
CDM
Presburger Arithmetic

K. Sutner
Carnegie Mellon University
Fall 2024

Logic is Hard 1

Everybody who has worked in formal logic will confirm that
it is one of the technically most refractory parts of math-
ematics. The reason for this is that it deals with rigid,
all-or-none concepts, and has very little contact with the
continuous concept of the real or of the complex number,
that is, with mathematical analysis. Yet analysis is the tech-
nically most successful and best-elaborated part of mathe-
matics. Thus formal logic is, by the nature of its approach,
cut off from the best cultivated portions of mathematics,
and forced onto the most difficult part of the mathematical
terrain, into combinatorics.

John von Neumann, 1948

1 Numeration Systems

2 Presburger Arithmetic

3 Automatic Structures

4 Deciding Presburger Arithmetic

Numeration Systems 3

A numeration system is a method to denote all natural numbers by words
over a digit alphabet ∆.

The digits all directly correspond to particular numbers, typically 0, 1, 2,
−1 and so forth. In a positional notation system the numerical value of a
digit string d = d0d1 . . . dk−1 is determined by weights bi ∈ N+, i ≥ 0, as
follows. The value map val : ∆⋆ → N

val(d) =
∑
i<k

dibi

must be surjective. Ideally, it is also injective, but that is not a
requirement.

Interesting weights are simple, something like bi = Bi for some B ≥ 2.

More Precisely . . . 4

To define a numeration system N = ⟨∆,D, val⟩, we need the following
pieces.

A regular language D ⊆ ∆⋆ that describes the digit strings over ∆
that are admissible representations of numbers.

A surjective value map val : D → N .

Note that val is not required to be injective; in fact, there may be
infinitely many representations for the same number.

Representation 5

As a practical matter, whenever the value map is not injective, it is
convenient to have a canonical choice of representation, a representation
map rep : N → D such that val(rep(n)) = n for all n ∈ N.

One natural choice is to pick the length-lex minimal string:

rep(n) = min
ll

(
x ∈ D | val(x) = n

)

If the value map is injective rep is simply the inverse of val.

The Mother of all Numeration Systems 6

Fix some integer B ≥ 2. Arguably the easiest choice is

∆ = {0, 1, . . . , B−1}
D = ∆⋆

val(x) =
∑
i<k

xiB
i

where x = x0x1 . . . xk−1. This is called reverse base B (or reverse radix
B), since the LSD comes first in this system.

There are infinitely many representations for any number: rval(ε) = 0
and rval(x0) = rval(x).

Addition is entirely straightforward in this system, it can be carried out
by a suitable finite state transducer.

Cleaning Up 7

As stated, reverse base B is rather too permissive. One often restricts
admissible representations.

NE No empty word
ε is not allowed as a representation for 0 ∈ N.

NTZ No trailing zeros
x ∈ D implies x−1 ̸= 0.

So for NE and, say, base B = 2 we have

D = (0 + 1)+

and if we add NTZ we get

D = 0 + (0 + 1)∗1

Plain Base B 8

It is customary to start numbers with the MSD, and use a more
complicate value map: for |x| = k, 0-indexed,

val(x) =
∑
i<k

xiB
k−i−1

This is called base B or radix B notation, we are essentially evaluating
xop in reverse base B.

Note that the value map requires knowledge of the length of the string, a
feature that often coexists uneasily with finite state machines. Since
regular languages and rational relations are closed under reversal, there is
no catastrophic difference, but things just tend to get more complicated.

Digression: Weirdness 9

Weird Digits
Some strange digit sets can be useful on occasion. For example, for base
2, we could alternatively use digits {−1, 0,+1}, so-called trits, or digits
{0, 1, 2}, so-called hyperbinary digits. E.g., trits can speed up parallel
addition.

Weird Weights
Defining weights as powers of B is natural, but we could also use more
general recurrences. E.g., Fibonacci numbers can be useful to produce
solutions to certain combinatorial problems.

Fibonacci Numeration 10

There are occasions (combinatorics, coding theory, dynamical systems)
where a weird numeration system helps. For example, one could use
Fibonacci numbers Fk rather than powers of some base B and digits
{0, 1}:

val(x) =
∑

i

xiFi+2

For example, the following strings all have value 32: 111111, 1111001,
1100101, 0010101.

Exercise
Show that any natural number can be written in the Fibonacci system
without using two consecutive 1s, so-called Zeckendorf form.
Construct a transducer that converts to Zeckendorf form.

Representing Sets of Numbers 11

Fix some numeration system N = ⟨∆,D, val⟩.

Suppose A ⊆ N. What does it mean that some plain FSM A represents
A?

Let L = L(A) ⊆ ∆⋆. We want

L ⊆ D only admissible strings accepted
A = { val(x) | u ∈ L }

So we have a notion of a regular or recognizable set of numbers with
respect to numeration system N .

Nitpicking 12

We could add conditions, say, every vector in A has exactly one
representative in L.

If the value map is a bijection, the last condition comes for free.
However, if val is not injective one might be tempted to go in the
opposite direction:

L = val−1(A) =
⋃

{ val−1(n) | n ∈ A }

In this case we will say that A strongly recognizes A.

Representing Arithmetic 13

Again, fix a numeration system N = ⟨∆,D, val⟩.

Suppose we have an arithmetic function f : N → N (the argument for
k-ary functions is entirely similar). What does it mean that some
transduction τ represents f?

If val : D → N is a bijection, the definition is fairly straightforward:

τ ⊆ D × D total and single-valued
τ(x, y) ⇔ f

(
val(x)

)
= val(y)

In general, a reasonable definition appears to be

τ ⊆ D × D
f = { (val(x), val(y)) | τ(x, y), x, y ∈ D }

Comments 14

So the transducer only accepts x:y when both x and y represent numbers
in our system. Also, whenever f(n) = m, there are strings x, y ∈ D such
that τ(x, y), val(x) = n and val(y) = m. Lastly, whenever τ(x, y), we
have f(val(x)) = val(y).

As in the language case, there is a more restrictive definition: τ strongly
represents f iff in addition, for all x, y ∈ D such that val(x) = n and
val(y) = m we already have τ(x, y).

This may seem more natural than our definition, but it makes the
transducers more complicated.

Warmup: Divisibility 15

Before we tackle rational relations and functions, here is a little finger
exercise for regular sets of numbers.

Fix some numeration system N = ⟨∆,D, val⟩. For any modulus m ≥ 2,
define the divisibility language as follows:

Dm,N = {x ∈ D | m | val(x) }

Since Dm,N is fairly simple, one might expect that for any reasonable
numeration system all these divisibility languages are regular.

Base B 16

It turns out that plain base B is easier to deal with wrto divisibility.

Since we only care about values modulo m it is natural to pick
Q = {0, 1, . . . ,m−1} as state set, q0 = 0, F = {0}. In radix B we have

val(x d) = B val(x) + d (mod m)

which directly yields the deterministic transition function

δ(p, d) = pB + d mod m

We will call these machines Horner automata, in symbols Hm,B .

Careful, though, Hm,B is not minimal in general, just think about HB,B .
It’s the obvious machine that works, but it typically has redundant states.

Divisibility Base 3, Modulus 7 17

0

1

2

3

4

5

6

Automaton H7,3; edge colors: red–0, green–1, blue–2.
Warning: the red edge from 4 to 2 actually starts at 3.

And Reverse Base B? 18

The infinitely superior LSD first system here causes a bit of a hiccup since

val(xd) = val(x) + dB|x| (mod m)

so the machine needs to keep track of the numbers B|x| mod m.

The sequence (Bk mod m)k≥0, depends very much on divisibility
properties of m and B. Without worrying about the details, it has to be
ultimately periodic: there are finite sequences α and β over N such that
(Bk mod m)k≥0 = αβω. In fact, |α| + |β| ≤ m. We call α;β the
fundamental sequence of B and m.

We can wrap this up in a fairly nice algebraic way.

Transient Mod 19

Here is a function that describes the position of a particle moving on a
lasso with transient t and period p.

remt,p(i) =
{
i if i < t,
t+ (i− t) mod p otherwise.

Write succ(i) = remt,p(i+ 1) and write Nt,p for the structure
⟨ {0, 1, . . . , t+p−1}, succ ⟩. A picture of N5,11:

Reverse Divisibility Automaton 20

To build the divisibility machine for reverse base B modulo m, let α;β be
the fundamental sequence, t = |α| and p = |β|.

We can now build a divisibility automaton Hr
m,B as follows:

Q = {0, . . . ,m−1} × Nt,p

δ((p, s), d) =
(
p+ d βs mod m, succ(s)

)
q0 = (0, 0)
F = { (0, s) | s ∈ Nt,p }

Note that this machine has size O(m2), though the accessible part can
be smaller and the minimal machine can be smaller yet.

Divisibility Reverse Base 3, Modulus 7 21

Hr
7,3 has 42 = 7 · 6 states

fundamental sequence ; 1, 3, 2, 6, 4, 5 (transient 0, period 6).

Comparison 22

Plain base 3 on the left, reverse base 3 on the right.
Both machines are minimal.

But Why? 23

From the picture, min Hr
7,3 is the reversal of H7,3.

To see why, note that H7,3 is a permutation automaton: all the
transition functions δa are permutations of the state set.

By Brzozowski, that means that pow
(
Hop

7,3
)

is the minimal automaton for
reverse base 3. But Hop

7,3 is a DFA, done.

Careful, though, it is not true in general that Hm,B is a permutation
automaton.

1 Numeration Systems

2 Presburger Arithmetic

3 Automatic Structures

4 Deciding Presburger Arithmetic

A Verification Problem 25

Suppose you are implementing a dynamic programming algorithm that
has to fill out an n× n array A. The algorithm

initializes the first row and the first column,

then fills in the whole array according to

A[i, j] = F (A[i− 1, j], A[i, j − 1])

lastly, reads off the result in A[n− 1, n− 1].

We would like to check that all the array access operations are safe, and
that the result is properly computed.
And, we want to do so automatically.

Filling In 26

One of the problems is that the recurrence can be implemented in several
ways:
// column by column
for i = 1 .. n-1 do
for j = 1 .. n-1 do

A[i,j] = F(A[i-1,j], A[i,j-1])

// row by row
for j = 1 .. n-1 do
for i = 1 .. n-1 do

A[i,j] = F(A[i-1,j], A[i,j-1])

// by diagonal
for d = 1 .. 2n-3 do
for i = 1 .. d do

A[i,d-i+1] = F(A[i-1,d-i+1], A[i,d-i])

Correctness 27

For a human, it is easy to see that the row-by-row and column-by-column
methods are correct. The diagonal approach already requires a bit of
thought: why 2n− 3?

Automatic verification requires a some amount of arithmetic, so there is
an immediate difficulty: full arithmetic is undecidable, in fact even Σ1
statements are already undecidable.

The problem is that the terms in the language of arithmetic are
essentially multivariate polynomials and Matiyasevic has shown that
finding integer roots of those is hard.

Question:
Can we get away with some decidable “baby arithmetic”?

Presburger Arithmetic 28

Here is a radical proposal: let’s just forget about multiplication. More
precisely, we restrict ourselves to the structure

N− = ⟨N,+, 0, 1;<⟩

As far as first-order logic is concerned, this structure is actually a bit
overly verbose, we could get away with just ⟨N,+⟩. To see why, note
that we can define all the rest:

x = 0 ∀ z (x+ z = z)
x ≤ y ∃ z (x+ z = y)
x < y x ≤ y ∧ x ̸= y

x = 1 0 < x ∧ ∀ z (0 < z ⇒ x ≤ z)
x = y + 1 y < x ∧ ∀ z (y < z ⇒ x ≤ z)

Terms 29

The terms in this language are pretty weak, no more than affine
combinations:

t(x) = c+
∑

cixi

where all the c, ci are constant, c, ci ∈ N.

This is easy to check by induction on terms.

In particular, we have lost multivariate polynomials–which is a good
thing, since otherwise Matiyasevic’s theorem would automatically doom
any attempt at finding a decision algorithm.

Semilinear Sets 30

Definition
A set A ⊆ N is linear if A = { c+

∑
cixi | xi ≥ 0 }.

Here c is the constant and the ci are the periods.
A set A ⊆ N is semilinear if it is the finite union of linear sets.

Actually, this is just the one-dimensional case; one can generalize easily
to subsets of Nd. Note that every finite set is semilinear. Intuitively, the
semilinear sets are the ultimately periodic subsets of N.

Lemma
Semilinear sets are closed under union, intersection and complement.

Definability 31

Clearly, semilinear sets are definable in Presburger Arithmetic, using no
more than Σ1 formulae:

z ∈ A ⇐⇒ ∃ x
(
t1(x) = z ∨ t2(x) = z ∨ . . . ∨ tk(x) = z

)

Theorem
The sets definable in Presburger Arithmetic are exactly the semilinear
sets.

This result is somewhat surprising: your intuition might tell you that more
complicated quantifier structures would produce more complicated sets.

Digression: Tally Languages 32

Suppose we code natural numbers in unary: n 7→ an.
Then every set A ⊆ N corresponds to a tally language LA ⊆ {a}⋆.

Theorem
A set A ⊆ N is semilinear if, and only if, LA is regular.

With a little bit of automata theory lying around, this explains everything
one wants to know about semilinear sets.

Digression: Presburger’s Approach 33

Presburger used an important method called quantifier elimination: by
transforming a formula into another, equivalent one that has one fewer
quantifiers. Ultimately, we can get rid of all quantifiers.

The remaining quantifier-free formula is equivalent to the original one,
and is easily tested for validity. A single step takes us from

Φ = ∃x1 ∀x2 ∃x3 . . . ∃ z φ(z,x)

to an equivalent formula

Φ ≡ Φ′ = ∃x1 ∀x2 ∃x3 . . . φ
′(x)

where the elimination variable z is no longer present.

Universal quantifiers are handled via ∀ ≡ ¬∃¬.

How Bad Can It Be? 34

Full multiplication is absent, but multiplication by a constant is
available; for example

y = 3 ∗ x ⇐⇒ y = x+ x+ x

We can also do modular arithmetic with fixed modulus:

y = x mod 3 ⇐⇒ ∃ z (x = 3 ∗ z + y ∧ y < 3)
y = x div 3 ⇐⇒ ∃ z (x = 3 ∗ y + z ∧ z < 3)

This may seem pretty feeble and would probably lead Wurzelbrunft to
conclude that it’s trivial to come up with a decision algorithm.

Poor Wurzelbrunft.

A Bad Formula 35

Here is a fairly simple formula in Presburger arithmetic:

Φ ≡ ∃u∀ v
(
u < v ⇒ ∃x, y (3x+ 5y = v)

)
How would a decision algorithm tackle this formula?

A human being having suffered through 128/151 knows what the answer
is: true. But the reason is uncomfortably complicated, we need to know
that 3 and 5 are coprime, a concept that is firmly rooted in the theory of
multiplication.

Really Bad 36

Worse, the problem naturally generalizes to several multipliers. One
wants to compute the largest number v such that

v = a ◦ x = a1x1 + a2x2 + . . .+ adxd

has no solution x ∈ Nd.

This is often written as the Frobenius function g(a1, . . . , ad).

We can easily define the Frobenius function in Presburger arithmetic:

g(a) = b ⇐⇒ ¬∃ x (b = a ◦ x) ∧ ∀ z > b ∃ x (z = a ◦ x)

So What? 37

The only easy proposition about the Frobenius function is the
2-dimensional case:

g(a1, a2) = a1a2 − a1 − a2

The general case is notoriously hard. E.g., it is NP-hard to compute
g(a). There is a polynomial time algorithm when d is fixed, though.

Since a general decision algorithm would provide at least some sort of
insight into to the Frobenius function, there is no hope that any such
algorithm could be simple.

1 Numeration Systems

2 Presburger Arithmetic

3 Automatic Structures

4 Deciding Presburger Arithmetic

Automatic Structures 39

Suppose we have some mathematical structure X = ⟨X;R⟩ where R is a
binary relation on X. Generalization to multiple relations/functions are
obvious.

Definition
X is automatic if there is a regular language Nm ⊆ Σ⋆ and a surjective
naming function ν : Nm → X such that

1. the binary relation on Nm, ν(u) = ν(v), is synchronous,
2. the binary relation on Nm, R

(
ν(u), ν(v)

)
, is synchronous.

Nm is the set of names for the actual elements in X .

Comments 40

One does not require the naming function to be injective, the same
object in X may have several (even infinitely many) names. If ν is a
bijective, then the first condition is trivially satisfied.

There is no condition on ν being computable in some simple manner, it
just has to be defined on a regular set of words and be compatible with
= and R as in the definition.

In many concrete cases there is a “natural” choice for ν and Nm, but
that is not part of the definition of automaticity.

Strong Representation 41

This definition of automaticity is the correct one in the sense that it
produces the desired result.

Note that we require our FSM representation to be fairly strong: we
insist on a synchronous automaton AR such that for any x, y ∈ X we
must have have

R(x, y) ⇐⇒ ∀u ∈ ν−1(x), v ∈ ν−1(y)
(
AR(u, v) ↓

)
In other words, any name works, we don’t need to pick a nice one for the
automaton to produce the right answer.

A Gap 42

The idea of automaticity is half a century old.

Bernard R. Hodgson
Théories décidables par automate fini
Ph.D. thesis, 1976, Université de Montréal

Sadly, no one payed any attention until it was reinvented 20 years later.

A broad study of automaticity really started taking off around 2000.

Hodgson already had a number of interesting examples: dense and
discrete linear orders, Presburger arithmetic, p-adic numbers.

He showed that automatic structures have certain closure properties wrto
product constructions.

And, he realized that one can use the same approach based on automata
operating on infinite words (ω-automata).

Wordprocessing in Groups 44

Clever title of a book published in 1992 by D. B. A. Epstein, J. W.
Cannon, D. F. Holt, S. V. F. Levy, M. S. Patterson, and W. P. Thurston.

This approach uses the Cayley graph of a group rather than the usual
first-order structure and there are subtle differences between the two
methods.

They provide a quadratic time algorithm based on finite state machines
that solves the word problem for certain groups that are important in
low-dimensional topology.

1 Numeration Systems

2 Presburger Arithmetic

3 Automatic Structures

4 Deciding Presburger Arithmetic

Naming Numbers 46

We want to think of
N+ = ⟨N; +⟩

as an automatic structure.

So, we need a naming map ν : Nm → N where Nm ⊆ Σ⋆ is some regular
language.

No problem, any of the standard numeration systems will work. And, it
does not matter which one we choose as far as decidability results are
concerned.

It does matter, though, for the actual algorithm, the machines will be
somewhat different.

Reasonable Convention 47

We will adopt the following conventions for the representation of N in 2⋆.

reverse binary (LSD first)
trailing zeros are allowed (TZ)
0 ∈ N is denoted by 0, not the empty word (NE)

In this case, Nm = (0 + 1)+. Since we allow trailing zeros, we can avoid
padding and work over 2 (more precisely, we pad with zero). The naming
map is typically called the value map here, it associates a digit string
with a numerical value:

val : 2+ −→ N

This map is most natural, but infinite-to-one.

Atomic Formulae 48

At any rate, in our case, there are only two possible atomic formulae:

x = y

x+ y = z

We could add x < y to improve the expressiveness of the language a bit.

So we have 3 synchronous transducers A(2)
= , A(2)

< and A(3)
+ (2, 2, and 3

tracks, respectively) that test these predicates, given arbitrary names for
the natural numbers in question.

Clearly we could also handle the constants 0 and 1 (and arbitrary
constants for that matter).

Efficiency 49

Again, we don’t have to include A(2)
< in our list of basic machines, we

could replace every occurrence of an atomic formula s < t by the formula

∀ d
(
s+ d = t ∧ s ̸= t

)

The decision algorithm would build a FSM that handles this condition,
but it is better to lovingly handcraft an optimized machine once and for
all.

More generally, one probably would like to have a little library of
optimized machines for phrases that appear often.

Raw Addition 50

n c

110

001

000
011
101

010
100
111

This is the core of the transducer for addition, with states “no carry” and
“carry,” using reverse binary as the numeration system.

Alas, this transducer ignores all other aspects of a numeration system
(empty-word, trailing-zeros).

Warning 51

The machines on the next few slides do not use a padding symbols;
instead we cheat by padding with 0s. They are correct in spirit, but
actually wrong as far as our definitions go.

To wit, they require the right number of trailing zeros in the names
chosen to represent the natural numbers in question. That violates the
definition of automaticity.

Exercise
Figure out how to fix this problem by using a padding symbol.

Who Cares? 52

Suppose we want to express relational composition
∃ y (R(x, y) ∧R(y, z)). Suppose we have corresponding names
u, v, w ∈ Nm.

With our type of machine it may happen that

AR accepts u:v and v042:w

But the 3-track product machine does not accept u:v:w.

The construction fails since we cannot cope with 2 different
representations for the witness.

Addition NE, TZ 53

000 011 101110

000 011 101

110

001

010 100 111

Less-Than 54

00 11

0110

00 01 11

10

01

00 10 11

Multiply by 3 55

00

11

00

1101

10

11

00

01

10

Multiply by 5 56

00

11

00

11

00

11

01
10

01

10

00

11

A Sentence 57

Consider the sentence

Φ ≡ ∃x ∀ y
(
x < y ⇒ ∃u, v (3 ∗ u+ 5 ∗ v = y)

)
Thanks to our brilliant choice of coefficients, Φ is actually true.

We use a 5-track machine A with the intended meaning:

u existential quantifier
v existential quantifier
u′ u′ = 3u
v′ v′ = 5v
z z = u′ + v′

More Precisely 58

We combine a multiply-by-3 and a multiply-by-5 machine with an adder:

A = emb(5)
1,3

(
mult3

)
× emb(5)

2,4
(
mult5

)
× emb(5)

3,4,5
(
A+

)
Projecting away all but the z-track

B = prj(5)
1,2,3,4(A)

produces a plain FSM that recognizes all linear combinations of 3 and 5.

A 59

00000

01011

10101

11110

00000

01011

10101

11110

00000

01011

10101

11110

00101

01110

10000

11011

00100

01111

10001

11010

00011

01000

10110

11101

00011

01000

10110

11101

01101

10011

00110

11000

00111

01100

10010

11001

00001 11111

01010

10100

00000

10101

01011

11110

00000

10101

11110

01011

01001

11100

10111

00010

00010

01001

10111

11100

00011

01000

11101

10110

00010

01001

10111

11100

01111

10001

00100

11010

00110

10011

01101

11000

00000

01011

10101

11110

01100

00111
11001

10010

00101

10000

01110

11011

00001
11111

01010

10100

00011

01000

10110

11101

00001

10100

01010

11111

11100

00010

01001

10111

10101

01011

00000 11110
00101

01110

10000

11011

00001

01010

11111

10100

00100 10001

01111

11010

00001

01010

11111

10100

00001

10100

01010

11111

Minimized B 60

0

1

0 1

1 0

1

0

0

1

0 1

Onward 61

It now suffices to check that

Φ ≡ ∃x∀ y
(
x < y ⇒ B(y)

)
The universal quantifier needs to be rewritten:

Φ ≡ ∃x¬ ∃ y
(
x < y ∧ ¬B(y)

)
The ∃ y

(
x < y ∧ ¬B(y)

)
part is handled by more embeddings:

C = emb(2)
1,2

(
less

)
× emb(2)

2
(
¬B

)
For the complement we have to deal with the numeration system; only
strings in Nm are allowed.

Span Complement 62

0 1

0 11 0

1

0

¬B recognizes 1, 2, 5, 6.

C 63

00 10 0111

00 10

01

00

01 1111 01

01

00

01 11

Projecting C 64

0 1

01 0 1

0 10 1 0

0

least number not accepted:
7
hence witness x = 7 works

Isomorphism Problem 65

Since automatic presentations depend on a naming function
ν : Nm → X it is far from clear whether two automatic presentations
describe the same underlying first-order structure. This is known as the
isomorphism problem.

Theorem
The isomorphism problem for automatic structures is undecidable.

In fact, the problem is outside of the arithmetical hierarchy and belongs
to the analytical hierarchy, at level Σ1

1 .

Non-Automaticity 66

By the same token, it is fairly difficult to make sure that a given
structure X fails to be automatic. Here are some examples of
non-automatic structures:

Additive rational numbers ⟨Q; +⟩
Divisibility of naturals ⟨N; |⟩
Skolem arithmetic ⟨N; ·⟩
Free semigroup {a, b}⋆

Structures with a pairing function

Interpretations 67

Let A and B be two relational, first-order structures with signatures τ(A)
and τ(B). The signatures may well be different, so their first-order
theories use a different vocabulary.

For simplicity, assume that A has just one binary relation R.

Definition
An n-dimensional interpretation of A in B consists of first-order formulae
in the language of B

δ(x) ϕR(x,y)

where x and y are n-vectors of distinct variables. Furthermore, there is a
surjective coordinate map f : δB → A such that

A |= R(fb1, fb2) ⇐⇒ B |= ϕR(b1, b2)

Extension to Formulae 68

We can associate any formula Φ in the vocabulary of A with an
interpretation ΦI , a formula in the vocabulary of B defined as follows:

Replace any atomic formula R(u, v) by ϕR(x,y).

Keep the propositional part in tact.

Relativize every quantifier to δ:

∀uϕ(u)⇝ ∀ x
(
δ(x) ⇒ ϕ(x)

)
∃uϕ(u)⇝ ∃ x

(
δ(x) ∧ ϕ(x)

)

Interpretation Lemma 69

Theorem
Let B interpret A with coordinate map I. Then for any first-order
formula Φ(x) in the vocabulary of A and b ∈ B:

A |= Φ(fb) ⇐⇒ B |= ΦI(b)

In particular for a sentence we have

A |= Φ ⇐⇒ B |= ΦI

So all first-order questions about A can be answered in B.

In particular, if we have a decision algorithm for B we can also apply it to
A: just check ΦI instead of Φ.

Divisibility 70

Here is an extension of Presburger arithmetic based on the special
divisibility relation for m ≥ 2:

x |m y ⇐⇒ x | y ∧ ∃ k (x = mk)

Nm = ⟨N; +, |m⟩

Nm is still automatic: we can write numbers in reverse base m.

Addition is synchronous as always. The divisibility relation is also easily
synchronous.

Trees 71

Write ∆m = {0, 1, . . . ,m−1} for the usual digit alphabet in base m.

We can think of all words over ∆m as an m-ary tree. Let σd(x) = xd be
the dth child of x in that tree, write ≺ for the prefix partial order on
∆m

⋆ and write el(x, y) if x and y have the same length.

The tree structure of order m is defined by

treem = ⟨∆m
⋆;σ0, . . . , σm−1,≺, el⟩

Interpretation 72

Theorem
The structures Nm and treem are mutually interpretable in each other.

Sketch of proof. To interpret, say, treem in Nm, associate a word
u = u0u1 . . . uk−1 in ∆m

⋆ (i.e., a branch in the tree) with the numerical
value

mk +
∑

i

uim
i

The mk forces the MSD to be 1 and we have to choose δ accordingly.
First note that for all x there is exactly one y such that

α(x, x′) ≡ x′ |m x′ ∧ x′ ≤ x < mx′

Hence we can set

δ(x) ≡ ∃x′ (
α(x, x′) ∧ x < 2x′)

Using α, we can express σd(u) = v as

ψd(x, y) ≡ ∃x′ (
α(x, x′) ∧ y = x+ (m+ d− 1)x′)

The prefix relation translates into

π(x, y) ≡ ∃x′, z
(
α(x, x′) ∧ x′ |m z ∧ y = x+ z

)
Lastly, equal length/equal level translates into

λ(x, y) ≡ ∃x′, y′ (
α(x, x′) ∧ α(y, y′) ∧ x′ = y′)

Done. 2

Universal Automatic Structures 74

Here is a rather surprising result that states that, in the sense of
interpretability, the structures Nm and treem are the most complicated
automatic structures.

Theorem
A structure is automatic iff it can be interpreted in Nm iff it can be
interpreted in treem.

So, as a matter of principle, we could solve all first-order queries about
automatic structures by a translation to a carefully optimized decision
algorithm for Nm and/or treem.

	Numeration Systems
	Presburger Arithmetic
	Automatic Structures
	Deciding Presburger Arithmetic

