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Insecure Channels 2

Thanks to coding theory we can assume that messages are sent over a noiseless
channel (a probabilistic assertion).

Alice Bob
insecure

channel

Eve

Alice sends an encrypted message
Bob receives and decrypts the message
Eve, the eavesdropper, intercepts the message



Cryptography, The Idea 3

Goal: even though Eve has full access to the encrypted message, she cannot
decrypt it with available computational resources.

encode : message space −→ cipher space

decode : cipher space −→ message space

Requirement:

decode(encode(x)) = x

Terminology: The encoding function translates a
message or plaintext

into a
cipher text or coded message or cryptogram.



Using Keys 4

Usually coding and decoding involves an additional special parameter, called a
key, that specifies the particular details of the encoding used.

encode : message space × key space −→ cipher space
decode : cipher space × key space −→ message space

where

decode(encode(x, K), K) = x

encode(x, K) = z must be easy to compute.
decode(z, K) = x must be easy to compute.
decode(z, ???) = x must be hard to compute.

Key spaces are usually finite and may well be known to the adversary, but so
large that exhaustive search is impossible.



“Unbreakable” Encryption 5

There is an old method known as Vernon’s Xor code that is perfect in a certain
sense.

Suppose the message space is 2n and let K be a random binary sequence of
length n. Code by bit-wise xor between message and key:

encode(x, K) = x ⊕ K

The decoding function is exactly the same as the encoding function.

Importantly, with probability 1, the cipher text is just a random bit sequence no
matter what the original message is. But then there is no way it can be
decrypted without the key K.



Done? 6

Big Problem:
The key K must be kept secret at all cost.

In other words, it needs to be transmitted by a secure channel. We’re back to
square 0.

There are other glitches. Notably, if Eve can make Alice send (parts of) a
specific message x we get

encode(x, K) ⊕ x = K

so we must change the key with some frequency.

An extreme case of Vernon is to use one-time pads: use a new key every time a
message is sent. The secure channel now is used as often as the insecure one,
though presumably for far shorter messages.†

†Supposedly this method was used at the American Embassy in Moscow.



Quantum Key Distribution 7

Quantum physics provides a potentially unassailable way of getting one-time
pads: send a pair of entangled photons to both Alice and Bob, measure to
obtain 1 bit per photon. For bizarre reasons, Alice and Bob will measure the
same bit, despite the fact that

the measuring devices are far apart,
the photons will produce a random bit stream.

Any eavesdropping would destroy the stream of photons.

In practice works at distances of 100km, enough to wire a financial district.
With satellites get up to 1200 km.



Diffie and Hellman 8

In 1976, W. Diffie and M. Hellman proposed cryptographic schemes that
accomplish a feat that may seem logically impossible at first glance:

Secure communication using only insecure channels.

The eavesdropper has complete knowledge about the encryption method used
and has full access to the communication channel.

And yet, Eve lacks some critical piece of information and is utterly incapable of
decrypting the cipher texts she has full access to.



Public Key Cryptography 9

The concept of secure communication over entirely insecure channels seems
rather paradoxical at first glance. And yet . . .

The central idea to distinguish between a public key and a private key. Say,
Bob wants to message Alice.

Alice’s public key is available to anyone interested in communicating,
there are no protections whatsoever.
Alice’s private key is available only to her, no one else has access.

Bob can use Alice’s public key to encode a message and then send it over any
insecure channel. Alice is able to decode the cipher text using her private key.

Presumably, Eve cannot decode since she has no access to the private key (at
least within the constraints of feasible computation).



Quoi? 10

For a one-time pad, the critical information is the key, and it has to be kept in
two places. To get it from one place to the other, a secure channel is critical.

On the upside, the cipher text is random.

In public key encryption, the private key is kept in one place only, there is no
need whatsoever for secure communication.

But the cipher text is no longer random and in fact far from it. There is the
danger that someone could find an attack that allows for decryption without
knowledge of the private key.



Computational Hardness 11

We have to ensure that the computation

decode(z, ???) = x

is difficult to impossible if the proper key K is not known.

It is natural to try to use computational complexity theory to make this more
precise. For example, “easy” will translate into polynomial time computable.

One the other hand, “difficult” should translate into XX-hard where XX is
some suitable complexity class, safely removed from polynomial time.



One-Way Functions 12

Here is a formalization of the idea that a function is easy to compute in the
forward direction, but it’s hard to go backward. We use polynomial time as a
stand-in for easy, and lack thereof for hard.

Definition
A function f : 2⋆ → 2⋆ is a one-way function if

f is polynomial time computable
|f(x)| = Θ(|x|)
For any randomized polynomial time algorithm A, sufficiently large n,
x ∈ 2n, and k > 0

Prr[A(f(x)) = x] ≤ n−k

Here the probability distribution is supposed to be uniform over x ∈ 2n and
random bits in r.



Comments 13

A represents an attack on our cryptographic scheme.

In light of the importance of randomized algorithms it makes sense that A can
use random bits trying to compute f−1(z).

As per our definition, an adversary will succeed in inverting the function only
with negligible probability.

Note that k is unbounded here, so if we try to use error reduction based on
polynomially many independent runs of A we will not achieve constant error
probability.

The “sufficiently large” clause is a nuisance, but cannot be eliminated: A could
could “cheat” and simply hardwire a finite number of cases. Constraints on A
that prevent that kind of unintended behavior are difficult to formalize; in the
end one winds up with program size complexity and things get very messy.



Bad News 14

At present, there is no theorem guaranteeing the existence of a one-way
function. Much less do we know how to construct a specific one.

Note that a non-constructive existence theorem would not be mildly annoying,
to actually use the function we need to get our algorithmic hands on a concrete
example.

The good news is that there are several plausible candidates. For example,
plain multiplication seems to be hard to invert: for two primes p and q, and
n = pq, we do not currently know how to factor n in polynomial time. And a
lot of people are counting on things staying that way—though the quantum
guys may wreck this dream.



Trapdoors 15

For cryptography, the closely related concept of a trapdoor function is even
more important: we want one-way functions that become easily invertible if a
secret key (the trapdoor) is available.

A formal definition becomes a bit more involved, we now have to deal with a
family of functions fk : 2⋆ → 2⋆ where k ∈ K ⊆ 2⋆, K being the set of keys.

There has to be a probabilistic polynomial time algorithm that, on input 0n,
generates a key/trapdoor pair (k, tk) where |k| = n.

Given k and x, we can compute fk(x) in polynomial time.

Given z = fk(x), k and tk we can find a preimage in probabilistic polynomial
time.

However, without the trapdoor tk, the likelihood of success is negligible.



Trapdoor RSA 16

For RSA we choose some number n, the intended number of bits in the RSA
primes.

First, we construct two suitable primes p and q of length around n bits.

The key consists of N = pq and some random e ∈ Z∗
N .

The corresponding trapdoor is d = e−1 (mod Φ(N)).

Encoding happens via x 7→ xe (mod N).

Presumably Φ(N) = (p − 1)(q − 1) and thus d are hard to compute.



Valiant Attempt: SubsetSum 17

Merkle and Hellman proposed a cryptographic scheme based on on the
SubsetSum problem.

Problem: SubsetSum
Instance: A vector a ∈ Nn and s ∈ N.
Question: Is there a vector x ∈ 2n such that a ◦ x = s?

This problem is well-known to be NP-complete.

Careful, though: some instances of SubsetSum are easily solved using a
brute-force, linear-time greedy algorithm.

This is a general problem in the application of computational hardness to
cryptography.



The Method 18

Call a superincreasing iff ai >
∑

j<i
aj . E.g., ai = 2i is superincreasing.

Alice constructs some superincreasing sequence b.

She also picks some modulus m, m >
∑

bi, and a number c coprime to m.

Alice computes ai = c bi mod m.

Alice’s public key is a, her trapdoor pair is m and c.

When Bob wants to send a message x ∈ 2n he encodes it as s = a ◦ x.

Alice can decode using her private key: she computes s′ = c−1 mod m and
then solves the corresponding superincreasing b instance greedily.



And Eve? 19

The vector a looks rather random, and there is no reason why the a instance
of SubsetSum should be easy for Eve to solve.

Since Eve knows neither m nor c, she cannot translate into the easy instance
over b.

Burning Question:
Is this really hard for someone who knows neither m nor c?

One needs to make sure that there is no possible angle of attack, using
whatever ideas might be applicable.



Alas . . . 20

In 1982, Shamir published a polynomial time attack on the Merkle-Hellman
method that is a perfect example of out-of-the-box thinking:

Instead of trying to somehow get access to m and c, his method uses Lenstra’s
integer programming algorithm to find some pair m′ and c′ that behaves like
m, c but will usually be different.

That’s fine, m′ and c′ suffice to perform the translation into a superincreasing
instance which can then be solved greedily.

One can also use the famous Lenstra–Lenstra–Lovász (LLL) lattice basis
reduction algorithm to tackle Merkle-Hellman.
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Logarithms in a Group 22

Suppose G is some finite cyclic group with generator g and order n. We can
easily exponentiate in G, the operation

e ; ge

takes O(M log e) steps where M is the cost of a single multiplication in G. But
going backwards is apparently hard in many groups:

Discrete Logarithm Problem:
Given a ∈ G, find e such that ge = a.

Of course, e = logg a is trivially computable by a brute force search, but we are
here interested in efficient computation when the group order n is sufficiently
large.



Diffie and Hellman 23

In 1976, Whit Diffie and Martin Hellman seized on this apparent difficulty to
propose a cryptographic scheme.

We need a nice cyclic group G of sufficient size where the group operation is
easily computable and we have access to a generator.

Diffie/Hellman used the multiplicative group of a finite field Fpk . So all we
need is a primitive polynomial τ ∈ Fp[x] of sufficiently high degree.



Diffie/Hellman Algorithm 24

Alice and Bob agree on generator g in some finite field F = Fpk .

Alice generates random number x, computes a = gx in F.
Alice sends a to Bob.

Bob generates random number y, computes b = gy in F.
Bob sends b to Alice.

Both Alice and Bob can now compute

c = gxy = ay = bx

and use it as a secret key (for some other encryption algorithm).

Eavesdropper Eve knows the algorithm, F, g, a and b, but not the trapdoor
exponents x and y.



A Challenge 25

On the face of it, Diffie/Hellman seems to work in the sense that no one has
produced any systematic attack on the method.

Alas, for cryptography this is not really enough: even a partial attack that only
works in some special cases may not be tolerable. This is very different from
ordinary computational hardness where one only needs to establish that some
difficult instances exist.

“Break” would mean that we are happy to invest quite a bit of computation,
just not the full brute-force exponential seach that seems to be necessary to
destray the schema.



Shanks Baby/Giant Steps 26

In other words: is there anything we an do to speed up computation of
logarithms in a finite field? At least sometimes?

Suppose g is a generator of the multiplicative subgroup of F = Fpk and a ̸= 0
is some given element in the field whose logarithmic we want to compute.
Let m = ⌈√

q⌉ and compute two lists

ag−i where 0 ≤ i < m, and

gmj where 0 ≤ j < m.

Then check for a common entry in the two lists: this produces ag−i = gmj ,
whence a = gmj+i.

So we have essentially written the logarithm as a two-digit number in base m.



Efficiency 27

To check for a common element we can use hashing. Of course, one need not
wait till the lists are complete to check for a match.

The baby-step/giant-step method requires O(√q) field operations, and storage
of O(√q) field elements.

This may not seem overly impressive, but it is a huge improvement over the
standard O(q) time algorithm (though that runs constant space).

Note that a cryptographic attack may well be worth this much computation.
The NSA sure won’t mind.



Pollard’s Rho Method 28

This should be called Pollard’s Lasso method (in particular since the second
algorithm in the paper is about “catching kangaroos”), but it’s too late now.

A Rohrschach test:

If you have a classical education, you will see a ρ .
If you’re a cowboy, you will see a lasso.



Random Maps 29

The motivation for this method is a bit strange. Consider a random function
f : A → A where A has size n.
Then the expected value of some key parameters of the functional digraph of f
are as follows:

# components 1
2 log n

# leaf nodes e−1n

# recurrent nodes
√

πn/2
transient length

√
πn/8

period length
√

πn/8

The expected lengths of the longest transient/cycle are also c1/2
√

n where
c1 ≈ 1.74 and c2 ≈ 0.78.



Computing Transient and Period 30

For simplicity we can think of the expected value of transient length t and
period length p of a random point a in A as

√
n.

We know an elegant algorithm to compute these parameters: Floyd’s trick.
More precisely, we can compute t and p in expected time O(

√
n) using O(1)

space (we only need to store a small constant number of elements in A).

Wild Idea:
Can we compute a (pseudo-)random sequence (xi) of group ele-
ments so that xi = x2i helps us to compute a discrete logarithm?



The Map 31

We need a “random” map.
To this end we first split the group G into three sets G1, G2 and G3 of
approximately equal size (sets, not subgroups, so this will be easy in practical
situations). Any ham-fisted approach will do.

Now, given a generator g and some element a, define f : G → G as follows:

f(x) =


gx if x ∈ G1,

x2 if x ∈ G2,

ax otherwise.

Of course, f is perfectly deterministic given the partition of G.



The Orbits 32

Consider the orbit (xi) of 1 under f .

Clearly, all the elements have the form aαi gβi and the exponents are updated
according to

(αi+1, βi+1) =


(αi, βi + 1) if x ∈ G1,

(2αi, 2βi) if x ∈ G2,

(αi + 1, βi) otherwise.

Since the partition of G is random, the three steps are chosen randomly.



Use Floyd 33

Use Floyd to find the minimal index e such that xe = x2e:

aαe gβe = aα2e gβ2e

But then

aαe−α2e = gβ2e−βe

This equality does not solve the discrete logarithm problem directly but it can
help at least sometimes.

Again, for cryptographic applications any such weakness is potentially fatal: a
good method must be secure under any and all circumstances.



Example: Z999959 34

Consider the multiplicative group of Zp where p = 999959. Pick generator
g = 7 and let a = 3.

Perhaps the most simpleminded partition is to chop [p−1] into thirds. This
produces an orbit with transient and period

928 587

A similarly obvious partition would use x mod 3. This produces an orbit with
transient and period

919 575

Note the values are order-of-magnitude close to √
p, looks like our maps are

sufficiently random.



Onward 35

Running a suitably modified version of Floyd’s algorithm with the first partition
produces e = 1174 and xe = 11400, plus the identity

3310686 = 7764000 (mod p)

Close, but no cigar: we need to somehow clobber the exponent 310686.

The last identity lives in Z⋆
p, a group of order p−1.

So we could try to simplify exponents modulo p−1.



Magic 36

Use the Extended Euclidean algorithm to get

gcd(310686, p − 1) = 2
= 148845 · 310686 − 46246 · 999958

Then raise 3310686 to the 148845 power mod p to obtain

32 = 7356324 (mod p)
3 = ±7178162 (mod p)

We can simply check the two cases and find that in Zp: log7 3 = 178162.



How Random Is It? 37
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A plot of the orbit of 1 given our “random” partition.



Aside: Elliptic Curves 38

Curves of the form y2 = x3 + ax + b
over a finite field produce a nice group
that can be used for discrete logarithm
methods.
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The History 40

The now classical DES (data encryption standard) was officially adopted in
1977. It is based on–rather too short–keys of length 56 bits and has since fallen
prey to Moore’s law: DES can now be broken in a distributed attack in a
matter of hours.

In September 1997, NIST issued a Federal Register notice soliciting an
unclassified, publicly disclosed encryption algorithm.

15 candidate algorithms were submitted and closely scrutinized. In 2000, NIST
selected the Rijndael algorithm by Joan Daemen and Vincent Rijmen as the
new standard.

It is now enshrined in the Federal Information Processing Standard (FIPS) for
the Advanced Encryption Standard, FIPS-197.



Stream Ciphers 41

DES and AES are both based on ideas that first appeared in Lucifer, an
encryption system developed mainly by IBM: the input message is chopped into
fixed-size block of bits, which are then clobbered using a key.

Use combinatorics and algebra to mangle a block of bits.

Cleverly incorporate the key into this mangling process.

Use multiple rounds to make sure the final result is sufficiently compli-
cated.

Each round uses a subkey (aka round key) that is generated from the main key.

And, of course, everything has to be easily reversible when the key is known.



Again: Iteration 42

k1 k2 k3 k4

cm

Each coding box is relatively simple, and may not provide anything resembling
a safe encoding. But a sufficiently long chain is hard to crack without
knowledge of the master key.



Chopping up Messages 43

As an aside, a long message obviously needs to be chopped up into blocks of
the right side. This apparently trivial task is handled by a “block cipher mode
of operation.”

Electronic codebook mode: divide the message is divided into blocks, encrypt
each block separately. Not a great idea.

Cipher block chaining: Xor each block of plaintext with the previous
ciphertext block, then encrypt.

Propagating cipher block chaining: Xor not just with previous ciphertext but
also with plaintext.

And so on, and so forth.



Lucifer 44

There are several patented variants, all based on substitution-permutation
networks (so-called Feistel networks) that mangle bits and mix in the key in
some clever way. Up to 16 rounds are used to foil attacks.

The block size and key size vary from 48 to 128 bits.

A pleasant feature is that decryption is very similar to encryption, so hardware
can be reused.

Alas, the devil is in the details†, and Lucifer suffered from security issues.

†No pun intended.

https://en.wikipedia.org/wiki/Feistel_cipher


DES Outline 45

DES encrypts blocks of 64 bits, using a key of 56 bits.

A 64-bit input block is permuted and then split into two 32-bit blocks
(L0, R0).

These blocks are then mangled in several rounds according to

(Li+1, Ri+1) = (Ri, Li ⊕ f(Ri, Ki))

Here Ki is a key derived from the original key K ∈ 256 and f : 232+48 → 232

is a carefully constructed Boolean map. Tempting, but we won’t go there.

The final output is then obtained from (L16, R16).



Eyeballing It 46

256 7.2 × 1016

2128 3.4 × 1038

2256 1.2 × 1077

Even with a gazillion processors, the longer keys cannot be brute-forced.



Rijndael 47



AES Infrastructure 48

AES encrypts blocks of 128 bits, using a cipher key of 128 (or 192, 256 bits).
Bit-sequences in AES are always divided into bytes, 8-bit blocks.

Finite fields and/or polynomials are used in two places:

We can think of these bytes as coefficient vectors of elements in F28 where
the irreducible polynomial for the multiplicative structure is chosen to be

f(x) = x8 + x4 + x3 + x2 + 1

4-byte vectors are construed as polynomials in F28 [z]/(z4 + 1). I.e., we
smash all higher powers down below 4.



The Appointed Rounds 49

The algorithm first xors with a subkey, and then proceeds in 10 rounds
(actually, the number depends on the key size, but let’s just focus on 128-bit
keys). As in DES, each round mangles the bits some more (the final round is
slightly different, but we will ignore this).

Abstractly, a single round looks like so:

byte substitution

shifting rows

mixing columns

add key



Terminology 50

The row/column terminology comes from thinking of the initial input as being
given by a 4 × 4 matrix of bytes (for a total of 128 bits; in reality the input is
broken into corresponding pieces).

 a0,0 a0,1 a0,2 a0,3
a1,0 a1,1 a1,2 a1,3
a2,0 a2,1 a2,2 a2,3
a3,0 a3,1 a3,2 a3,3



So the current state is described by such a matrix which we may think of as a
4 × 4 matrix over our favorite field F28 .



(1) Byte Substitution 51

Define the patched inverse of an element a ∈ F28 to be

a =
{

0 if a = 0,
a−1 otherwise.

Define an 8 × 8 bit-matrix and 8-bit vector as follows

A =



1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1


v =



1
1
0
0
0
1
1
0


Then byte substitution is given by the not-quite affine, reversible map
a 7→ A a + v, applied to each byte separately.



Byte Substitution Picture 52

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

On the right, we simply use a rather than the patched inverse as on the left.

The visuals suggest that patched inverses help quite a bit to make a bigger
mess.



(2) Shift Rows 53

Replace the state matrix by the row-shifted version a0,0 a0,1 a0,2 a0,3
a1,1 a1,2 a1,3 a1,0
a2,2 a2,3 a2,0 a2,1
a3,3 a3,0 a3,1 a3,2



More precisely, we shift the ith row by i places to the left (assuming
0-indexing). So e.g. the diagonal winds up in the first column.

The next operation is a bit more complicated.



Aside: Notation 54

For phase (3) we will use the same notation as in the Rijndael specification.

To denote an element of F28 , we think of a byte as two hexadecimal digits.

So, for example, D4 corresponds to 1101 0100 as a coefficient vector, or the
field element

z7 + z6 + z4 + z2 mod τ

as a polynomial.

Since the byte field F28 is quite small, we can easily use lookup tables to make
all the field operations very fast.



(3) Mixing Columns 55

Consider the polynomial (coefficients are written as two hex digits)

g(x) = 03 x3 + 01 x2 + 01 x + 02 ∈ F28 [x]

We can think of each column in the state matrix as another polynomial in
F28 [x], so in this phase we multiply the column polynomial by g, and then
reduce modulo x4 − 1 (smash larger exponents).

Since these operations are all linear, this all comes down to a single matrix
multiplication over F28 :

c ;

 02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

 c



(4) Add Key 56

AES is a symmetrical block cipher, meaning the same key is used for encryption
and decryption. E.g., we can use xor of the key and (parts of) the cipher text.

Let’s ignore the details.



The Standard 57

Take a look at the NIST specifications for cryptography and Rijndael:

ToolKit
Rijndael

There are lots of implementation details as well as a careful discussion how to
decrypt a Rijndael encrypted message.

One pleasant aspect: the decryption operations are very similar to encryption,
so essentially the same hardware can be used. With appropriate support the
throughput is quite high (hundreds of MB/s).

http://csrc.nist.gov/CryptoToolkit/
https://csrc.nist.gov/glossary/term/rijndael


Keys and Decryption 58

Claim: All four phases are reversible.

At each round, a subkey is xor-ed with the state matrix; all the subkeys are 128
bits. We will not discuss how the subkeys are generated from the original key.
Incidentally, proper key management is a huge problem in cryptography.

The documents at the links also contain lots of implementation details as well
as a careful discussion how to decrypt Rijndael encrypted message. Note that
the inverse operations are very similar to the encryption operations, so
essentially the same hardware can be used.
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