5

10

15

20

Number of terms in the factorization of xn − x modulo 2, for n ≤ 200.



Total Recall: Euler’s Totient Function 55

Φ(n) = |Zn
⋆| = |{ x < n | gcd(x, n) = 1 }|

Euler proved the following product formula

Φ(n) = n
∏
p|n

(1 − 1/p)

where the product is over all primes dividing n.

This is easy to compute given the prime factorization of n, not so easy
otherwise.
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Definition
Let F be a finite field and f ∈ F[x] irreducible. f is primitive if x mod f is a
generator of the multiplicative subgroup in the extension field F[x]/(f). The
roots of a primitive polynomial are also called primitive.

The size of the multiplicative subgroup Fq
× is q − 1, q = pk, and we know that

the group is cyclic.

Hence there must be Φ(q − 1) generators in this subgroup, corresponding to
the number of primitive polynomials.
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Since any of the roots of a corresponding primitive polynomial is a generator,
the number of primitive polynomials of degree k is

Φ(q − 1)
k

For example, in the case p = 5, k = 2 there are 8 primitive elements and 4
polynomials.
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There is an alternative way to describe primitive polynomials that avoids
references to the extension field construction.

Definition
Let f ∈ F[x] such that f(0) ̸= 0. The order or exponent of f is the least e ≥ 1
such that f divides xe − 1.

In other words, xe = 1 mod f .

So an irreducible f is primitive iff it has order pk − 1 where p is the
characteristic and k the degree of f .
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For example, f = 2 + 4 x + x2 is primitive.

α x α13 4 x
α2 3 + x α14 2 + 4 x
α3 3 + 4 x α15 2 + x
α4 2 + 2 x α16 3 + 3 x
α5 1 + 4 x α17 4 + x
α6 2 α18 3
α7 2 x α19 3 x
α8 1 + 2 x α20 4 + 3 x
α9 1 + 3 x α21 4 + 2 x
α10 4 + 4 x α22 1 + x
α11 2 + 3 x α23 3 + 2 x
α12 4 α24 1

So F∗
52 is indeed cyclic with generator α, and F52 has dimension 2 as a vector

space over F5, as required.
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A lot is known about primitive polynomials: 904, 000 hits on google.

There are tables Hansen.

There are well-analyzed algorithms:

Nirmal R. Saxena & Edward J. McCluskey
Primitive Polynomial Generation Algorithms–Implementation
and Performance Analysis

CRC 2004

https://www.ams.org/mcom/1992-59-200/S0025-5718-1992-1134730-7/S0025-5718-1992-1134730-7.pdf
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A lot is known about special-form polynomials:

Richard P. Brent, Paul Zimmermann
Twelve new primitive binary trinomials
arXiv 2016

New primitive polynomials over F2 of degree 42, 643, 801; 43, 112, 609; and
74, 207, 281.
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E. R. Berlekamp
Algebraic Coding Theory
McGraw-Hill, 1968.

R. Lidl, H. Niederreiter
Introduction to Finite Fields and their Applications
Cambridge University Press, 1986.
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