
CDM
Closure Properties

Klaus Sutner

Carnegie Mellon University
Spring 2021

1 Nondeterministic Machines

2 Determinization

3 More Closure Properties

Total Recall: Closure 2

Regular languages are closed with respect to a number of operations. In fact, it
is sort of difficult to turn a regular language into a non-regular one, using some
“reasonable” operation.

Union, intersection, complement.

Concatentation, Kleene star.

Reversal.

Homomorphisms, inverse homomorphisms, regular substitutions.

Total Recall: Regular Expressions 3

Theorem (Kleene 1956)
Every regular language over Σ can be constructed from ∅ and {a}, a ∈ Σ,
using only the operations union, concatenation and Kleene star.

Hence we denote any regular language by an algebraic expression:

Definition
A regular expression is a term constructed as follows:

Basic expressions: ∅, a for a ∈ Σ.
Operators: (E1 + E2), (E1E2), (E⋆).

Algorithms 4

Theorem
There are higly efficient algorithms to convert a regular expression into a
corresponding finite state machine.

This result is critical for applications; without it, pattern matching would be a
nightmare: one would have to input a FSM rather than the expression.

Theorem
There are algorithms to convert a finite state machine into a corresponding
regular expression.

Unfortunately, the expressions are typically exponentially large, so this result is
mostly of academic interest.

A Challenge 5

Develop a toolbox of algorithms that manipulate finite state machines.
Try to make these algorithms as efficient as possible; prove hardness
results if no efficient solution exists.

For example, we already know how to solve Recognition and Emptiness in
linear time. The algorithms provide constructive proofs for the all the closure
properties claimed above.

Unsurprisingly, the algorithms for deterministic versus nondeterministic
machines are often quite different. As we will see, sometimes PDFA are easier
to deal with, sometimes NFA are.

Cartesian Products 6

Here is one important idea: we want use parallel composition. Say, we have
two FAs over Σ: Ai = ⟨Qi, Σ, τi; Ii, Fi⟩. To run the machines in parallel we
define a new machine as follows:

Definition (Cartesian Product Automaton)

A1 × A2 = ⟨Q1 × Q2, Σ, τ ; I1 × I2, F1 × F2⟩

where τ = τ1 × τ2 is defined by(
(p, q), a, (p′, q′)

)
∈ τ ⇔ (p, a, p′) ∈ τ1, (q, a, q′) ∈ τ2

So the computation of A1 × A2 on input x combines two computations of
both machines on the same input x.

Intersection and Union 7

By our choice of acceptance condition we have

L(A1 × A2) = L1 ∩ L2

For union we can resort to a sledgehammer construction, disjoint union or sum.
We may safely assume that the state sets are disjoint.

Definition (Sum)

A1 + A2 = ⟨Q1 ∪ Q2, Σ, τ1 ∪ τ2; I1 ∪ I2, F1 ∪ F2⟩

In other words, we simply declare the two machines to be one machine.

Sum 8

I1 F1 I2 F2

This is trivially linear time, but it wrecks DFA, the result is always
nondeterministic.

Sources of Nondeterminism 9

There are two disctinct source of nondeterminism:

Transition nondeterminism:
there are different transitions p

a−→ q and p
a−→ q′.

Initial state nondeterminism:
there are multiple initial states.

Transition-deterministic automata with multiple initial states are called
multi-entry automata.

Deterministic Machines 10

For DFA, the product construction produces another DFA.

The new initial state is (q01, q02) and the new transition function is
δ = δ1 × δ2, defined by

δ((p, q), a) =
(
δ1(p, a), δ2(q, a)

)

In this case, we can get all Boolean operations out of a product construction:

intersection F = F1 × F2

union F = F1 × Q2 ∪ Q1 × F2

complement F = F1 × (Q2 − F2)

But complement fails catastrophically for nondeterministic machines.

Deciding Equivalence 11

We can now deal more intelligently with the Equivalence problem from last
time, at least in the case where the machines are DFAs.

Problem: Equivalence
Instance: Two DFAs A1 and A2.
Question: Are the two machines equivalent?

Lemma
A1 and A2 are equivalent iff L(A1) − L(A2) = ∅ and L(A2) − L(A1) = ∅.

Note that the lemma yields a quadratic time algorithm. We will see a better
method later.

Deciding Inclusion 12

Observe that we actually are solving two instances of a closely related problem
here:

Problem: Inclusion
Instance: Two DFAs A1 and A2.
Question: Is L(A1) ⊆ L(A2)?

which problem can be handled by

Lemma
L(A1) ⊆ L(A2) iff L(A1) − L(A2) = ∅.

Note that for any class of languages Equivalence is decidable when Inclusion is
so decidable. However, the converse may be false – but it’s not so easy to
come up with an example.

Concatenation and Kleene Star 13

Definition
Given two languages L1, L2 ⊆ Σ⋆ their concatenation (or product) is defined by

L1 · L2 = { xy | x ∈ L1, y ∈ L2 }.

Let L be a language. The powers of L are the languages obtained by repeated
concatenation:

L0 = {ε}

Lk+1 = Lk · L

The Kleene star of L is the language

L⋆ = L0 ∪ L1 ∪ L2 . . . ∪ Ln ∪ . . .

Kleene star corresponds roughly to a while-loop or iteration.

Concatenation Closure 14

Given FSM Ai for recognizable languages Li, we want to construct a new FSM
A for L1 · L2. We need to split the string x = uv

x = x1x2 . . . xk︸ ︷︷ ︸
u∈L1

xk+1 . . . xn︸ ︷︷ ︸
v∈L2

and feed the first part to A1 and the second to A2.

The key problem is that we don’t know where to split: in general, there are
multiple prefixes u in L1, but not all corresponding suffixes v are in L2.

This is a place where nondeterminism is critical: we just “guess” when to split
(i.e., jump form the first machine to the second).

Alas, there is a problem: our transitions are associated with reading a symbol,
here we just want to jump.

Epsilon Transitions 15

No problem, we just add a new kind of transition with label empty word.

Definition
A nondeterministic finite automaton with ε-moves (NFAE) is defined like an
NFA, except that the transition relation has the format τ ⊆ Q × (Σ ∪ {ε}) × Q.

I1 F1 I2 F2
ϵ

Place an ε-transition between all states in F1 and I2 (potentially quadratically
many).

Kleene Star 16

I F
ϵ ϵ

ϵ

ε-transitions also dispatch Kleene star. For example, we could add a new initial
state, a new final state and transitions as indicated.

Generalized Finite Automata 17

While we are at it, we could also allow transitions to be labled by arbitrary
words over Σ. These are called generalized finite automata (GFA):

p
aba−−→ q

GFA are convenient to write down, but are no more powerful than just NFAE
(which, ultimately, turn out to be no more powerful than NFA). We can just
split the word transitions into a sequence of plain transitions:

p
aba−−→ q ⇝ p

a−→ p1, p1
b−→ p2, p2

a−→ q

So we have the following hierarchy of FSM:

DFA ⊆ PDFA ⊆ MEPDFA ⊆ NFA ⊆ NFAE ⊆ GFA

This is a feature, not a bug: one often uses different types of machines for
different purposes, whichever kind works best under the circumstances.

Reversal Closure 18

Here is another example of an operation that preserves recognizability, but is
difficult to capture within the confines of deterministic machines. For
nondeterministic machines, on the other hand, it is entirely trivial.
Let

Lop = { xop | x ∈ L }

be the reversal of a language, (x1x2 . . . xn−1xn)op = xnxn−1 . . . x2x1.

It turns out the L is recognizability iff Lop is recognizable.

This result is actually quite important: the direction in which we read a string
should be of supreme irrelevance. We really want a language to be recognizable
no matter whether we read left-to-right or right-to-left.

Example: Third Symbol 19

It is very easy to build a DFA for La,3 = { x | x3 = a }.
We omit the sink to keep the diagram simple.

0 1 2 3
a, b a, b a

a, b

But Lop
a,3 = { x | x−3 = a } = La,−3 is somewhat hard for DFAs: we don’t

know how far from the end we are. Here is a perfectly legitimate NFA for this
language: we flip transitions and interchange initial and final states.

3 2 1 0
a

a, b

a, b a, b

It is clear that the new machine accepts La,−3.

Avoiding Nondeterminism 21

We will show in a momemt that GFA are in fact equivalent to DFA in the sense
that every GFA can be converted into a DFA that accepts the same language.

Just as a little mental exercise, for once let’s try to argue directly in terms of
DFA, without the use of any helpful theorems.

Say, we want to build a DFA for the concatenation of two languages, given
DFA for the languages.

Pebbles 22

Here is a psychological trick that sometimes helps to construct deterministic
machines. Assume we have some transition system (not necessarily
deterministic).

Initially, we place a few pebble on some states (typically initial states).

Under input a, a pebble on p multiplies and moves to all q such that
p

a−→ q. If there are no transitions with source p, the pebble dies.

Multiple pebbles on the same state coalesce into a single one.

We accept whenever a pebble appears in F .

Note: The movement of the set of all pebbles is perfectly deterministic.

So even when the given transition system is nondeterministic, this method
produces a deterministic machine.

Pebble Automaton for Concatenation 23

We start with the DFA A1, the leader, and the DFA A2, the follower.

Place one pebble on the initial state of the leader machine.

Move the pebbles according to our standard rules.

Whenever the leader pebble reaches a final state, place a new pebble on
the initial state of the follower automaton.

The composite machine accepts if a pebble sits on final state in the fol-
lower machine.

Another way of thinking about the same construction is to have |A2| many
copies of the second DFA, each with just one pebble.

State Complexity 24

The number of states in the new DFA is bounded by

|A1| 2|A2|

since the A1 part is deterministic but the A2 part is not: there are multiple
pebbles floating around in A2.

The states are of the form (p, P) where p ∈ Q1 and P ⊆ Q2, corresponding to
a complete record of the positions of all the pebbles.

Of course, the accessible part may well be smaller. Alas, in general the bound
is essentially tight.

1 Nondeterministic Machines

2 Determinization

3 More Closure Properties

Conversion to DFA 26

Our first order of business is to show that NFAs and NFAEs are no more
powerful than DFAs in the sense that they only accept recognizable languages.
Note, though, that the size of the machines may change in the conversion
process, so one needs to be a bit careful.

The transformation is effective: the key algorithms are

Epsilon Elimination Convert an NFAE into an equivalent NFA.

Determinization Convert an NFA into an equivalent DFA.

NFAE to NFA 27

Epsilon elimination is quite straightforward and can easily be handled in
polynomial time:

introduce new ordinary transitions that have the same effect as chains of
ε transitions, and

remove all ε-transitions.

Since there may be chains of ε-transitions this is in essence a transitive closure
problem. Hence part I of the algorithm can be handled with the usual graph
techniques.

ε-Closure 28

A transitive closure problem: we have to replace chains of transitions

a ε ε ε

by new transitions

a

a a

a

Epsilon Elimination 29

Theorem
For every NFAE there is an equivalent NFA.

Proof. This requires no new states, only a change in transitions.
Suppose A = ⟨Q, Σ, τ ; I, F ⟩ is an NFAE for L. Let

A′ = ⟨Q, Σ, τ ′; I ′, F ⟩

where τ ′ is obtained from τ as on the last slide.
I ′ is the ε-closure of I: all states reachable from I using only ε-transitions. 2

Again, there may be quadratic blow-up in the number of transitions and it may
well be worth the effort to try to construct the NFAE in such a way that this
blow-up does not occur.

Determinization 30

In the realm of finite state machines, nondeterministic machines are no more
powerful than deterministic ones (this is also true for register/Turing machines,
but fails for pushdown automata).

Theorem (Rabin, Scott 1959)
For every NFA there is an equivalent DFA.

The idea is to keep track of the set of possible states the NFA could be in.
This produces a DFA whose states are sets of states of the original machine.

General Abstract Nonsense to the Rescue 31

τ ⊆ Q × Σ × Q

τ : Q × Σ × Q −→ 2

τ : Q × Σ −→ (Q −→ 2)

τ : Q × Σ −→ P(Q)

τ : P(Q) × Σ −→ P(Q)

The latter function can be interpreted as the transition function of a DFA on
P(Q). Done.

;-)

Proof of Rabin-Scott 32

Suppose A = ⟨Q, Σ, τ ; I, F ⟩ is an NFA. Let

A′ = ⟨P(Q), Σ, δ; I, F ′⟩

where δ(P, a) = { q ∈ Q | ∃ p ∈ P τ(p, a, q) }
F ′ = { P ⊆ Q | P ∩ F ̸= ∅ }
It is straightforward to check by induction that A and A′ are equivalent. 2

The machine from the proof is the full power automaton of A, written
powf(A), a machine of size 2n.

Of course, for equivalence only the accessible part pow(A), the power
automaton of A, is required.

Accessible Part 33

This is as good a place as any to talk about “useless” states: states that cannot
appear in any accepting computation and that can therefore be eliminated.

Definition
A state p in a finite automaton A is accessible if there is a run with source an
initial state and target p. The automaton is accessible if all its states are.

Now suppose we remove all the inaccessible states from a automaton A
(meaning: adjust the transition system and the set of final states). We obtain
a new automaton A′, the so-called accessible part of A.

Lemma
The machines A and A′ are equivalent.

Coaccessible/Trim Part 34

There is a dual notion of coaccessibility: a state p is coaccessible if there is at
least one run from p to a final state. Likewise, an automaton is coaccessible if
all its states are.
An automaton is trim if it is accessible and coaccessible.

It is easy to see that the trim part of an automaton is equivalent to the whole
machine. Moreover, we can construct the coaccessible and trim part in linear
time using standard graph algorithms.

Warning: Note that the coaccessible part of a DFA may not be a DFA: the
machine may become incomplete and we wind up with a partial DFA. The
accessible part of a DFA always is a DFA, though.

Keeping Trim 35

In the RealWorldTM we would avoid the full power set at all costs: instead of
building a DFA over pow(Q) we would only construct the accessible
part—which may be exponentially smaller. There are really two separate issues
here.

First, we may need to clean up machines by running an accessible (or
trim) part algorithm whenever necessary–this is easy.

Much more interesting is to avoid the construction of inaccessible states
of a machine in the first place: ideally any algorithm should only produce
accessible machines.

While accessibility is easy to guarantee, coaccessibility is not: while
constructing a machine we do not usually know the set of final states ahead of
time. So, there may by need to eliminate non-coaccessible states.

Smart Power Automata 36

The right way to construct the Rabin-Scott automaton for A = ⟨Q, Σ, τ ; I, F ⟩
is to take a closure in the ambient set P(Q):

clos
(

I, (τa)a∈Σ

)
Here τa is the function P(Q) × Σ → P(Q) defined by

τa(P) = { q ∈ Q | ∃ p ∈ P (p a−→ q) }

This produces the accessible part only, and, with luck, is much smaller than the
full power automaton.

Virtual Graphs 37

Think of the labeled digraph

G = ⟨P(Q); τ1, τ2, . . . , τk ⟩

with edges p
a−→ q for τa(p) = q, the virtual graph or ambient graph where we

live. The graph is exponential in size, but we don’t need to construct it
explicitly.

We only need to compute the reachable part of I ∈ P(Q) in this graph G. This
can be done using standard algorithms such as Depth-First-Search or
Breadth-First-Search.

The only difference is that we are not given an adjacency list representation of
G: we compute edges on the fly. No problem at all.

This is very important when the ambient graph is huge: we may only need to
touch a small part.

Example: La,−3 38

Recall

La,k = { x ∈ {a, b}⋆ | xk = a }.

For negative k this means: −kth symbol from the end. It is trivial to construct
an NFA for La,−3:

0 1 2 3
a a, b a, b

a, b

Rabin-Scott 39

Applying the Rabin-Scott construction we obtain a machine with 8 states

{0}, {0, 1}, {0, 1, 2}, {0, 2}, {0, 1, 2, 3}, {0, 2, 3}, {0, 1, 3}, {0, 3}

where 1 is initial and 5, 6, 7, and 8 are final. The transitions are given by

1 2 3 4 5 6 7 8
a 2 3 5 7 5 7 3 2
b 1 4 6 8 6 8 4 1

Note that the full power set has size 16, our construction only builds the
accessible part (which happens to have size 8).

The Diagram 40

Here is the corresponding diagram, rendered in a particularly brilliant way. This
is a so-called de Bruijn graph (binary, rank 3).

aab abb

aaa aba bab bbb

baa bba

Exercise
Explain this picture in terms of the Rabin-Scott construction.

Example 41

Consider the product automaton for DFAs Aaa and Abb, accepting aa and bb,
respectively.

Aaa:

0 1 2

⊥

a a

a, bb
b

a, b

Full Product Automaton 42

00 01 02 0⊥

10 11 12 1⊥

20 21 22 2⊥

⊥0 ⊥1 ⊥2 ⊥⊥

a a a a

a a a a

a a a, b
a, b

a
a

a, b

b b b

b

b b b b

b b

b b

a, b

The Accessible Part 43

00

1⊥

2⊥

⊥1 ⊥2 ⊥⊥

01 02 0⊥

10 11 12

20 21 22

⊥0

a

a
b

b

a, b

a, b

b

a

a, b

a a a

a a a

a a a, b

a

b b

b

b b b

b b

b

A Better Mousetrap? 44

Acceptance testing is slower, nondeterministic machines are not simply
all-round superior to DFAs.

Advantages:
Easier to construct and manipulate.
Sometimes exponentially smaller.
Sometimes algorithms much easier.

Drawbacks:
Acceptance testing slower.
Sometimes algorithms more complicated.

Which type of machine to choose in a particular application can be a hard
question, there is no easy general answer.

1 Nondeterministic Machines

2 Determinization

3 More Closure Properties

Homomorphisms 46

Definition
A homomorphism is a map f : Σ⋆ → Γ ⋆ such that

f(x1x2 . . . xn) = f(x1)f(x2) . . . f(xn)

where xi ∈ Σ. In particular f(ε) = ε.

Note that a homomorphism can be represented by a finite table: we only need
f(a) ∈ Γ ⋆ for all a ∈ Σ.

Given a homomorphism f : Σ⋆ → Γ ⋆ and languages L ⊆ Σ⋆ and K ⊆ Γ ⋆ we
are interested in the languages

image f(L) = { f(x) | x ∈ L }
inverse image f−1(K) = { x | f(x) ∈ K }

Closure under Homomorphisms 47

Lemma
Regular languages are closed under homomorphisms and inverse
homomorphisms.

Proof.
Let f : Σ⋆ → Γ ⋆ be a homomorphism.
Say, we have a DFA A for K ⊆ Γ ⋆. Replace the labels of the transitions as
follows

p
a−→ q ⇝ p

f(a)−→ q

This produces a GFA over Σ that accepts f−1(K).

For the opposite direction, given a regular expression α for L ⊆ Σ⋆, replace all
letters a by f(a). This produces a regular expression for f(L).

2

Substitutions 48

We can push the last result a little further: we could consider regular
substitutions, maps obtained from a lookup table

f(a) = Ka ⊆ Γ ⋆

where Ka is a whole regular language, rather than just a single word. As
before, f(x1x2 . . . xn) = f(x1)f(x2) . . . f(xn) ⊆ Γ ⋆ and we set

f(L) =
⋃
x∈L

f(x)

Lemma
Regular languages are closed under regular substitutions and inverse regular
substitutions.

Wait a minute . . . 49

In our proof sketch, we used regular expressions. We can convert back and forth
between expressions and machines, but one direction is not really feasible.

How about a machine-based proof?

No problem. Say, we have a DFA A for a language L ⊆ Γ ⋆ and a
homomorphism f : Σ⋆ → Γ ⋆ .
Keep the state set, initial and final states; switch the alphabet to Σ and modify
the transition function:

δ′(p, a) = δ(p, f(a))

Exercise
How would this work for regular substitutions?

Fixes 50

For a word x = uvw, u is prefix of x, v is factor or infix of x and w is suffix of
x.

We can lift these concepts to languages:

pref(L) = { u ∈ Σ⋆ | ∃ v (uv ∈ L) }

and similarly for fact(L) and suff(L).

Lemma
pref(L), fact(L) and suff(L) are regular whenever L is.

Proof. We may assume that A is a trim automaton for L.
Set F = Q, I = F = Q and I = Q, respectively.

2

Alternative Argument 51

For any alphabet Σ define Σ to be a copy of Σ with elements a for a ∈ Σ; set
Γ = Σ ∪ Σ.

Define homomorphisms f, g : Γ ⋆ → Σ⋆ by

f(a) = a f(a) = a

g(a) = a g(a) = ε

Then
pref(L) = g

(
f−1(L) ∩ Σ

⋆
Σ⋆

)
Done by closure properties.

Regular Computations 52

Suppose A is a DFA accepting L ⊆ Σ⋆.

Claim: Let K be the words x in L such that the computation of A on x uses
every state at least once. Then K is regular.

Sketch of proof.
Consider the transitions ∆ ⊆ Q × Σ × Q as a new alphabet, so ∆⋆ is the set of
all sequences of transitions.
Let C = { W ∈ ∆⋆ | W = . . . (p, a, q)(q′, b, r) . . . , q ̸= q′ } Then ∆⋆ − C
represents all computations of A. Similarly we can filter out accepting
computations.
Let Cp = ∆⋆(p, a, q)∆⋆ ∪ ∆⋆(q, a, p)∆⋆ be the computations using state p.
By intersecting with all the Cp we get computations we want.
Lastly apply the homomorphism (p, a, q) 7→ a.

2

State Complexity of Operations 53

DFA NFA

intersection mn mn

union mn m + n

concatenation (m − 1)2n − 1 m + n

Kleene star 3 · 2n−2 n + 1

reversal 2n n

complement n 2n

Worst case blow-up starting from machine(s) of size m, n and applying the
corresponding operation (accessible part only).

Note that we are only dealing the state complexity, not transition complexity
(which is arguably a better measure for NFAs).

Example: Intersection 54

The “mod-counter” language

Ka,m = { x ∈ 2⋆ | #ax = 0 (mod m) }

clearly has state complexity m. Similarly, the intersection of K0,m and K1,n

has state complexity mn.

Again: Decision Problems 55

Problem: Emptiness Problem
Instance: A regular language L.
Question: Is L empty?

Problem: Finiteness Problem
Instance: A regular language L.
Question: Is L finite?

Problem: Universality Problem
Instance: A regular language L.
Question: Is L = Σ⋆?

Machine Types 56

For DFAs these problems are all easily handled in linear time using
depth-first-search.

As far as decidability is concerned there is no difference between DFAs and
NFAs: we can simply convert the NFA.

But the determinization may be exponential, so efficiency becomes a problem.

Emptiness and Finiteness are easily polynomial time for NFAs.

Universality is PSPACE-complete for NFAs.

More Problems 57

Problem: Equality Problem
Instance: Two regular languages L1 and L2.
Question: Is L1 equal to L2?

Problem: Inclusion Problem
Instance: Two regular languages L1 and L2.
Question: Is L1 a subset of L2?

Inclusion is PSPACE-complete for NFAs.

Equality is PSPACE-complete for NFAs.

Large Product Machines 58

Suppose we have a list of m DFAs Ai of size ni, respectively.

Then the full product machine

A = A1 × A2 × . . . × Am−1 × Am

has n = n1n2 . . . ns states.

The full product machine grows exponentially, but its accessible part may
be much smaller.

Alas, there are cases where exponential blow-up cannot be avoided.

Bad News: DFA Intersection 59

Here is the Emptiness Problem for a list of DFAs rather than just a single
machine:

Problem: DFA Intersection
Instance: A list A1, . . . , An of DFAs
Question: Is

⋂
L(Ai) empty?

This is easily decidable: we can check Emptiness on the product machine
A =

∏
Ai. The Emptiness algorithm is linear, but it is linear in the size of A,

which is itself exponential. And, there is no universal fix for this:

Theorem
The DFA Intersection Problem is PSPACE-hard.

