
CDM
Primitive Recursion

Klaus Sutner
Carnegie Mellon University
Fall 2024

1 Computability

2 Primitive Recursive Functions

3 Basic Properties

Defining Computability 2

We need a rigorous definition of computability that is easy to understand
and apply, and that matches our intuitive, pre-theoretic notion of
computability.

Roughly speaking, there are two types of definitions that can be used:

Machine Models
Abstract, mathematical machines that capture the notion of a “com-
puter” in a more or less physical sense.

Programs
A sequence of primitive instructions that can be executed in a sim-
ple, mechanical manner.

History Angle 3

Classical Recursion theory (computability theory) started in the
1930s, well before the arrival of digital computers. It arose as a crit-
ical ingredient in any attempt to handle the Grundlagenkrise (foun-
dational crisis) in mathematics early in the 20th century. CRT is not
concerned with practical computation or applied algorithms, not at
all.

Complexity theory started in the 1950/60s, in response to the in-
creasing relevance of actual digital computation, and the need to
understand resource allocation issues (analysis of algorithms). This
area is in part concerned with practical, realizable computation, but
the theory part of complexity theory can also be far, far removed
from real computation.

Grundlagenkrise 4

Why a crisis? Around 1900, some paradoxes such as Russell’s
self-contradictory set

S = { x | x /∈ x }

were casting doubt on the foundations of math. If everyone uses set
theory as the foundation of math, and set theory is inconsistent, we have
a little problem.

Key players: Hilbert, Herbrand, Gödel, Church, Kleene, Turing, Post.

In typical fashion, almost everybody simply ignored the issues and
blissfully kept on doing math. What, me worry?
But some did pay attention, in particular David Hilbert.

Hilbert 5

Hilbert’s Program 6

In the 1920s, partially in response to paradoxes and intuitionistic lunacy,
David Hilbert† proposed a program to salvage all of mathematics. In a
nutshell:

Formalize mathematics and concoct a finite set of axioms that are
strong enough to prove all theorems of mathematics (completeness)
and show that the system is free from contradictions (consistency);
by strictly finitary means.
Also show that statements about “ideal objects” can be proven in
the system, without using ideal objects.

†Full disclosure: Hilbert is my academic great-grandfather; of course, this plays no
role whatsoever in my attitude towards his work :-)

Consistency and Completeness 7

Consistency here means that there is no formula Φ so that the system
has a proof for Φ and also a proof for ¬Φ.

We have an algorithm to check whether a string is a proof, but to check
consistency it seems we need to run this algorithm infinitely often: check
every possible proof.

Completeness means that, for every true formula Φ, the system has a
proof for Φ.

In practice, this requirement could be softened a little bit, it’s enough to
have proofs for the statements one is actually interested in (a notion that
is impossible to formalize).

And Computation? 8

Any reasonable formal system depends on computability: There is an
algorithm to check whether

a string is a valid formula

a formula is an axiom

a formula can be derived from one or two others using a rule of in-
ference (e.g., modus ponens A, A ⇒ B ⊢ B

a sequence of deductive steps is a valid proof

In other words, a formal system amounts to so much wordprocessing†.

†This may sound like an insult, but Hilbert was adamant that math, in principle,
could be expressed by pushing symbols around on a piece of paper

Progress Surrounding Hilbert’s Program 9

1889 Peano gives an axiomatization of basic number theory,
using a Dedekind-style approach.

1899 Hilbert gives an axiomatization of basic geometry.

1910s Russell and Whitehead build a fairly comprehensive formal
system of mathematics based on types.

1918 Bernays shows that propositional logics is sound and com-
plete.

1929 Gödel shows that first-order logic is sound and complete.

A Catastrophe 10

The Incompleteness Theorem was announced by Gödel on October 7,
1930, at a conference in Königsberg, the “First International Conference
on the Philosophy of Mathematics”:

There is a formula of number theory such that Peano arith-
metic proves neither the formula nor its negation.

Since either the formula or its negation must be true, we are missing out
on a true statement of arithmetic.

It seems that the only person in the audience who understood what was
going on was von Neumann. Hilbert was in Königsberg, he gave his
“werden wissen” speech the next day, but apparently he did not attend
Gödel’s lecture.

Computation is Critical 11

One key idea in Gödel’s proof is arithmetization†: one can express
formulae and proofs, plus all necessary manipulations, in terms of
arithmetic. Everything is coded up as a Gödel number.

The operations on Gödel numbers representing formulae, deduction steps
and proofs are all easily computable.

Hence, they can be handled by any formal system that is is expressive
enough to cover some basic aspects of arithmetic.

Note the irony: computability helps to demolish Hilbert’s dream, which
basically says everything is computable.

†Also useful in complexity theory.

Hilbert’s Entscheidungsproblem 12

Another one of Hilbert’s brilliant ideas.

The Entscheidungsproblem is solved when one knows a procedure
by which one can decide in a finite number of operations whether
a given logical expression is generally valid or is satisfiable. The
solution of the Entscheidungsproblem is of fundamental importance
for the theory of all fields, the theorems of which are at all capable
of logical development from finitely many axioms.

D. Hilbert, W. Ackermann
Grundzüge der theoretischen Logik, 1928

In modern terminology: Hilbert wanted a decision algorithm, more or less
for all of mathematics. Again, the Entscheidungsproblem is directly based
on computation.

No Luck 13

As we now know, the Entscheidungsproblem is unsolvable. However, in
1930, it was not known that this follows from Gödel’s incompleteness
theorem.

In order to prove that the Entscheidungsproblem is unsolv-
able one must have a solid theory of computation.

Note the asymmetry, to prove solvability of computational problems an
informal argument is often quite enough.

As it turns out, the decision problem is highly non-computable even for
basic arithmetic over N. In fact, we cannot check whether a polynomial
with integer coefficients has a solution over the integers (Matiyasevich).

One Century Later 14

Some quarters declare Hilbert’s program to be dead. To me, that seems
a major misconception; Hilbert had the right ideas, though they needed
to be adjusted in various ways.

His program jump-started the development of modern mathematical
logic, in particular computability theory and proof theory. Both are
critical for computer science.

Finding decision algorithms for limited areas of discourse has been a
very productive effort.

Formalizing mathematics in Hilbert’s days was completely hopeless.
Today, in the presence of powerful computers, it is somewhat feasi-
ble and opens up endless possibilities.

Aside 15

From a modern perspective, the notion of computability may seem fairly
straightforward. Do we really have to make a big fuss?

Things were far from obvious at the time. In fact, in the 1930s there was
some tension between Church and Gödel about the proper notion of
computability, the issue was finally resolved only with Turing’s seminal
paper.

If things were not “obvious” to these giants, they are indeed not obvious
at all.

Models of Computation 16

K. Gödel: primitive recursive

A. Church: λ-calculus

J. Herbrand, K. Gödel: general recursiveness

A. Turing: Turing machines

S. C. Kleene: µ-recursive functions

E. Post: production systems

H. Wang: Wang machines

A. A. Markov: Markov algorithms

M. Minsky; J. C. Shepherdson, H. E. Sturgis: register machines

Z. Manna: while programs

Comments 17

The models are listed roughly in historical order. Except for primitive
recursive functions, these models are all equivalent in a strict technical
sense.

This does not mean that they are equally intuitive or compelling. For
example, unless you have the theory-gene, you will find the λ-calculus
pretty daunting as a model of computation.

Bad news: the second most daunting model is Turing machines. They
have a beautiful motivation and are very natural in a way, but when it
comes to technical details they are a nightmare.

Alas, for complexity theory there is no way around Turing machines.
Since you are already familiar with them, we will talk use register
machines to get half-way serious about universality.

1 Computability

2 Primitive Recursive Functions

3 Basic Properties

Computable Arithmetic Functions 19

To simplify matters a bit, initially we consider only one data type: the
natural numbers N. The corresponding functions are called arithmetic
functions or number theoretic functions: Some examples are familiar to
any kindergartener: addition, multiplication, squaring, roots,
exponentiation and so on.

f : Nn → N

We introduce a model of computation that is designed to work
particularly well with these, no input/output coding is required.

For the time being, all our functions will be total.

Primitive Recursion 20

The main idea behind our first model will be very familiar to anyone
acquainted with a modern programming language: recursion. For
example, we can define the factorial function as follows:

f(0) = 1
f(x + 1) = (x + 1) · f(x)

In essence, we are reducing the problem of computing factorials to
computing products, plus some logical overhead.

It is intuitively clear from this description that f is computable.

Details 21

If one cares about the actual implementation of a recursive function,
there are two basic choices.

Top-Down Implement a recursion stack so that a call to f(n) auto-
matically produces calls to f(n−1), f(n−2) . . . f(0) and
handles the returns properly.

Bottom-Up Compute f(0), f(1), f(2) . . . , f(n) by iteration, which
requires only a simple loop.

Again, in math this distinction does not matter much, in the early days of
CS it produced some acrimonious debates†.

†There were fierce fights about whether Algol 60 should include recursion. I stud-
ied with one of the people on the wrong side of the argument.

Mental Health Warning 22

We are going to define primitive recursive functions in three different
ways, first very informal, then semi-formal, essentially the standard of
precision these days, and then very formal.

The third level is not necessary unless one really wants to get down to
implementation issues and/or computer proofs.

We will never dig down that far again, I promise. In the future we will be
far more casual about definitions.

Notation Warning 23

Gödel encountered the problem of defining computable functions working
on his seminal incompleteness theorem. He introduced a class of what he
called “recursive functions,” that are now called primitive recursive
functions.

The notion of “recursive function” today refers to an arbitrary
computable function. The key difference is that primitive recursive
functions can only use recursion on one variable, whereas full
computability requires recursion on multiple variables as in the
Herbrand-Gödel model of computation.

For primitive recursive functions it will always be crystal clear that they
are intuitively computable.

Round 1: Informal 24

Definition (Informal)
An arithmetic function f : Nk → N is primitive recursive iff it can be
generated from zero and successor using only the operations of
composition and primitive recursion.

Think of this as describing a small programming language: zero and
successor are built-in, and we can use two features in our language,
composition and primitive recursion.

We can use these to build more complicated programs out of the basic
ones. Nothing else is allowed.

Each of these programs defines a primitive recursive function.

Arithmetic Functions 25

All the basic functions of arithmetic are primitive recursive according to
this “definition.”

add(0, y) = y

add(x+1, y) = S(add(x, y))

mult(0, y) = 0
mult(x+1, y) = add(mult(x, y), y)

exp(0, y) = 1
exp(x+1, y) = mult(exp(x, y), y)

In fact, it is quite hard to find an arithmetic function that is intuitively
computable, but fails to be primitive recursive.

Aside: R. Dedekind 26

These equational, inductive definitions of basic arithmetic functions date
back to Dedekind’s 1888 booklet “What are numbers and what is their
purpose?” It is remarkable that he produced this description about 30
years before anyone started to think carefully about computability.

Round 2: Semi-Formal 27

In round 1, we have appealed to common sense and a little background
knowledge to figure out what composition and primitive recursion are.

Since both ideas are quite intuitive, there is not much harm in this.

But: if we want to show that some function fails to be primitive
recursive, we better make sure to nail these down precisely.

Composition 28

Given functions gi : Nm → N for i = 1, . . . , n , h : Nn → N , we define a
new function f : Nm → N by composition as follows:

f(x) = h(g1(x), . . . , gn(x))

Notation: We write h ◦ (g1, . . . , gn) inspired by the the well-known
special case m = 1:

(h ◦ g)(x) = h(g(x)).

So this is just ordinary sequential composition of functions. Clearly,
computable functions are closed wrto composition: output can be re-used
as input.

Primitive Recursion 29

We need one more operation beyond composition to get interesting
functions, a form of recursion. Given h : Nn+2 → N and g : Nn → N we
define a new function f : Nn+1 → N by

f(0, y) = g(y)
f(x+1, y) = h(x, f(x, y), y)

Arities are critical here, otherwise things don’t typecheck.

Arity 30

It is sometimes convenient to be able to express the arity as part of the
notation used.

We will use a superscript (n) for this purpose:

f (n) a function of arity n

In particular write C(n)
a for the n-ary constant map x 7→ a.

We will call C(0)
a a hard constant: a function that takes no arguments.

Definition, Again 31

Since we have now explained what all the pieces mean, we can basically
just repeat our first definition.

Definition (Semi-formal)
A function is primitive recursive (p.r.) if it can be generated from the
basic functions zero and successor, using only composition and primitive
recursion.

There, that’s it.

Or is it?

Round 3: Annoyingly Formal 32

Suppose ℓ is a primitive recursive function and we want to sum its values.
No problem:

sum(0) = 0
sum(x+1) = add(sum(x), ℓ(x))

So sum(x) =
∑

z<x ℓ(z).

Similarly, if ℓ has an additional parameter y, we can adjust the definition
as follows:

sum(0, y) = 0
sum(x+1, y) = add(sum(x, y), ℓ(x, y))

No problem, everything matches our definition.

Pesky Constants 33

For a human reader, this is indeed all perfectly fine.

But there is a minor issue: the two zeros on the right are different.

sum(0) = 0
sum(0, y) = 0

The first one has arity 0, but the second has arity 1. This is forced by our
definition of primitive recursion.

A little more precision is needed if we wanted to, say, check proofs
involving primitive recursive functions.

Bureaucracy: Projections 34

Another problem is that composition as we defined it is not quite enough.
Suppose we have a binary version of addition, and want to define a
ternary version. No problem:

add(3)(x, y, z) = add(2)(x, add(2)(y, z))

But, this is not allowed according to our definition of composition: try to
find the right binding for h and the gi.

We need a simple auxiliary tool, so-called projections:

Pn
i : Nn → N Pn

i (x1, . . . , xn) = xi

where 1 ≤ i ≤ n.

Killing Variables 35

Now we can write

add(3) = add(2) ◦ (P3
1, add(2) ◦ (P3

2, P3
3))

Note that no variables are needed in this notation system. This is
nowadays called tacit programming, used in APL, J.

Needless to say, most humans prefer the informal notation by a long shot.
But then again, the last term is very easy to parse and evaluate.

Abstraction 36

We are currently interested in the class of computable functions, but
there are other collections that are also important; e.g., we might want to
study functions that are polynomial time computable, or polynomial
space computable.

It would pay off to figure out some characteristic properties of these and
similar collections of functions.

Two basic properties stick out: projections are always included, and we
want closure under composition.

Clones 37

A clone or function algebra is a collection of functions that contains all
projections and is closed under composition, over some carrier set.

More generally, for any set A, define the collection of all finitary
functions over A as

FA =
⋃

n≥0
(An → A)

Definition
A clone (over A) is a subset C ⊆ FA that contains all projections and is
closed under composition.

For example, all projections form a clone, as do all arithmetic functions.

Nullary Functions 38

Note that we allow hard constants, nullary functions in A0 → A where
we think of A0 as a one-point set {∗}.

We will write f() or f(∗) when we evaluate such functions.

In the literature, you will also find clones without nullary functions

C ⊆ F
(+)
A =

⋃
n>0

(An → A)

This is mostly a technical detail, but one should be aware of the issue.

Actually, this is exactly the kind of pesky detail that makes programming
quite so difficult.

Nullary??? 39

Algebraists usually prefer the non-nullary approach. Most operations
there are binary and unary: e.g., (x, y) 7→ x · y and x 7→ x−1 in a group.
Constants are just elements of the algebraic structure and are not
considered to have anything to do with an operation.

But for those working in logic, type theory or category theory, nullary
operations are not an issue at all. And, truth be told, any really solid
implementation of primitive recursive functions also needs to keep track
of all these gory details, otherwise things won’t typecheck.

After all, a computer will not apply any algebraic common sense
whatsoever, it will just follow the rules precisely as stated.

Nullary Composition 40

Recall composition: h(n), g
(m)
i , i ∈ [n], produces

f = h ◦ (g1, . . . , gn) ∈ F
(m)
A where n, m ≥ 0.

It is worthwhile to consider the special case where h or the gi are nullary.

Case: n = 0
Then for m ≥ 1 we have C(m)

h(∗) ∈ C.

Case: m = 0
Then for n ≥ 1 we have C(0)

a ∈ C where a = h(g1(∗), . . . , gn(∗)).

Another Angle 41

We could introduce constants C(k)
a for all a and k. Alas, that contradicts

the basic principle of parsimony in axiomatization: use as few basic
assumptions as possible. For example, if we have the successor function
S, we can define C(k)

a+1 = S ◦ C(k)
a , so we only need C(k)

0 .

We can use primitive recursion to deal with arity:

f(0, y) = C(k)
0 (y)

f(x+1, y) = f(x, y)

This defines C(k+1)
0 in terms of C(k)

0 .

So all we really need is one hard constant: C(0)
0 .

Generating Clones 42

To get something more interesting, we need to consider clones that are
generated by

certain basic functions F , and/or

closed under additional functional operations Op.

We write

clone(F ; Op)

for the least clone containing F and closed under Op.

For example, clone(;) consists just of all projections.

Basic Arithmetic Functions 43

When dealing with natural numbers, it is natural (duh) to have

Constant zero 0 : N

Successor function S : N → N , S(x) = x + 1

Here constant 0 is meant to be the hard constant C(0)
0 (but recall the

comment on nullary composition from above).

This is a rather spartan set of built-in functions, but as we will see it’s all
we need. Needless to say, these functions are trivially computable.

In fact, it is hard to give a reasonable description of the natural numbers
without them (unless you are a set theorist).

Formal Definition 44

We write Prec[h, g] for primitive recursion as above.

Definition
A function is primitive recursive (p.r.) if it lies in the clone generated by
the hard constant 0, the unary successor function; and is closed under
primitive recursion: clone(C(0)

0 , S1; Prec).

A bit harder to read, but now there are no loose ends.

Example: Factorials 45

The standard definition of the factorial function uses recursion like so:

f(0) = 1
f(x + 1) = (x + 1) · f(x)

To write the factorial function in the form f = Prec[h, g] we need

g : N0 → N, g() = 1
h : N2 → N, h(u, v) = (u + 1) · v

More precisely, g is C(0)
1 and h is multiplication combined with the

successor function:

f = Prec[mult ◦ (S ◦ P2
1, P2

2), C(0)
1]

Unfolding 46

By unfolding the definition of mult we can write a single term in our
language that defines the factorial function.

Prec[Prec[Prec[S ◦ P3
2, P1

1] ◦ (P3
2, P3

3), C(1)
0] ◦ (S ◦ P2

1, P2
2), C(0)

1]

The innermost Prec yields addition, the next multiplication and the last,
factorial.

Again, hard to read for a human, but perfectly suited for a parser. Given
the right environment, it is not hard to build an interpreter for these
terms.

Arithmetic, Again 47

It is a good idea to go through the definitions of all the standard basic
arithmetic functions from the p.r. point of view.

add = Prec[S ◦ P3
2, P1

1]

mult = Prec[add ◦ (P3
2, P3

3), C(1)
0]

pred = Prec[P2
1, C(0)

0]
sub′ = Prec[pred ◦ P3

2, P1
1]

sub = sub′ ◦ (P2
2, P2

1)

Since we are dealing with N rather than Z, sub here is proper
subtraction: x •− y = x − y whenever x ≥ y, and 0 otherwise.

Exercise
Show that all these functions behave as expected.

Aside: Rectypes 48

Primitive recursive functions (alternatively, the terms that define them)
are a perfect example of a recursive datatype (rectype)∗, one of the
fundamental concepts in TCS. We have

a collection of atoms (indecomposable items), and

a collection of constructors that can be applied to build more com-
plicated, decomposable objects.

Because of this inductive structure we can perform inductive arguments,
both to establish properties and to define operations.

∗Rectype is a neologism that we have stolen from T. Forster in Cambridge; it is
somewhat nonstandard, but it’s too good not to use.

Two Views 49

bureaucracy basic operator

atom projections zero, successor -

constructors composition - prim. rec.

1 Computability

2 Primitive Recursive Functions

3 Basic Properties

A Primitive Recursive Zoo 51

We have seen that basic arithmetic functions such as addition,
multiplication and proper subtraction are all primitive recursive.

In fact, it is quite difficult to come up with an arithmetic function that
fails to be primitive recursive, yet is somehow intuitively computable. Go
through any basic book on number theory, everything will be p.r.

To show that lots of functions are primitive recursive we need two tools:

A pool of known p.r. functions, and

strong closure properties.

A Slog 52

The purpose of this section is to show in a fairly rigorous manner that
certain operations on functions do not affect primitive recursiveness.

Once you have gone through the technical details, try to ignore them and
focus on developing intuition that explains why a function is primitive
recursive, rather than just slogging through the standard machinery of
proof.

Admissibility 53

Here is an example of a closure property that is not obvious from the
definitions. Apparently, we lack a mechanism for definition-by-cases:

f(x) =
{

3 if x < 5,
x2 otherwise.

We know that x 7→ 3 and x 7→ x2 are p.r., but is f also p.r.?

We want to show that definition by cases is admissible in the sense that
when applied to primitive recursive functions/relations we obtain another
primitive recursive function. Having a solid collection of admissible
operations around makes it much easier to show that some particular
functions are primitive recursive.

Definition by Cases 54

Definition
Let g, h : Nn → N and R ⊆ Nn. Define f = DC[g, h, R] by

f(x) =
{

g(x) if x ∈ R,
h(x) otherwise.

We need to explain what it means for the relation R to be primitive
recursive, we’ll do that in a minute.

Sign and Inverted Sign 55

The first step towards implementing definition-by-cases is a bit strange,
but we will see that the next function is actually quite useful.
The sign function is defined by

sign(x) = min(1, x)

so that sign(0) = 0 and sign(x) = 1 for all x ≥ 1. Sign is primitive
recursive: Prec[S ◦ 0, 0] in sloppy notation.

Similarly the inverted sign function is primitive recursive:

sign(x) = 1 •− sign(x)

Relations 56

As usual, define the characteristic function of a relation R

charR(x) =
{

1 x ∈ R
0 otherwise.

to translate relations into functions.

Definition
A relation is primitive recursive if its characteristic function is primitive
recursive.

We will use analogous definitions later for all kinds of other types of
computable functions: Turing, polynomial time, polynomial space,
whatever.

Digression: Sets and Functions 57

The idea that one can identify an arithmetic relation R ⊆ Nk with a
function Nk → 2 may seem quaint and totally obvious.

Not so. In 1882 Cantor published his eponymous theorem, but instead of
saying that the powerset has strictly larger cardinality he stated (in
essence):

|S → 2| > |S|

The collection of functions S → 2 is just another way to describe the
powerset of S.

Equality and Order 58

Define E : N2 → N by

E = sign ◦ add ◦ (sub ◦ (P2
1, P2

2), sub ◦ (P2
2, P2

1))

Or, less formally, but more intelligible:

E(x, y) = sign((x •− y) + (y •− x))

Then E(x, y) = 1 iff x = y, and 0 otherwise. Hence equality is primitive
recursive. Even better, all standard order relations such as

̸=, ≤, <, ≥, . . .

are primitive recursive (so we can use them e.g. in definitions by cases).

Closure Properties 59

Proposition
The primitive recursive relations are closed under intersection, union and
complement.

Proof.

charR∩S = mult ◦ (charR, charS)
charR∪S = sign ◦ add ◦ (charR, charS)
charN−R = sub ◦ (1, charR)

2

In other words, primitive recursive relations form a Boolean algebra, and
even an effective one: we can compute the Boolean operations.

Arithmetic and Logic 60

Note what is really going on here: we are using arithmetic to express
logical concepts such as disjunction.

The fact that this translation is possible, and requires very little on the
side of arithmetic, is a central reason for the algorithmic difficulty of
many arithmetic problems: logic is hard, by implication arithmetic is also
difficult.

For example, finding solutions of Diophantine equations is hard.

Exercise
Show that every finite set is primitive recursive. Show that the even
numbers are primitive recursive.

DC is Admissible 61

Proposition
If g, h, R are primitive recursive, then f = DC[g, h, R] is also primitive
recursive.

Proof.
f = add ◦ (mult ◦ (charR, g), mult ◦ (charR, h))

Less cryptically

f(x) = charR(x) · g(x) + charR(x) · h(x)

Since either charR(x) = 0 and charR(x) = 1, or the other way around,
we get the desired behavior. 2

Bounded Sum 62

Proposition
Let g : Nn+1 → N be primitive recursive, and define

f(x, y) = Σz<xg(z, y)

Then f : Nn+1 → N is again primitive recursive. The same holds for
products.

Proof.

f = Prec[add ◦ (g ◦ (P n+2
1 , P n+2

3 , . . . , P n+2
n+2), P n+2

2), 0n]

Less formally,

f(0, y) = 0
f(x+, y) = f(x, y) + g(x, y)

Here we have written x+ instead of x + 1. Yes, that helps.

Exercises 63

Exercise
Repeat the proof for products.

Exercise
Show that f(x, y) =

∑(
g(z, y) | z < x ∧ R(z)

)
is primitive recursive

when g and R are primitive recursive.

Exercise
Show that f(x, y) =

∑
z<h(x) g(z, y) is primitive recursive when h is

primitive recursive and strictly monotonic. What if h is not monotonic?

Bounded Search 64

A particularly important algorithmic technique is search over some finite
domain.
For example, in brute-force factoring n we are searching over an interval
[2, n − 1] for a number that divides n. Or in a chess program we search
for the optimal next move over a space of possible next moves.
We can model search in the realm of p.r. functions as follows.

Definition (Bounded Search)
Let g : Nn+1 → N . Then f = BS[g] : Nn+1 → N is the function defined
by

f(x, y) =
{

min
(

z < x | g(z, y) = 0
)

if z exists,
x otherwise.

Keeping Things Simple 65

Note that f(x, y) = x simply means that the search failed. In a more
luxurious environment we might set a flag, throw an exception or some
such.

Here we want everything to be a simple as possible, and in particular
constrained to pure arithmetic. So we code failure as a numerical value,
basta.

BS is Admissible 66

One can show that bounded search is also admissible, it adds nothing to
the class of p.r. functions.

Proposition
If g is primitive recursive, then so is BS[g].

Exercise
Show that bounded search is indeed admissible (“primitive recursive
functions are closed under bounded search”).

Bounded Search II 67

This can be pushed a little further: the search does not have to end at x.
Instead, we can search up to a primitive recursive function of x and y.

f(x, y) =
{

min
(

z < h(x, y) | g(z, y) = 0
)

if z exists,
h(x, y) otherwise.

Dire Warning:
But we have to have a p.r. bound, unbounded search as in

f(y) := min
(

z | g(z, y) = 0
)

is not an admissible operation; not even when there is a suitable witness
z for each y. See Kleene’s µ-recursive functions.

Example: Primality 68

Claim (1)
The divisibility relation div(x, y) is primitive recursive.

Note that
div(x, y) ⇐⇒ ∃ z ≤ y (x ∗ z = y)

so that bounded search intuitively should suffice to obtain divisibility.
Formally, we have already seen that the characteristic function M(z, x, y)
of x ∗ z = y is p.r. But then

sign
(∑

z≤y
M(z, x, y)

)
is the p.r. characteristic function of div.

Primality 69

Claim (2)
The primality relation is primitive recursive.

To see why, note that x is prime iff

1 < x ∧ ∀ z < x (div(z, x) ⇒ z = 1).

The building blocks 1 < x, div and z = 1 are all p.r., and we can
combine things by ∧ and ⇒ . The only potential problem is the
(bounded) universal quantifier.
But this is quite similar to the situation with div from the last slide.
Time for a general solution.

Yet More Logic 70

Arguments like the ones for basic number theory suggest another type of
closure properties, with a more logical flavor.

Definition (Bounded Quantifiers)
P∀(x, y) ⇔ ∀ z < x P (z, x, y) and P∃(x, y) ⇔ ∃ z < x P (z, x, y).

Note that P∀(0, y) = true and P∃(0, y) = false.

Informally, and using the dreaded ellipsis,

P∀(x, y) ⇐⇒ P (0, x, y) ∧ P (1, x, y) ∧ . . . ∧ P (x − 1, x, y)

and likewise for P∃.

Bounded Quantification 71

Bounded quantification is really just a special case of bounded search: for
P∃(x, y) we search for a witness z < x such that P (z, x, y) holds.
Generalizes to ∃ z < h(x, y) P (z, x, y) and ∀ z < h(x, y) P (z, x, y).

Proposition
Primitive recursive relations are closed under bounded quantification.

Proof.

charP∀(x, y) =
∏
z<x

charP (z, x, y)

charP∃(x, y) = sign
(∑

z<x

charP (z, x, y)
)

2

Next Prime 72

Claim (3)
The next prime function f(x) = min

(
z > x | z prime

)
is p.r.

This follows from the fact that we can bound the search for the next
prime by a p.r. function:

f(x) ≤ 2x for x ≥ 1.

This bounding argument requires a little number theory. In general, the
theory of gaps between consecutive primes is quite difficult (consider
prime twins), but this result is not too bad.

Enumerating Primes 73

Claim (4)
The function n 7→ pn, where pn is the nth prime, is primitive recursive.

To see this we can iterate the “next prime” function from the last claim:

p(0) = 2
p(n + 1) = f(p(n))

Exercises 74

Exercise
Show in detail that the function n 7→ pn where pn is the nth prime is
primitive recursive. How large is the p.r. expression defining the function?

Exercise
Find some other closure properties of primitive recursive functions.

Primitive Recursive Bijections 75

As an example of a non-closure result we mention the following.

Theorem (Kuznecov 1950)
The collection of bijective primitive recursive functions is not closed
under inverse.

Sketch of proof. Define the Ackermann-like function

B0(x) = 2x

Bn+(x) = Bx
n(1)

B(x) = Bx(x)

It follows from monotonicity that the predicate “Bn(x) = y” is primitive
recursive, uniformly in n, x, y.

Contd. 76

Let R be the range of B : N → N , so R is infinite, co-infinite and
primitive recursive. Note that R is very sparse.

Let HX be the principal function† of X ⊆ N and define f : N → N

f(x) =

2 H−1
R (x) if x ∈ R,

2 H−1
R

(x) + 1 otherwise.

Then f is an primitive recursive bijection. Since B fails to be primitive
recursive, f−1 is not.

2

†The function that enumerates the elements of X in order.

	Computability
	Primitive Recursive Functions
	Basic Properties

