
CDM

Automaticity

Klaus Sutner

Carnegie Mellon University
Spring 2024

1 Properties of Rat

2 Synchronous Relations

3 Model Checking Automatic Structures

Recall: Wurtzelbrunft’s Conjecture 2

Wurtzelbrunft remembers the Banach quote about analogies and immediately
concludes:

Every result about regular languages carries over, mutatis mutandis, to
rational relations.

After all, it’s just about the same Kleene algebra we are working in, so what
could possibly change? For example, we should be able to come up with a nice
machine model, figure out how to determinize and minimize these devices, and
so on.

Fortunately, life is so much more interesting than that.

Some results do indeed carry over, almost verbatim. But others are plain false
and one has to be very careful not to jump at conclusions.

Problem 1: Intersection 3

Consider the binary rational relations

A =
(
a
c

)⋆(b
ε

)⋆
B =

(
a
ε

)⋆(b
c

)⋆
Then

A ∩B =
{ (

aibi

ci

) ∣∣ i ≥ 0
}

It is easy to see that the intersection cannot be recognized by a finite state
transducer, essentially for the same reasons that { aibi | i ≥ 0 } fails to be
regular.

Exercise
Prove that A ∩B really fails to be rational.

Disaster Strikes 4

Rational relations are closed under union by definition: we allow
nondeterminism.

So the last result shows that we fail to have closure under intersection and
complement.

Remember that we ultimately want to tackle first-order logic over simple
structures, so this looks like a total fiasco. Indeed, we will have to adjust our
definitions in a while.

But for the time being, let’s stick with rational relations.

Determinism 5

Disregarding state complexity, in the world of regular languages, there is no
difference between NFAs and DFAs: nondeterminism does not increase the
power of the machines.

One might wonder if there is some notion of deterministic rational relation and
a corresponding deterministic transducer.

The basic idea is simple: there should be at most one computation on all
inputs.

Unfortunately, the technical details are a bit messy (use of endmarkers) and
we’ll skip this opportunity to inflict mental pain on the student body.

Problem 2: Determinism and Union 6

Consider the binary rational relations

A =
(
aa
b

)⋆
B =

(
a
bb

)⋆
It is clear that both A and B are deterministic rational relations.
Now consider

A ∪B =
{ (

ai

bj

) ∣∣ i = 2j ∨ j = 2i
}

For the union, your intuition should tell you that nondeterminism is critical:
initially, we don’t know which type of test to apply. This indicates that
determinization is not going to work in general for rational relations (which is
to be expected since we already know that complementation fails in general).

Good News 7

While we have to give up on negation and intersection, it is still the case that a
great many natural relations on words turn out to be rational:

prefix, factor, suffix

orders: subsequence, order, split, lexicographic, length-lex

homomorphic image, substitution image

concatenation

successor, predecessor, addition

Examples 8

Example
If K ⊆ Σ⋆ and L ⊆ Γ ⋆ are regular, then K × L is rational.

Example
If ρ ⊆ Σ⋆ × Γ ⋆ is rational, then spt(ρ) ⊆ Σ⋆ and rng(ρ) ⊆ Γ ⋆ are regular.

Example
Recall the definition of shuffle:

ε ∥ y = y ∥ ε = {y}
xa ∥ yb = (x ∥ yb) a ∪ (xa ∥ y) b.

So x ∥ y is the set of all possible interleavings of the letters of x and y
(preserving relative order). The map (x, y) 7→ x ∥ y is rational.

Word Orders 9

There are several useful ways to order words over an alphabet that all turn out
to be rational.

The subsequence order on words is defined by u = u1 . . . un precedes
v = v1v2 . . . vm if there exists a strictly increasing sequence
1 ≤ i1 < i2 < . . . in ≤ m of positions such that u = vi1vi2 . . . vin .

Subsequence order is interesting since it does not depend on any given order on
the alphabet.

A famous theorem by Higman shows that this order does not admit infinite
anti-chains.

Length Order 10

Consider the binary relation <len on Σ⋆ defined by

x <len y ⇐⇒ |x| < |y|.

We obtain a strict pre-order called length order; the corresponding classes of
indistinguishable elements are words of the same length.

Given an ordered alphabet Σ consider the binary relation <s on Σ⋆ defined by

x <s y ⇐⇒ ∃ a < b ∈ Σ, u, v, w ∈ Σ⋆ (x = uav ∧ y = ubw)

This produces another strict pre-order, the so-called split order; this time
indistinguishable words are prefixes of one another.

Lexicographic Order 11

Again assume an ordered alphabet Σ. The lexicographic order is a mix of prefix
order and split order:

x <ℓ y ⇐⇒ x < y ∨ x <s y

Here x < y means that x is a proper prefix of y.

Lexicographic order is a total order, there are no indistinguishable elements.
And it is relative robust when it comes to looking up words in ordinary
languages.

For algorithmic purposes, length-lex order (see next slide) is much better suited.

Length-Lex Order 12

Another important way of ordering words is the product order of length order
and lexicographic order, the so-called length-lex order.

x <ℓℓ y ⇐⇒ x <len y ∨ (|x| = |y| ∧ x <ℓ y)

Length-lex order is easily seen to be a well-order and there are many algorithms
on strings that are naturally defined by induction on length-lex order.

Needless to say, length-lex order is also rational.

All Rational 13

Proposition
All the order relations on the last few slides are rational.

Exercise
Construct rational expressions that prove the proposition.
Construct transducers that prove the proposition.

Not Rational 14

Proposition
The relation x = yop fails to be rational.

This is easy to see by using a standard “pumping argument:” a transducer for
this relation would have to remember arbitrarily long prefixes of the input.

Exercise
Give a careful proof of the proposition.

Concatenation is Rational 15

Usually one thinks of concatenation as a binary operation. Since we want to
avoid functions, we can also model it as a ternary relation γ:

γ(x, y, z) ⇐⇒ x · y = z

Proposition
Concatenation is rational.

Proof. For simplicity assume Σ = {a, b}

γ = (a:ε:a+ b:ε:b)⋆ · (ε:a:a+ ε:b:b)⋆

2

Addition is Rational 16

Consider the ternary relation α on 2 defined by

α(x, y, z) ⇐⇒ bin(x) + bin(y) = bin(z)

where bin(x) is the numerical value of x assuming the LSD is first (reverse
binary).

Proposition
Binary addition in reverse binary is rational.

Proof. The kindergarten algorithm for addition shows that α is rational. 2

Warning: there is no analogous result for multiplication (for reverse binary
encoding; but beware of exotic encodings).

Relational Composition 17

Here is a central result: rational relations are closed under composition.
Suppose we have two binary relations ρ ⊆ Σ⋆ × Γ ⋆ and σ ⊆ Γ ⋆ ×∆⋆. Their
composition τ = ρ ◦ σ ⊆ Σ⋆ ×∆⋆ is defined to be the binary relation

x τ y ⇐⇒ ∃ z (x ρ z ∧ z σ y)

Theorem (Elgot, Mezei 1965)
If both ρ and σ are rational, then so is their composition ρ ◦ σ.

Proof 18

Assume we have transducers A and B for ρ and σ, respectively. We may safely
assume that the labels in A have the form a/ε or ε/b where a ∈ Σ, b ∈ Γ ;
likewise for B. Add self-loops labeled ε/ε everywhere.

We construct a product automaton C with transitions

(p, q) a/c−→ (p′, q′)

whenever there are transitions p a/b−→ p′ and q b/c−→ q′ in A and B, respectively,
for some a ∈ Σε, b ∈ Γε and c ∈ ∆ε.

Initial and final states in C are I1 × I2 and F1 × F2. It is a labor of love to
check that C accepts x/z if, and only if, x ρ y and y σ z for some y ∈ Γ ⋆. 2

Example 19

Let ρ =
(
a
bb

)⋆ and σ =
(
b
ε

)(
b
c

)⋆; thus

ρ ◦ σ =
(
a
c

)(
a
cc

)⋆ = {
(
ai+1

c2i+1

)
| i ≥ 0 }

Here are the two machines, without the ε/ε self-loops.

0 1 2
a/ε ε/b

ε/b

0 1 2
b/ε

b/ε

ε/c

Example 20

And here is the accessible part of the product. Unlabeled edges are supposed to
be ε/ε.

00

01

02

10

11 21

22

20

12

a/ε

ε/c
a/c

ε/c

Of course, there is a “better” transducer, but this is the one obtained by blind
application of the algorithm.

Projections 21

Here is another important closure property. Suppose ρ is a k-ary relation on
words. We define the projection of ρ to be

ρ′(x2, . . . , xk) ⇐⇒ ∃ z ρ(z, x2, . . . , xk)

Lemma
Whenever ρ is rational, so is its projection ρ′.

Proof.
In a transducer for ρ, erase the first track in the k-track alphabet:

p
a1:a2:...:ak−−−−−−−→ q ⇝ p

a2:...:ak−−−−−→ q

Done! 2

It’s a Clone 22

Note that the use of the term projection is slightly different here from the
standard use: x 7→ xi.

Clearly, rational relations contain ordinary projections in this sense.

So, we are really dealing with a clone, except that this time we have a clone of
relations rather than a clone of functions (recall the section on computability).

And while we are talking about bad terminology and notation . . .

Transitive Closure 23

One might wonder what happens when we move to the transitive reflexive
closure tcl(ρ). Recall that

tcl(ρ) =
⊔
k

ρ◦k

where ρ◦k indicates the standard iterate, the k-fold composition of ρ with
itself: ρ ◦ ρ ◦ . . . ◦ ρ.

Mental Health Warning: Unfortunately, the transitive closure
is often written ρ⋆, in direct clash with the standard notation for
the Kleene star of a relation.

Alas, the two are quite incompatible. For example, let ρ be lexicographic order.
Clearly, tcl(ρ) = ρ.

But ab ρ⋆ aabb since a ρ aa and b ρ bb. So Kleene star clobbers the order
completely.

Transitive Closure is Semidecidable 24

Theorem
The transitive closure tcl(ρ) of a rational relation is semidecidable.

Proof.
By definition x tcl(ρ) y iff ∃ k (x ρ◦k y).
Obviously, ρ◦k is primitive recursive, uniformly in k.
So we are conducting an unbounded search over a primitive recursive relation;
semidecidability follows. 2

Rational to Semidecidable 25

What would happen if we add tcl to the closure operations that produce the
rational relations?

Theorem
Adding tcl to the closure operations produces precisely all semidecidable
relations.

Proof.
It is clear that every rational is primitive recursive. The transitive closure of a
rational relation is thus no more than semidecidable. Moreover, the operations
of union, concatenation and Kleene star preserve semidecidability; lastly, the
transitive closure of a semidecidable relation is again semidecidable.

Next Step 26

For the opposite direction, we use the old trick of coding configurations of a
Turing machine as words of the form Γ ⋆QΓ ⋆, assumed to be disjoint.

xmxm−1 . . . x1 p a y2 . . . yn

Then the next configuration could look like

xmxm−1 . . . x1 b q y2 . . . yn

For the most part, we just copy the tape symbols, but there is a little bit of
hanky panky right next to the state symbol.

A transducer can easily handle this type of update operation. Hence, transitive
closures are enough to produce all semidecidable relations.

2

How About Functions? 27

Most transducers define relations rather than functions, here is one that does.

t c
0/1

1/0 a/a

Theorem (Schützenberger 1975)
It is decidable whether a transducer is single-valued.

The argument is tricky, and it took 25 years to find a polynomial algorithm for
this.

Arithmetical Transducers 28

If we write natural numbers as binary string, arithmetical operations turn into
transductions; simple operations turn into rational transductions.

One needs to be a bit careful about the way the naturals are represented as
strings: we need to fix a numeration system. Here are a few considerations:

choice of base
LSD first or last (reverse radix or plain radix)
empty string denotes zero
leading/trailing zeros

A reasonable convention would be the following numeration system N : write
numbers in reverse binary (LSD first), the empty string is not allowed, neither
are trailing zeros.

Successor 29

The key component for the successor transduction is the following machine:

t c
0/1

1/0 a/a

Here t stands for toggle, c for copy. Alas, this transducer allows for trailing
zeros. Much worse, it implements a cyclic counter: 1k 7→ 0k.

To fix things, it can help to write down a list of specifications for a transducer
that is compliant with the numeration system N . We need for any binary
string x:

0x ⇝ 1x
1 1k ⇝ 0 0k 1
1 1k 0x ⇝ 0 0k 1x

Compliant Successor 30

1 t c c′

2

0/1

1/0

1/0

0/1

ε/1

0/0
1/1

0/0

1/1

This version is obtained by a bit of surgery on the basic machine, and is
compliant with our numeration system N .

For correctness, one can show by induction that it implements the
specifications from the last slide.

A Holy Terror 31

1/1 0/0

0/0 0/1

1/0 1/1

a/a

0/ε

1/0

Collatz 32

Recall the infamous Collatz conjecture:
The following program halts for all x ≥ 1.

while(x > 1) // x positive integer
if(x even)

x = x/2;
else

x = 3 * x + 1;

If we write x in reverse binary, and right-pad with 00, the transducer on the
last slide computes one execution of the loop body.

So iterating the composition of the trivial map x 7→ x00 and the transducer
leads to an open problem in number theory.

Collatz Mountains 33

Affine Operations 34

The lower part of the Collatz transducer is a special case of a more general
problem: multiply by a fixed constant m and add another fixed constant a. We
assume the numbers are written in reverse binary.

Roughly, one can organize the construction of a transducer into 2 phases.

1. Write the multiplication in terms of repeated additions of terms 2ix (just
a right shift).

2. Then handle the addition of a.

3. This produces a raw transducer that works “in essence,” conveniently ig-
noring issues of padding or trailing zeros.

4. Lastly, deal with all the actual details of the numeration system.

Getting everything correct right from the start is hard, it’s much easier to work
in stages.

Multiply by 3 35

As always, the key is to pick the right state set. We can add the strings x and
1x to get multiplication by 3. Here is the odd case:

x 1 x1 x2 x3 x4 x5 x6 0 0 0 0 . . .
2x+1 1 1 x1 x2 x3 x4 x5 x6 0 0 0 . . .

3x+1 0 x1 y2 y3 y4 y5 y6 y7 y8 0 0 . . .

So we really have to deal with addition, using the standard add-digits and
keep-track-of-carries approach. But note that there is only one input, and we
have to remember the current input bit for the next step.

This suggests states for the form (c, b) ∈ 2 × 2: c is the carry, b the last bit.

Raw Transducer 36

−

1, 1 1, 0

0, 1 0, 0

1/0

0/11/0

0/0

1/1

0/0

1/0

0/1

1/1

Simplify 37

− 2 1 0
1/0

0/01/1

0/0

1/0

0/1

1/0

A moment’s though reveals that the states (0, 1) and (1, 0) have the same
behavior; we can merge them to get a smaller machine.

Multiply-by-3 38

0 1 2

1/1

0/1

1/0

0/0

0/0 1/1

The key part is the raw “multiply-by-3” transducer.

Input/Output Functions 39

To get around padding, one sometimes augments transducers with initial and
final output maps inp : Q → Γ ⋆ and outp : Q → Γ ⋆ .

We then redefine our notion of acceptance: instead of u:v obtained directly by
a run from p to q, we declare the following 2-track word to be accepted:

u : inp(p) v outp(q)

Essentially, we allowe systematic padding, both at the beginning and at the
end.

For full-fledged transducers this makes no real difference, we could simply add
corresponding transitions with ε-labels. For limited classes of transducers, such
as alphabetic ones, this convention is very convenient.

Multiply-by-3, Output 40

p q r

q′ r′

1/1

0/1

1/0

0/0

0/0 1/1

ε/1 ε/01

Here the output function is given by p⇝ ε, q ⇝ 1 and r ⇝ 01 and handles the
carry.

Multiply-by-3, Endmarkers 41

p q r

p′ q′ r′

1/1

0/1

1/0

0/0

0/0 1/1

#/# #/1# #/01#

Lastly, a machine that assumes that every track has a special endmarker #.
Note that this machine is clearly deterministic, the endmarkers tell us when the
end of the input has been reached.

m = 2, . . . , 7 42

Some raw transducers for various small multipliers.

Length-Preserving Iteration 43

Life should be much easier with length-preserving transductions:

x τ y ⇒ |x| = |y|

In fact, let’s only consider the functional case: we are just iterating a map
y = τ(x). Clearly, if τ is length-preserving, then all orbits must be finite (in
fact they cannot be longer than |Σ||x|). Still, computational hardness is lurking
nearby.

Theorem
For length-preserving transductions, transitive closure is PSPACE-complete in
general.

Length-Preserving Example 44

It is clear that the map x 7→ xop cannot be rational.

But iteration of a length-preserving transduction can be used to “compute” xop

as follows.

Define a new alphabet Γ = Σ ∪ { a | a ∈ Σ }.
There is a length-preserving rational function τ such that τ(ε) = ε and

τ(au v) = u a v

where au ∈ Σ⋆ and v ∈ Σ
⋆. Let f be the “unbar” homomorphism

f(a) = f(a) = a. Then

xop = f
(
x tcl(τ) ∩Σ

⋆) = { f(z) | x tcl(τ) z ∧ z ∈ Σ
⋆ }

1 Properties of Rat

2 Synchronous Relations

3 Model Checking Automatic Structures

Scaling Back 46

Rational relations in general are just a little too powerful for our purposes, they
don’t have nice closure properties (the way recognizable languages do). We
need to scale back a bit.

One sledge-hammer restriction is to insist that all the relations are
length-preserving. In this case we have ρ ⊆ (Σ × Γ)⋆, so our multi-words are
actually words over the product alphabet Σ × Γ . These can be checked by an
ordinary FSM over a standard 2-track alphabet:

x1 x2 . . . xn
y1 y2 . . . yn

Nothing new here, a length-preserving relation is rational iff it is recognizable
as a language over Σ × Γ .

Aside: Mealy Machines 47

There is one particularly simple type of transducer that is often useful to
recognize length-preserving relations. In a Mealy machine, the transitions are
described by a function

δ : Q×Σ −→ Γ ×Q.

The idea is that transitions are labeled by pairs in Σ × Γ , so each input letter
is transformed into an output letter (alphabetic transducers).
And, the transitions are deterministic.

For example, the raw transducer that implements the successor function
modulo 2k on words of length k in reverse binary is a Mealy machine.

Relaxing the Length Condition 48

Alas, length-preserving relations are bit too restricted for our purposes. To deal
with words of different lengths, first extend each component alphabet by a
padding symbol #: Σ# = Σ ∪ {#} where # /∈ Σ.

The alphabet for 2-track words is ∆# = Σ# × Γ#.

This pair of padded words is called the convolution of x and y and is written
x

#: y.

x
#: y = x1 x2 . . . xn # . . . #

y1 y2 . . . yn yn+1 . . . ym

Another example of bad terminology, convolutions usually involve different
directions.

Comment 49

Note that we are not using all of ∆⋆
but only the recognizable subset coming

from convolutions. In other words, # can only appear as a suffix, and in
exactly one track. For example,

a # b #
a b a a

a b b # #
a b a b #

are not allowed.

As always, a similar approach clearly works for kary relations, just use

∆# = Σ1,# ×Σ2,# × . . .×Σk,#

Exercise
Show that the collection of all convolutions forms a recognizable language.

Synchronous Relations 50

Here is an idea going back to Büchi and Elgot in 1965.

Definition
A relation ρ ⊆ Σ⋆ × Γ ⋆ is synchronous or automatic if there is a finite state
machine A over ∆# such that

L(A) = {x
#: y | x:y ∈ ρ } ⊆ ∆⋆

#

k-ary relations are treated similarly.

Note that this machine A is just a language recognizer, not a transducer: since
we pad, we can read one symbol in each track at each step.

In a sense, synchronous relations are the most basic examples of transductions
that are not entirely trivial.

By contrast, one sometimes refers to arbitrary rational relations as
asynchronous.

(Counter)Examples 51

Equality and inequality are synchronous.

Lexicographic order is synchronous.

The prefix-relation is synchronous.

The ternary addition relation is synchronous.

The suffix-relation is not synchronous.

The relations “x is a factor of y” and “x is a (scattered) subword of y”
are not synchronous.

The Difference? 52

Intuitively, the difference between arbitrary transductions and synchronous ones
is that, for the latter, one can build a 2-track machine whose heads can move
independently, but are never further than some fixed distance d apart.

Bounded head distance is already enough: essentially, we could then force
phantom heads to move in lockstep by remembering the last d symbols and the
actual head positions.

So the critical difference is when the two heads move arbitrarily far away from
each other.

A Justification 53

Our motivation for synchronous relations was taken from length-preserving
relations: it is plausible that two words of the same length should be processed
in lock-step fashion. The justification for this idea is the following result.

Theorem (Elgot, Mezei 1965)
Any length-preserving rational relation is already synchronous.

The proof is quite messy, we’ll skip.

For intuition, think about the gap between the two heads during a computation
and the way it interacts with the length-preserving requirement.

Boolean Operations 54

Claim
Given two k-ary synchronous relations ρ and σ on Σ⋆, the following relations
are also synchronous:

ρ ⊔ σ ρ ⊓ σ ρ− σ

The proof is very similar to the argument for recognizable languages: one can
effectively construct the corresponding automata using the standard product
machine idea.

This is a hugely important difference between general rational relations and
synchronous relations: the latter do form an effective Boolean algebra, but we
have already seen that the former are not closed under intersection (nor
complement).

Warning: Concatenation 55

Synchronous relations are not closed under concatenation (or Kleene star). For
example, let

ρ =
(
a
ε

)⋆
σ =

(
b
b

)⋆
Then both ρ and σ are synchronous, but ρ · σ is not (the dot here is
concatenation, not composition): recognizing words in ρ · σ comes down to
counting. On the other hand, σ · ρ is fine.

Exercise
Prove all examples and counterexamples.

Synchronous Composition 56

On the upside, synchronous relations are closed under composition.

Suppose we have two binary relations ρ ⊆ Σ⋆ × Γ ⋆ and σ ⊆ Γ ⋆ ×∆⋆.

Theorem
If both ρ and σ are synchronous relations, then so is their composition ρ ◦ σ.

Exercise
Prove the theorem.

Synchronous Projections 57

More good news: synchronous relations are closed under projections.

Lemma
Whenever ρ is synchronous, so is its projection ρ′.

The argument is verbatim the same as for general rational relations: we erase a
track in the labels.
Again, this will generally produce a nondeterministic transition system even if
we start from a deterministic one. If we also need complementation to deal
with logical negation, we may have to deal with exponential blow-up.

1 Properties of Rat

2 Synchronous Relations

3 Model Checking Automatic Structures

A Simple Relational Structure 59

To simplify matters, suppose we are looking at a structure over the alphabet 2
with just one binary relation representing a function:

C = ⟨2+,_⟩

Concretely, think about elementary cellular automata operating on finite words,
say, with periodic boundary conditions.

Note that _ is length-preserving, so there will not be any problems with
synchronicity.

Examples 60

∀x, y, z (x _ y ∧ x _ z ⇒ y = z)

∀x, y, z (x _ y ∧ z _ y ⇒ x = z)

∀x∃ y (y _ x)

∃x, y, z (x _ y ∧ y _ z ∧ z _ x ∧ x ̸= y)

∀x∃ y, z
(
(y _ x ∧ z _ x ∧ y ̸= z) ∧ ∀u (u _ x ⇒ u = y ∨ u = z)

)

What is the meainging of these formulae?

The Model Checking Algorithm 61

So suppose we have the finite state machines describing C = ⟨2+,_⟩ and
some FO sentence Φ in the language L(_)

As always, we may assume that quantifiers use distinct variables and that the
formula is in prenex-normal-form†, say:

Φ = ∃x1 ∀x2 ∀x3 . . .∃xk φ(x1, . . . , xk)

The matrix φ(x1, . . . , xk) is quantifier-free, so all we have there is Boolean
combinations of atomic formulae.

†This is actually a bad idea for efficiency reasons, but it simplifies the discussion of the basic
algorithm.

Atomic 62

In our case, there are only two possible atomic cases:

xi = xj

xi _ xj

Given an assignment for xi and xj (i.e., actual strings) we can easily test these
atomic formulae using two synchronous transducers A= and A_.

So φ(x1, . . . , xk) defines a k-ary relation over 2+, constructed from _ and =
using Boolean operators. The first step is to build a finite state machine that
recognizes this relation.

From Atomic to Quantifier-Free 63

Our matrix is the quantifier-free formula

φ(x1, x2, . . . , xk)

containing exactly the displayed free variables. In order to recognize the k-track
words that satisfy φ, we construct a k-track machine by induction on the
subformulae of φ.

The atomic pieces read from two appropriate tracks and check _ or =.

Note that there is a bureaucratic problem: the atomic machines are 2-track,
but the machine for the matrix is usually k-track for some k > 2.

Embeddings 64

More precisely, use superscripts to indicate the number of tracks of a machine
as in A(2)

_ and A(2)
= .

Let m ≤ n. We need an embedding operation

emb(n)
t : m-track −→ n-track

where t = t1, . . . , tm, ti ∈ [n], all distinct.

So emb(n)
t (A(m)) = B(n) means that track i of A(m) is identified with track ti

in B(n). The other tracks are free (all possible transitions). This does not
affect the state set, but it can cause potentially very large alphabets and,
correspondingly, large numbers of transitions in the embedded automaton†.

†One of the reasons why state complexity alone is not really a good measure of the size of an
automaton, one needs to add the number of transitions.

Two Steps 65

→

→

x

y

z

A product machine to check x _ y ∧ y _ z.

Relational Composition 66

Slightly more generally, we can combine any two 2-track machines A(2)
i and

construct the product machine

B = emb(3)
1,2

(
A(2)

1
)

× emb(3)
2,3

(
A(2)

2
)

B checks for strings x:y:z such that A1 recognizes x:y and A2 recognizes y:z.

An so on for any number of embedded automata. Note that the product
machine construction can produce uncomfortably large state sets.

Boolean Connectives 67

Suppose φ = ψ1 ∧ ψ2 with corresponding machines Aψ1 and Aψ2 . We can use
a product machine construction to get Aφ.

Disjunctions are even easier: just take the disjoint union, there is really no way
to get around nondeterminism here.

But negations are potentially expensive: we have to determinize first.

At any rate, we wind up with a composite automaton Aφ that recognizes the
relation defined by the matrix:

L(Aφ) = {u1:u2: . . . :uk# | C |= φ(u1, u2, . . . , uk) }

Projections 68

There is a natural dual to embeddings: projections.

Let m ≤ n. We have a projection operation

prj(n)
t : n-track −→ m-track

where t = t1, . . . , tn′ , n′ ≤ n, ti ∈ [n], all distinct, m = n− n′.

So prj(n)
t (A(n)) = B(m) means that, for all transitions in A(n), the tracks ti of

the transition labels have been erased, producing Bm. The state set is
unaffected.

It is fine to have n = n′, in which case it is understood that we are left with an
unlabeled digraph (with special initial and final nodes).

Quantifiers 69

It remains to deal with all the quantifiers in the prefix of Φ. First consider a
single existential quantifier, say

∃xψ(x)

We have a machine A(n)
ψ that has a track t for variable x.

Simply erase the x-track from all the transition labels.

In other words, prj(n)
t (A(n)) corresponds exactly to existential quantification

over variable x.

Alas, for universal quantifiers we have to use the old equivalence ∀ ≡ ¬ ∃ ¬.

This is all permissible, since projections and negations do not disturb
automaticity–though they may increase the machine size substantially.

Composition Machine 70

Recall the machine checking x _ y ∧ y _ z.

B = emb(3)
1,2

(
A_

)
× emb(3)

2,3
(
A_

)
Projecting away the y-track

B′ = prj(n)
2 (B)

produces a machine that recognizes x:z such that ∃ y (x _ y ∧ y _ z).

Similarly we can handle fk(x) = z for any fixed value of k. However, the size
of the machine is only bounded by mk.

Finale Furioso 71

In the process of removing quantifiers, we lose one track at each step and get
intermediate machines Bφ,ℓ

L(Bφ,ℓ) = {u1:u2: . . . :uℓ# | C |= φℓ(u1, u2, . . . , uℓ) }

for ℓ ≤ k. In the end ℓ = 0, and we are left with an unlabeled transition system
Bφ,0. This transition system has a path from I to F iff the original sentence Φ
is valid.

So the final test is nearly trivial (DFS anyone?), but it does take a bit of work
to construct the right machine.

Closure to the Rescue 72

Why does this all work, fundamentally? It is all a direct consequence of various
closure properties:

∨ union
∧ intersection
¬ complement
∃ homomorphism
emb inverse homomorphism

Needless to say, all the closures are effective: we have algorithms to construct
all the corresponding machines.

Efficiency 73

∨ and ∃ are linear if we allow nondeterminism.

∧ is at most quadratic via a product machine construction.

¬ is potentially exponential since we need to determinize first.

∀ well . . .

So this is a bit disappointing: we may run out of computational steam even
when the formula is not terribly large. Universal quantifiers, in particular, can
be a major problem.

A huge amount of work has gone into streamlining this and similar algorithms
to deal with instances that are of practical relevance.

Example: 3-Cycles 74

Let’s figure out the details on how to determine the existence of a 3-cycle in C.
The obvious formula to use is this:

Φ ≡ ∃x, y, z (x _ y ∧ y _ z ∧ z _ x ∧ x ̸= y ∧ x ̸= z ∧ y ̸= z)

The first part ensures that there is a cycle, and the second part prevents the
cycle from being shorter than 3.

Perfectly correct, but note the following. Suppose the basic machine A_ that
checks _ has m states. Then the first part of the formula produces a machine
of possibly m3 states. The non-equal part blows things up further to at least
8m3 states.

Optimizing 75

We could replace Φ by any equivalent formula, which would be usefully if we
could find a smaller formula. It seems hard to get around the m3 part,
checking for each inequality doubles the size of the machine, so we get
something 8 times larger than the machine for the raw 3-cycle. It is better to
realize that since _ is functional, the last formula is equivalent to

∃x, y, z (x _ y ∧ y _ z ∧ z _ x ∧ x ̸= y)

Exercise
Figure out how to deal with k-cycles for arbitrary k.

The 3-Cycle Transducer 76

So, based on the better formula, we use the 3-track alphabet 23 = 2 × 2 × 2
plus padding to recognize

{u:v:w# | u _ v _ w _ u ∧ u ̸= v }

Let Ai,j = emb(3)
i,j

(
A(2)

_

)
. Also, let D(2)

̸= be the machine that checks for
inequality and D = emb(3)

1,2
(
D(2)

̸=

)
.

We can now concoct a 3-track product machine for the conjunctions:

B = A1,2 × A2,3 × A3,1 × D

where A_,i,j tests if the word in track i evolves to the word in track j.

Projecting 77

So we get a machine B that is roughly cubic in the size of A_ (disregarding
possible savings for accessibility).

Once B3 is built, we erase all the labels and are left with a digraph (since φ has
no universal quantifiers there is no problem with negation).

This digraph has a path from an initial state to a final state if, and only if,
there is a 3-cycle under _.

Note, though, how the machines grow if we want to test for longer cycles: the
size of Bk is bounded only by mk, where m is the size of A_, so this will not
work for long cycles. And, we need several products with Di,j , each at least
doubling the size of the product.

Example: ECA 78

What would the basic one-step automaton A_ for an elementary cellular
automaton look like?

It turns out to be a little easier if we first consider configurations over 2Z. As
usual, the finite case is often harder than the infinite scenario.

First, an automaton that corresponds to sliding a window of length 2 across the
configuration. The states will naturally be 22, and the edges corresponds to
just having seen 3 bits in a row.

The de Bruijn Automaton 79

00

01

11

10

000

001

010

011

100

101

110

111

Each configuration in 2Z corresponds to exactly one biinfinite path in this
automaton. And every biinfinite path corresponds to a configuration (at least if
we are a bit relaxed about where the origin is).

The Basic Transducer 80

00

01

11

10

0/ρ(000)

1/ρ(001)

0/ρ(010)

1/ρ(011)

0/ρ(100)

1/ρ(101)

0/ρ(110)

1/ρ(111)

If we replace the edge labels xyz by xyz/ρ(xyz), where ρ is the local rule, we
get a transducer that corresponds to the global map. All states are initial and
final, we are interested in biinfinite runs.

Example: Rule 90 81

00

01

11

10

0/0

1/1

0/0

1/1

0/1

1/0

0/1

1/0

A rather civilized transducer: a partial DFA over the alphabet 22. It remains
deterministic even if we project away either one of the tracks.

Boundary Conditions 82

To define the global map Gf of a cellular automaton on finite configurations we
need to deal with the endpoints: a priori they have no left/right neighbors.

Cyclic boundary conditions: assume the configuration wraps around.
Fixed boundary conditions: assume there are two phantom bits 0 pre/ap-
pended.

So for x = x1x2 . . . xn we apply the local map f to n many 3-blocks:

CBC xnx1x2 x1x2x3 . . . xn−1xnx1

FBC 0x1x2 x1x2x3 . . . xn−1xn0

that

The Finite Case 83

We need to modify the transducer for 2Z to work for plain 2n. Say, we use fixed
boundary conditions. The central problem is this: we are scanning two words

u:v = u1 u2 . . . un
v1 v2 . . . vn

But a synchronous transducer must read the letters in pairs, both read heads
move in lockstep.

We need to check whether v1 = ρ(0, u1, u2), and we do not know u2 after
scanning just the first bit pair.

It seems that some kind of look-ahead is required (memory versus
anticipation), but synchronous automata don’t do look-ahead, they live in the
here-and-now. Looks like we are sunk.

Elgot/Mezei to the Rescue 84

If we drop the synchronicity condition, there is no problem: it easy to see that
_ is rational. And _ is clearly length-preserving.

But remember the theorem by Elgot and Mezei:

Rational and length-preserving implies synchronous.

So our relation must be synchronous. Of course, that’s not enough: we need to
be able to construct the right transducer, not just wax poetically about its
existence.

Exercise
Show that _ is rational.

A Synchronous Transducer 85

Nondeterminism saves the day: we can guess what x2 is and then verify in the
next step.
Automaton A_ uses state set Q = {⊥,⊤} ∪ 23.
⊥ is the initial state, ⊤ the final state and the transitions are given by

⊥ a/e−−→ 0ab e = ρ(0, a, b)

abc
c/e−−→ bcd e = ρ(b, c, d)

abc
c/e−−→ ⊤ e = ρ(b, c, 0)

So, this is more complicated than the plain de Bruijn transducer for 2Z.

A Computation 86

input state condition
− ⊥ −

u1:v1 0 u1u2 v1 = ρ(0u1u2)

u2:v2 u1u2u3 v2 = ρ(u1u2u3)

u3:v3 u2u3u4 v3 = ρ(u3u3u4)

...

un−1:vn−1 un−2un−1un vn = ρ(un−1un0)

un:vn ⊤ −

A successful computation on input u1u2 . . . un:v1v2 . . . vn.

Reversibility Testing 87

Define a 3-track machine that checks whether x and y both evolve to z; then
project away the z-track.

A = prj(3)
3

(
emb(3)

1,3
(
A_

)
× emb(3)

2,3
(
A_

))
Then

L(A) = {x:y | ρ̂(x) = ρ̂(y) }

So we only need to check
L(A × A̸=) = ∅

to verify that the global map ρ̂ is injective.

Extracting an Algorithm 88

For biinfinite configurations the last approach translates into a nice algorithm
for reversibility testing.

Write B_ for the ordinary de Bruijn automaton with edges 22 and labels
ab

ρ(a,b,c)−→ bc.

But then the ordinary full product automaton B2
_ = B_ × B_ is the same as

A. There is no need for the embedding/projection mechanism.

To check that this machine only accepts strings x:x ∈ 2Z × 2Z it suffices to
check that the only non-trivial SCC in B2

_ is the diagonal (a subgraph
isomorphic to B_).

Tricks 89

State-explosion is a major issues with our approach, it may well happen that
some of the (intermediate) machines are so large that they cannot be handled.

One way of keeping the machines small is to rewrite the formula under
consideration into an equivalent one that produces smaller machines. Typical
example: checking for 3-cycles. One also should avoid prenex-normal-form like
the plague and try to handle projections early.

If the outermost block of quantifiers is universal, the last check can be more
naturally phrased in terms of Universality rather than Emptiness. In this case
one should try to use Universality testing algorithms without complementation
(e.g., the antichain method that avoids direct determinization).

More Tricks 90

We can easily augment our decision machinery by using additional predicates so
long as these predicates are themselves synchronous.

This can be useful as a shortcut: instead of having a large formula that defines
some property (which formula is then is translated into a potentially large
automaton), we just build the automaton directly from scratch and in an
optimal way.

Interestingly, this trick can also work for properties that are not even definable
in FOL. We can extend the expressibility of our language and get smaller
machines for the logic part that way.

Example: Surjectivity 91

We can base a surjectivity test directly on the definition:

∀x∃ z
(
z _ x

)
Unfortunately, the universal quantifier up front means that we have to check
whether a certain regular language is all of 2⋆, a task that could be
exponential.

Here is a trick: define almost equality (x ∗= y) to mean that configurations x
and y differ in only finitely many places.

Claim: Almost equality is not definable by any first-order formula.

Rephrasing Surjectivity 92

However, it is known that the global map is surjective iff it satisfies the
following modified injectivity condition:

∀x, y, z (x _ z ∧ y _ z ∧ x
∗= y ⇒ x = y)

Trick: While ∗= is not first-order definable over ⟨2Z; _⟩, it is a synchronous
property.

Hence we can work over the larger structure ⟨2Z; _,
∗=⟩, and, after negation,

we only have to worry about a Σ1 statement. All we need is a product
construction followed by projections.

	Properties of Rat
	Synchronous Relations
	Model Checking Automatic Structures

