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Claude Elwood Shannon (1916–2001) 2



Shannon’s Information Theory 3

Two crucial papers:

A Mathematical Theory of Communication
Bell System Technical J., 27(1948)3/4, pp. 379–423, 623–656.

Communication Theory of Secrecy Systems
Bell System Technical J., 28(1949)4, pp. 656–715.

The first paper introduces the notion of a bit (binary digit, suggested by John
Tukey). Since Shannon was working for the phone company, he was interested
in how many phone calls could be transmitted in parallel on the same copper
wire. His work relies heavily on probability theory.



Measuring Information 4

Hard Question:
How can we assign a numerical measure to information content?

This may seem like a hopeless task, but it becomes manageable if one stays
away from semantics: figuring out whether a text by Immanuel Kant has more
information than a text by Albert Einstein is indeed hopeless.

Key Idea: Information has to do with surprise: the more surprising an event is,
the more information it carries.

Technically, this approach allows us to study probabilities rather than embark
on the hopeless enterprise of defining a semantics for natural languages.



Axioms for Information 5

Consider some event E that occurs with probability Pr[ E ]. Here are some
simple axioms for the information content I(E).

Pr[ E ] = 1 implies I(E) = 0
Pr[ E ] = 0 implies I(E) = ∞
Pr[ E0 ] ≤ Pr[ E1 ] implies I(E0) ≥ I(E1)
E0, E1 indep. implies I(E0 ∧ E1) = I(E0) + I(E1)

From these basic assumptions it follows easily that

I(E) = − logb Pr[ E ]

Base b = 2 is the standard choice, corresponding to Yes/No answers.
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Information and Entropy 7

In most applications, Alice sends a stream of symbols to Bob that constitute a
message. The symbols are chosen from a fixed collection, an alphabet
{a1, a2, . . . , aq}. Let’s call this scenario a channel. Many symbols are
transmitted, so it makes sense to speak of ai being sent with probability pi,
where

∑
i
pi = 1.

Key Question: How much information is contained in a message?

Well, it’s the average information content of the symbols that make up the
message.
This is called the entropy of the channel:

H = −
∑

i

pi log pi



Uniform Probabilities 8

Here is a simple special case: uniform probabilities pi = 1/q.

H = −
∑

i

1/q log 1/q = log q

In particular for q = 2 we have H = 1. Makes some intuitive sense.

How about q = 2 with biased probabilities?

H = −p log p − (1 − p) log(1 − p)

This is the binary entropy function (and very useful in some combinatorial
arguments).



Binary Entropy 9
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Redundancy and Compression 10

Redundancy is very closely related to entropy and measures the amount of
superfluous information being transmitted. Superfluous in the sense that, in
principle, we could transmit the same amount of information using fewer bits.
In other words, we try to measure possible compression.

Why would anyone use redundant communication? Because it provides some
degree of protection against noise.

Flipping a few bits in a page of English text is usually no problem, but in a
compressed file it will be a disaster.

Unsurprisingly, human speech relies heavily on redundancy to protect against
noisy channels.



Technically 11

The redundancy for a q-symbol channel is given by

R = Hmax − H

Hmax

Here Hmax = log q represents the maximum entropy of any q-symbol channel.
So 0 ≤ R ≤ 1, and in the uniform case we have redundancy 0: all possible
messages are equally likely.
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How About English? 12

So what is the redundancy of English? Shannon was the first to try to come up
with a reasonable answer to this question.

The problem here is that English is not a formal language, so one can try to
approximate it by fixing an alphabet (say, 26 letters or 27 if one includes a space
symbol) and then looking at probabilities of blocks of N consecutive letters.

onecanalmostalwaysfillinthespacesfromasequenceofwordswithnospaces

Shannon came up with an estimate of R ≈ 0.54.



But How? 13

The big problem when dealing with natural languages is that one has to make
lots of simplifying assumptions.

English text consists of sequences of blocks of letters (aka words),

the letters within a block are not equidistributed,

the arrangement of blocks is controlled by grammar and far from random.

So all one can hope for are some rough approximations.



N-Grams 14

One approach is to determine probabilities of the next letter assuming
knowledge of the current N letters (think of assigning probabilities to the edges
of a de Bruijn graph):

a1a2 . . . aN ⇝ b

This is easy for small N and one can hope that the numbers converge rapidly
to a limit of sorts. Shannon did concrete calculations and came up with the
following estimates:

N 0 1 2 3 word
HN 4.7 4.14 3.56 3.3 2.62

If all 3-letter blocks were equally likely we would get H = 14.1.

The last value for words comes from Shannon’s analysis of the entries in a
dictionary.



English Approximations 15
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Shannon’s Model 17

A message a is generated by some source, converted into a signal by the sender
(transmitter) which is sent over the channel. The receiver turns the signal into
a received message a′ which reaches the destination.

source sender channel receiver target
a c c' a'

Two major scenarios:

The channel is noisy: c ≈ c′.
Interesting question: how to recover the original message, coding theory.

The channel is noiseless: c = c′.
Interesting question: how to protect against eaves-dropping, cryptography.



Noisy Channels 18

We will only deal with the noisy scenario here. The sender here needs to turn a
message a into a code c, which is structured in such a way that the decoder
has a chance to recover a even though c ̸= c′.

coder decoder
noisy

channel

a c c+e a'

The decoder receives c′ = c + e where e is the error introduced by the channel
(for the moment, don’t worry what exactly addition means here).

It outputs a decoded message a′ which is hopefully identical to a. If only . . .



Keeping It Real 19

Obviously, if the noisy channel introduces too many errors, there is no way to
recover c.

Just think about a channel that returns a stream of 0s, or a sequence of
random bits.

We need to make probabilistic assumptions about the likelihood of errors. As
long as these probabilities are low, we want to be able to decode. If the the
error probabilities are large, we are really faced with an issue of channel design,
not of coding theory.



General Case 20

Suppose we want to transmit a word over some alphabet Q of size q. This is
called an q-ary channel.

In general, all we have is a probability matrix

P = (pab) ∈ [0, 1]q×q

where pab indicates the likelihood that symbol a sent into the channel is
received at the other end as symbol b. So we would like paa to be large.

In a civilized channel, we may assume that the matrix is stochastic: all rows
and columns sum to 1.

In other words, we will not deal with errors based on insertions and deletions.



Symmetric Channels 21

Suppose again we have a q-ary channel.

Major Simplification: We assume that there is a single parame-
ter p ≥ 0 that describes all error probabilities: p is the probability
that the channel will transmit any symbol as a different symbol.

So we are sending a symbol a into the channel, and receive b at the other end.
The error probability p is the same for all a and b.

paa = Pr[ a = b ] = 1 − (q−1)p
pab = Pr[ a ̸= b ] = (q−1)p

Sanity Assumptions:

We will always assume that p is small relative to q (see below).

We will not deal with insertions and deletions of symbols.



Binary Symmetric Channel 22
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Block Codes 23

We will think of messages and codes as words over an alphabet Q:

a = a1a2 . . . ak

c = c1c2 . . . cn

We are mostly interested in the binary case Q = 2, but larger alphabets can be
handled similarly.

Useful Trick:
Think of Q as being some finite field Fq.

Messages a and codes c are then simply vectors over this finite field, of length
k and n, respectively.

For example, if we want to use bytes as letters, we pick F28 .

In characteristic 2 we are just dealing with various bit operations, so efficiency
should be good.



But Why? 24

Why not simply think of the symbols as purely combinatorial objects, say,
letters a, b, c, . . .

Because algebra is your friend.

The whole purpose of algebra is to “trivialize” the solution of certain types of
problems. If some particular problem can naturally be expressed in terms of
algebra, it is probably easier to handle than otherwise.



Errors 25

One advantage of the vector model is that we can model the error as just
another vector:

c 7→ c + e

The key challenges are

Error Detection
Detect when e ̸= 0 (and ask for a re-transmit).

Error Correction
Detect an error and correct it (by adding −e to the transmitted message).

Again, error detection and correction only work if the channel is reasonably well
behaved. In practice, the major bottleneck is usually the efficiency of the
decoder.



Terminology 26

Recall that we think of messages as k-vectors over some finite field F of size
q = pℓ.

Hence we have qk = pℓ k possible messages and need to assign a unique
codeword to each.

Definition
A (q-ary) code is a subset C ⊆ Fn of size qk.
The elements of C are codewords and the ambient space Fn is the codespace.

So the key parameters of a code are the arity q, the dimension k and the
(block) length n†.

Obviously the length is at least the dimension, but for error detection and
correction it needs to be larger, we need to introduce some redundancy.

†Bad terminology, as a vector space, Fn has dimension n.



Codespace 27

Fn

messages code

This picture is slightly misleading: the code words ought to be spaced out
nicely in the ambient space.



Encoding and Decoding 28

Once we have fixed arity, dimension and block length, a coding function is an
injective map

E : Fk −→ Fn

and a decoding function is a surjection

D : Fn −→ Fk

The whole point is that not just D(E(x)) = x, but

c = E(x) implies D(c + e) = x

for as many e as manageable.



Getting Serious 29

To construct a code, at the very least, we need to do the following:

choose a proper value for the length n ≥ k,

pick a subset C of Fn of cardinality qk, and

determine the maps E and D.

Note, though, that unlike with cryptography (and in particular public key
cryptography) we only need to do this once, we can use the same code over
and over again.



Coding and Decoding 30

How large should the dimension be? We need to space out codewords so we
can recover from some errors, so n should be large—but efficiency requires to
keep n small.

Also, we need to specify C ⊆ Fn explicitly. Sine qn is large this requires some
systematic tool, lookup tables are not an option.

Once the code C is fixed, we need to find efficient algorithms to compute the
maps E and D.

The good news: There is quite a bit of leeway in how to organize this. Before
we talk about specific codes, let’s look at some fundamental properties of this
setup.



Hamming Distance 31

There is a natural way to introduce geometry in the codespace Fn: we can
measure distances between points.

Definition
The Hamming distance between two vectors x, y ∈ Fn is defined by

dist(x, y) = |{ i | xi ̸= yi }|

The weight (or support) of a vector x ∈ Fn is defined by

w(x) = |{ i | xi ̸= 0 }|

Thus dist(x, y) = w(x − y).

Exercise
Check that d really is a metric.



Geometric Intuition 32

We are making an attempt to bring geometry to bear on our problem. Careful,
though, we are not in the standard, continuous world of Euclidean space R3,
but in some high-dimensional discrete space. Geometric intuition in
high-dimensional spaces can be quite limited.

In many ways, this is just fine. E.g., it still makes perfect sense to talk about a
ball of radius r centered at x:

Br(x) = { z ∈ Fn | dist(x, z) ≤ r }

But the radius here is integral, and the difference between open and closed
balls evaporates: open radius r is closed radius r−1.

On the other hand, everything is discrete and we can, say, count the number of
points in a ball.



Counting Errors 33

A basic error in the channel is thus represented by an error vector of weight 1:

e = (0, . . . 0, x, 0, . . . 0)

where x ̸= 0. In the characteristic 2 case x = 1, the error is a unit vector.

We can think of the channel as introducing a number of basic errors
sequentially. An error vector of weight e is thus referred to as “e errors.” This
makes perfect sense in symmetric channels where each flip is independent and
equally likely.

Goal: We want codes that can correct reasonably many errors.

Strategy: We will use redundancy to protect against errors.



An Idiosyncrasy 34

In coding theory texts, when one says a code detects e errors, what is actually
meant is this: For any codeword c and any error e ̸= 0 of weight at most e:

one can detect that z = c + e /∈ C, and

one can determine the weight of e from z.

So this better than just realizing that there was an error, but slightly weaker
than being able to correct it: we know the weight e of the error, but not
necessarily the actual error e.



6-Dim Hypercube 35

4 balls of radius 1 in the 6-dimensional hypercube 26.



6-Dim Hypercube 36

2 balls of radius 2 in the 6-dim hypercube 26, each containing 22 points.



Abstract Space 37

Suppose the received noisy transmission c + e winds up “between” two
codewords at distance 6. For simplicity, let’s ignore all other codewords for the
time being and organize points by distance.

c1 c2c+e

We have d(c1, c2) = 6 and the transmission could come from a weight-2 or a
weight-4 error. We can only detect errors of weight 3 and we can correct errors
of weight 2.



Conditional Probabilities 38

Suppose we have an q-ary symmetric channel with (single) error probability
(q − 1)p.
The probability that y is received when x as been transmitted is

Pr[ y | x ] = pd(1 − (q − 1)p)n−d

where d = dist(x, y).

As long as p < 1/q this function is sharply decreasing in d, so it is unlikely that
we will hit a y far away from x.

As already mentioned, if p is too large one has to redesign the channel.



Example: q = 3, n = 5, p = 0.1, 0.05, 0.01 39
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So d = 2 is already quite unlikely, even for an error probability of 10%.



Maximum Likelihood Decoding 40

If x is transmitted and y /∈ C is received, the natural decoding strategy based
on Pr[ y | x ] is to find the codeword c ∈ C closest to y.

This makes sense in particular when this c is uniquely determined.



Balls and Errors 41

Suppose we have chosen a code C. We define the minimal distance of C to be

md(C) = min
(

dist(x, y) | x ̸= y ∈ C
)

Thus a ball of radius md(C) − 1 around a codeword in C contains no other
points in C.

Proposition

If md(C) ≥ 2e then C detects e errors†.

If md(C) ≥ 2e + 1 then C corrects e errors.

Note the active voice; we really should have said: it is possible to
detect/correct–we don’t yet know how to do this efficiently.

†Remember the meaning of “detects.”



Hamming Bound 42

Lemma (Hamming)
Suppose the q-ary code C has length n and corrects e errors.
Let V =

∑e

i=0

(
n
i

)
(q − 1)i. Then

V |C| ≤ qn

Proof. Since the code corrects e errors, all balls of radius e centered at c ∈ C
are necessarily disjoint. The number of points at distance i to c is

(
n
i

)
(q − 1)i,

so V is just the volume of a ball of radius e. 2

A code is perfect iff it realizes this bound. Needless to say, Hamming found a
way to construct perfect codes.



Examples 43

Time for some concrete examples.

In all cases, we introduce redundancy in a more or less clever way to help with
error detection and correction.

One could object that these codes are really just hacks, for a more systematic
approach look at the next section.



Example 1: Repetition Code 44

This is a bit embarrassing, but bear with me. In Fn
2 define E by

x 7→
(
x, x, . . . , x︸ ︷︷ ︸

n

)
So the only codewords are 00 . . . 0 and 11 . . . 1.

The minimum (and only) distance is n and balls of radius ⌊(n−1)/2⌋ around
the codewords are still disjoint.

More importantly, it easily corrects ⌊(n−1)/2⌋ errors: we use a majority count
to determine the original codeword.

For odd n, these codes are perfect.

The obvious fatal problem with this is the low rate of transmission: the
codeword is n-times longer than the original message.



Example 2: Parity Check Code 45

To encode, add a parity “bit” to the message:

x 7→
(

x,
∑

xi

)
so that n = k + 1. Here we are exploiting the fact that the xi are field
elements, so the sum naturally makes sense.

A parity check code detects 1 error.

Alas, it corrects none.

This may sound next to useless, but it is not: variants of this scheme are used
in ISBN, good enough for a low key sanity check.



Example 3: Correcting One Error 46

Consider q = 2, dimension k = 4 and length n = 7.

To encode a 4-bit vector x = (x1, x2, x3, x4), we transmit 7 bits
c = (c1, c2, c3, c4, c5, c6, c7) where

c3 = x1 c5 = x2 c6 = x3 c7 = x4

are the original message bits. The weird numbering will become clear in a
moment.

The missing bits c1, c2, c4 are determined by

c1 = c3 + c5 + c7 = x1 + x2 + x4

c2 = c3 + c6 + c7 = x1 + x3 + x4

c4 = c5 + c6 + c7 = x2 + x3 + x4



Matrix View 47

We can think of the encoding process as a simple vector-matrix multiplication
x 7→ x G where G ∈ 24×7:

G =

1 1 1 0 0 0 0
1 0 0 1 1 0 0
0 1 0 1 0 1 0
1 1 0 1 0 0 1


G has full rank 4, so it generates a 4-dimensional subspace.

This is easy to see if we move the columns around to get an identity matrix
plus the parity part.  1 0 0 0 1 1 0

0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1


OK, but why mess things up as in G?



A Hack 48

For decoding, calculate 3 bits α, β and γ as follows:

γ = c1 + c3 + c5 + c7

β = c2 + c3 + c6 + c7

α = c4 + c5 + c6 + c7

If there is no error, α = β = γ and we can read off x directly.

If there is a single error, then 1 ≤ αβγ ≤ 7 is the binary expansion of the place
where the error occurred.

Example:
x = (1, 1, 0, 0) yields c = (0, 1, 1, 1, 1, 0, 0).
Let c′ = (0, 1, 1, 1, 0, 0, 0).
Then αβγ = 101, the error is in position 5.



Example 4: . . . and Detecting Two 49

The last code does not handle 2 errors in a civilized way: the following
codewords have identical 1-error and 2-error versions:

0 0 0 0 0 0 0 0 1 0 1 0 1 0
↓ ↓

0 0 0 0 0 1 0 = 0 0 0 0 0 1 0

We could fix this problem by adding another parity bit

c0 = c1 + c2 + c3 + c4 + c5 + c6 + c7

This extended code detects two errors (recall the definition) and still corrects
one as before.
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Using Algebra 51

So far, everything is a bit ad-hoc. Here comes the first real idea:

Use linear algebra to define codes and handle coding/decoding.

So instead of some clever hack, we would like C to be determined by some
algebraic definition.

Hopefully this approach will automatically take care of spacing out the the
codewords, and provide some computational support for coding/decoding,
including error correction.



Linear Codes 52

Definition
A linear code is a linear subspace C ⊆ Fn.
A linear code of length n and dimension k is an [n, k] code.
A generator matrix G for C is a k by n matrix over Fq whose rows form a basis
for the code space C.

In other words, the subspace C is the row space of G:

C = { x G | x ∈ Fk }



Example: [6, 3] Code 53

Let q = 2, k = 3, n = 6 and

G =

(1 0 0 0 1 1
0 1 0 1 0 1
0 0 1 1 1 0

)
The encoding map is

x 7→ y = (x1, x2, x3, x2 + x3, x1 + x3, x1 + x2)

Decoding in the absence of errors is entirely trivial since x is just the first 3
components of y, but what if the decoder receives y + e instead?



Code Space 54



Standard and Systematic Codes 55

Note that our generator matrix has the form

G =
(
Ik P

)
∈ Fk×n

where Ik is the identity matrix of order k, so G is in reduced echelon form and
has full rank n−k. Such codes are said to be in standard form. Alternative the
columns of Ik can be spread out in G; this is called systematic form. This is
essentially the same, but recall the hack from above.

Correspondingly, in a standard form code, one calls

the first k bits information symbols

the last n − k bits parity check symbols

In this sense all linear codes are parity check codes.



Parity Check Matrix 56

Suppose we are in characteristic 2. Let G =
(
Ik P

)
be the k × n generator

matrix of a standard form [n, k] linear code. Define the (n−k) × n matrix H by

H = (P T In−k)

Definition
H is the parity check matrix for code C.
The vector syn(z) = z · HT ∈ Fn−k is the syndrome of z ∈ Fn.

Since we are working in characteristic 2 we have G · HT = 0 so that

z ∈ C ⇐⇒ syn(z) = 0

and we can test membership in C via a simple vector-matrix multiplication.



Example contd. 57

For the [6, 3] code from above we have

G =

(1 0 0 0 1 1
0 1 0 1 0 1
0 0 1 1 1 0

)
and

H =

(0 1 1 1 0 0
1 0 1 0 1 0
1 1 0 0 0 1

)

In this case, the P -part of G is symmetric and thus invariant under transpose.



Dealing with Errors 58

For our example, the syndrome looks like syn(y) = (s1, s2, s3) where

s1 = e2 + e3 + e4

s2 = e1 + e3 + e5

s3 = e1 + e2 + e6

and here are the syndromes associated with 1-bit errors (really HT ):

e1 0 1 1
e2 1 0 1
e3 1 1 0
e4 1 0 0
e5 0 1 0
e6 0 0 1

So we can fix all 1-bit errors.



Decoding 59

Decoding here hinges on the following observation (which is not hard to prove):

Claim
If (s1, s2, s3) ̸= (1, 1, 1) there is a unique choice for such an error vector e (of
weight at most 1).

Alas, if (s1, s2, s3) = (1, 1, 1) all the following 3 weight 2 vectors work:
(1, 0, 0, 1, 0, 0), (0, 1, 0, 0, 1, 0), (0, 0, 1, 0, 0, 1).

In this case we can either ask for a retransmit, or we can simply pick one of the
3 possibilities–which will be right 1/3 of the time.



So? 60

How much have we gained?

If we transmit 3 bits in a symmetric binary channel with error probability
p = 0.001, the likelihood of correct transmission is 0.997003.

But if we use our [6, 3] code, the likelihood of a correct transmission is

(1−p)6 + 6(1−p)5p + (1−p)4p2 =
0.994015 + 0.00597006 + 9.9600610−7 = 0.999986

corresponding to s = 0, 0 < s < 1 and s = 1.

The new error probability is smaller by a factor of about 214, at a cost of
having to send twice as many bits. A nice improvement.



Determining Minimum Distance 61

According to our definition the minimum distance is the least dist(x, y) where
x ̸= y ∈ C. In a linear code we can do better.

Lemma
For a linear code we have

md(C) = min
(

w(x) | 0 ̸= x ∈ C
)

This may not look too impressive, but at least it yields a linear time method as
opposed to the obvious quadratic one that works for an any code.



Parity Check and Distance 62

Let H be the check matrix of linear code C with columns h1, h2, . . . , hn.

Then for z = c + e we have syn(z)T = H eT =
∑

hiei.

This linear combination is 0 iff z ∈ C.

Hence we have the following alternative (and often superior) way to compute
the minimum distance.

Lemma
The minimum distance of C is the least d such that there exists a set of d
linearly dependent column vectors in H.



Orthogonality 63

Definition
For x, y ∈ Fn define the inner product

x · y =
∑

xiyi

Given a subset X ⊆ Fn define its orthogonal complement by

X⊥ = { y ∈ Fn | ∀ x ∈ X (x · y = 0) }

This is similar to the notion of orthogonal complements in real spaces but the
geometry here is more complicated. For example, it may happen that
X⊥ = X: consider X = { (x1, x1, x2, x2, . . . , xk, xk) | x ∈ Fk

2 }.



Orthogonality and Parity 64

Our codes are linear subspaces

C = { xG | x ∈ Fk }

and G is an k × n matrix of full rank (in this case rank k).

Alternatively we can use the (n − k) × n parity check matrix to describe C like
so:

C = { z ∈ Fn | zHT = 0 }

So C is the space orthogonal to another which is described by the parity check
matrix.



Dual Codes 65

We can push this idea one step further:

Parity check matrices are actually generators for a closely related code.

Definition
Let C be a linear [n, k] code. The dual code is C⊥.

The dual code has dimension n − k.

The dual of the dual is the code: C⊥⊥ = C.

If C has generator matrix G then C⊥ has parity check matrix G.

If C has parity check matrix H then C⊥ has generator matrix H.



Decoding 66

How do we decode a linear code systematically?

Suppose we receive z = c + e. Note that

z + C = e + C ⊆ Fn

since c ∈ C and C is a linear subspace. Hence, the e lies in the same coset as
z. We can decompose Fn into n − k disjoint cosets (affine subspaces)

C, a2 + C, . . . , an−k + C

Two vectors x and y are in the same coset iff they have the same syndrome:

syn(x) = syn(y) ⇐⇒ x − y ∈ C



Coset Leaders 67

Definition
A coset leader is an element of the coset of minimal weight.

So if we want to do maximum likelihood decoding we should pick a minimum
weight vector in the coset, the coset leader, as the error vector.

Unfortunately, “minimum weight” is not a property expressible in terms of
linear algebra, it adds a component of combinatorics. So we have to
precompute a minimum weight vector for each possible syndrome.



Example Contd. 68

For our standard [6, 3] example we have the following coset leaders,
parametrized by syndrome (the s-vectors from above):

syndrome leader
000 000000
001 000001
010 000010
100 000100
011 100000
101 010000
110 001000
111 001001, 010010, 100100



Syndrome Decoding 69

As we have seen, the syndrome function is constant on each coset and differs
on each coset (if you like, the coset partition is just the kernel relation induced
by the syndrome function).
But then is suffices to store a syndrome table: for each syndrome store the
corresponding coset leader.

To decode z = c + e:

compute s = syn(z),

look up the corresponding error vector e,

return z − e, presumably just the message c.
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Shifting Codewords 71

Definition
A linear code C is cyclic if for all c ∈ C the cyclic shift of c is also in C.

As we will see, cyclic codes have a very simple description (a single generator).
They are used mostly for error detection: cyclic redundancy check (CRC). A
retransmit is requested if an error is found.

Example
C = {000, 011, 101, 110} is cyclic code of length 3.
This generalizes to all words in Fn with even weight.



Codewords and Code Polynomials 72

Instead of thinking about vectors a ∈ Fn we will interpret codewords as
polynomials, so-called code polynomials:

a(x) = a0 + a1x + . . . + an−1xn−1

Write a′ for the cyclic right-shift of a and note that the corresponding code
polynomial has the form

an−1 + a0x + a1x2 + . . . + an−1xn

But then a′(x) = x · a(x) mod (xn − 1).

So if we think of code polynomials as elements of the quotient ring
Fq[x]/(xn − 1), then the combinatorial shift operation corresponds simply to
the algebraic opertion “multiplication by x.”



Ideals 73

Is there a good description for cyclic codes, viewed as subsets of
Fq[x]/(xn − 1)?

Lemma
A linear code C is cyclic iff C is an ideal in Fq[x]/(xn − 1).

Proof. If C is cyclic then the set of corresponding code polynomials is closed
under multiplication by x, and hence under multiplication by any polynomial.
Closure under addition follows from C being a code.
In the opposite direction, C must be additively closed since the ideal is so
closed. And C must be invariant under shifts since the ideal is closed under
multiplication by x. 2



Generator Polynomials 74

It is known from algebra that Fq[x]/(xn − 1) is a principal ideal domain: all
ideals in this ring are principal ideals. Thus, C = (g(x)) = Fq[x] g(x) for some
polynomial g(x).
More precisely, the generator polynomial g(x) is a monic polynomial in C − {0}
of minimal degree (this polynomial is uniquely determined by C).

Note that C has dimension n − deg(g).

Once we have a generator polynomial g(x), coding is very easy:

a 7→
(∑

aix
i
)

g(x)

This can be implemented with the help of dedicated hardware (feedback shift
register), so coding can be very fast.



Check Polynomial 75

The generator polynomial g(x) must divide xn − 1: otherwise
xn − 1 = g(x)h(x) + r(x) where deg(r) < deg(g). But r(x) ∈ C,
contradiction.

So let g(x)h(x) = xn − 1, so g and h are zero-divisors in Fq[x]/(xn − 1).

But then
c ∈ C ⇐⇒ c(x) h(x) = 0 (mod xn − 1)

More generally, we can compute the syndrome of a received message y by
multiplying y(x) and h(x), and reducing modulo xn 7→ 1. Note that this
reduction is easier than the ones we saw in connection with finite fields.



More on Generators 76

From now on assume that the length of the code n and p, the characteristic of
the underlying field, are coprime. In this case xn − 1 factors into distinct
irreducible polynomials:

xn − 1 = f1(x) f2(x) . . . ft−1(x) ft(x)

We can produce 2t generators by choosing I ⊆ [t]:

g(x) =
∏
i∈I

fi(x)

A maximal cyclic code has I = {i}: we pick exactly one of these irreducible
factors.
Dually, a minimal cyclic code has I = [n] − {i}, we choose all but one.



Example: Length 9 77

Let q = 2 and n = 9. Then

x9 + 1 = (x + 1)(x2 + x + 1)(x6 + x3 + 1)

The maximum code based on g = x6 + x3 + 1 has codewords

(c0, c1, c2, c0, c1, c2, c0, c1, c2)

and minimum distance 3.

The minimum code based on h = (x + 1)(x2 + x + 1) = x3 + 1 is a [9, 6] code
with minimum distance 2; it has codewords

(c0, c1, c2, c4, c5, c6, c0 + c4, c1 + c5, c2 + c6)

Note that these codewords are in fact cyclic (which is not entirely obvious from
the definition).



Standard Encoding 78

We can compute a cyclic code by polynomial multiplication
c(x) = a(x)g(x) mod (xn − 1).

Slightly better performance can be obtained by coding

a 7→ (a, −s)

where s is determined by

xn−ka(x) = f(x)g(x) + s(x)

The reason this is slightly better is that one can send the first k information
symbols while computing the following n − k parity symbols.
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Richard Hamming 80

The purpose of computation is insight, not numbers.



Errors and Check Columns 81

Suppose H is the check matrix of a binary [n, k] code.

Note that the syndrome of a received word x = c + e is the sum of the
columns of H in positions where an error occurred:

syn(x) = syn(c) + syn(e) = H eT

In the special case where there is only one error we just get a single column in
H. If the columns are all distinct this tells us the position of the error and we
can correct it.



Example: A [7, 4] Code 82

Let Q = 2, k = 4, n = 7 and define a code C by

H =

(1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

)
G =

1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1


H is organized so as to make G simple (standard form, the first 4 bits are
information bits). Note, though, that every 3-bit word other than 0 appears as
a column in H.

It is not hard to see that md(C) = 3, so we can correct one error by computing
the syndrome.



General Case 83

A little care is needed to lift the binary example to the q-ary case.

Definition
A linear code over Fq is a Hamming code of redundancy r if it has a check
matrix H that contains a unique column ax for all 0 ̸= x ∈ Fr and some
0 ̸= a ∈ F.

Thus every non-zero vector in Fr appears as exactly one column in H, up to
multiplication by a non-zero scalar.
One can determine the multiplicative factor for example by insisting that the
first non-zero entry in each column be 1.



Hamming Length and Dimension 84

Theorem
Let C be a Hamming code of redundancy r ≥ 2. Then C is a[

qr − 1
q − 1 ,

qr − 1
q − 1 − r

]
code. The minimum distance is 3.

Proof. There are qr − 1 non-zero vectors of length r over F. Since each
column in H is a non-zero multiple there are n = (qr − 1)/(q − 1) columns, the
length of the code. The dimension then is n − r.
The claim about distance follows from the lemma about linear dependence of
columns in H above. 2



An Improvement 85

We can add a parity bit to the Hamming [7, 4] to get a [8, 4] code. This code

has minimum distance 4,

corrects 1 error,

detects 2 errors (in the strong sense above, 3 in the weak sense).

This type of code is sometimes called a SECDED code (single error correction,
double error detection) and used in memory systems.



Perfect Codes 86

So far we have focused on codewords being sufficiently far from each other.
Another reasonable condition is that no point in codespace should be far from
a codeword.

Definition
A code with minimum distance 2e + 1 is perfect if for all z ∈ Fn the ball of
radius e contains exactly one codeword:

Be(z) ∩ C = {c}.

In other words, a code is perfect if we have equality in Hamming’s bound.

Here is a bad example for a perfect code: the repetition code of length
n = 2e + 1 has ρ(C) = e and md(C) = 2e + 1.



Hamming is Perfect 87

Recall that in the q-ary case we have length n = (qk − 1)/(q − 1) and
dimension n − r.

Claim
Every Hamming code is perfect.

We have minimum distance 3, so e = 1. We need to check that for any sphere
S of radius 1 we have |C||S| = qn. But the latter is equivalent to

qn−r(1 + (q − 1)n) = qn

which is easily verified.
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